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Retrospective and prospective persistent activity induced
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Abstract

Recordings from cells in the associative cortex of monkeys performing visual working memory tasks link persistent neuronal activity,
long-term memory and associative memory. In particular, delayed pair-associate tasks have revealed neuronal correlates of long-term
memory of associations between stimuli. Here, a recurrent cortical network model with Hebbian plastic synapses is subjected to the
pair-associate protocol. In a first stage, learning leads to the appearance of delay activity, representing individual images ('retrospective’
activity). As learning proceeds, the same learning mechanism uses retrospective delay activity together with choice stimulus activity to
potentiate synapses connecting neural populations representing associated images. As a result, the neural population corresponding
to the pair-associate of the image presented is activated prior to its visual stimulation ('prospective’ activity). The probability of
appearance of prospective activity is governed by the strength of the inter-population connections, which in turn depends on the
frequency of pairings during training. The time course of the transitions from retrospective to prospective activity during the delay period
is found to depend on the fraction of slow, N-methyl-D-aspartate-like receptors at excitatory synapses. For fast recurrent excitation,
transitions are abrupt; slow recurrent excitation renders transitions gradual. Both scenarios lead to a gradual rise of delay activity when
averaged over many trials, because of the stochastic nature of the transitions. The model reproduces most of the neuro-physiological
data obtained during such tasks, makes experimentally testable predictions and demonstrates how persistent activity (working

memory) brings about the learning of long-term associations.

Introduction

Neurophysiological experiments have established persistent delay
activity as the main candidate for a neuronal substrate of working
memory (Fuster & Alexander, 1971; Funahashi et al., 1989; Fuster,
1995; Goldman-Rakic, 1995). Persistent delay activity was first discov-
ered in prefrontal cortex (PFC), and later in inferotemporal (IT) cortex
(Fuster & Jervey, 1981; Miyashita & Chang, 1988) and other areas of the
temporal lobe (Nakamura & Kubota, 1995). Miyashita (1988) found
links between persistent activity and long-term associative memory: if
training in the delay-match-to-sample task is performed with a fixed
sequence of sample images, single cells in the temporal lobe show
elevated delay activity, following presentations of several images that are
neighbours in the sequence. Thus, correlations between delay activity
patterns reflect temporal associations between stimuli.

Sakai & Miyashita (1991) and Naya et al. (2001, 2003) used a pair-
associate task to investigate further links between associative memory
and persistent activity. Images shown to the monkey were divided into
fixed pairs (Fig. 1A). A trial consisted of the presentation of one image of
a pair (the cue or predictor), followed by a delay, and finally by a test (or
choice) stimulus that includes the pair-associate of the cue together with
a distractor. The monkey was rewarded for touching the ‘pair-associate’
of the cue. Following long training, some neurons, visually responsive
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for a particular picture, showed increasing activity in the delay period,
preceding the presentation of that picture as a test stimulus, i.e. when the
monkey expected that picture to be shown as test (prospective activity,
see also Rainer et al., 1999; Fuster, 2001). These neurons have been
termed ‘pair-recall’ neurons. For some neurons, visual responses to the
pair-associates became highly correlated (‘pair-coding’ neurons).

More recently, Erickson & Desimone (1999) devised a task that
allowed to record during the learning of new pairs. The task associates
a fixed test stimulus to a go/no-go choice. In 85% of the trials, the test
stimulus was preceded by its pair-associate (‘predictor’) stimulus
(Fig. 1B). Such protocol reduces the learning phase (monitored by
the monkey’s performance level) to one or two sessions. It was found
that the delay activity between predictor and choice presentations in
perirhinal (PRh) cortex changed, during learning, from representing
purely the predictor (retrospective activity) to representing both
predictor and choice (prospective activity). With novel stimuli there
was no similarity in visual responses of paired stimuli, and inter-
stimulus delay activity was purely retrospective. With familiar stimuli,
PRh neurons showed high correlation of visual responses to consis-
tently paired stimuli, and the delay activity was correlated with both
the predictor and the choice stimuli.

Possible mechanisms for persistent activity have been explored by
theoretical modelling (Amit, 1995; Durstewitz et al., 2000; Wang,
2001). The main candidate is the reverberation mechanism through
excitatory feedback (Hebb, 1949). The synaptic structure sustaining
persistent activity can be a consequence of Hebbian plasticity induced
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FIG. 1. Pair-associate task (adapted from Naya et al., 1996; Rainer et al., 1999). (A) A set of images is divided into fixed pairs (associates) (A, A") (B, B'), etc. (adapted
from Naya et al., 1996). (B) Protocol of the task: prestimulus interval, sample presentation, delay period and test (choice) presentation.

by stimuli (Amit, 1995; Amit & Brunel, 1997b). The link between
persistent activity and stimulus—stimulus associations (Miyashita,
1988) has been explored in several studies (Griniasty et al., 1993;
Amit et al., 1994; Brunel, 1996). However, these studies dealt only
with stationary properties in the delay period, using mean-field
approaches. Temporal dynamics during the delay period has not been
explored by modelling studies.

The pair-associate paradigm provides a unique terrain for studying
the inter-play between learning and persistent activity. We use it to
investigate the evolution of persistent activity during learning in a pair-
associate task in a model cortical network with plastic synapses. We
find that learning naturally leads first to the appearance of ‘retro-
spective’ persistent activity, and later to the appearance of ‘prospec-
tive’ activity.

Materials and methods

The model network

We model a ‘cortical module’ of an area of the temporal lobe where
selective persistent activity related to objects is observed. The model is
composed of Ng pyramidal cells and Ny inhibitory inter-neurons. Each
neuron receives, on average, Cg synaptic contacts from excitatory
neurons and C; from inhibitory neurons inside the network (selected at
random), and C,,, excitatory synaptic contacts representing external
afferents (Amit & Brunel, 1997b). The external afferents are activated
independently by a Poissonian process, with rate vey. The current
resulting from the activation represents both noise from the rest of the
cortex as well as selective afferents due to the presentation of stimuli.
Excitatory neurons in the network are assumed to be selective to a
discrete set of p external stimuli (representing the images or objects
shown in the experiments). To the p stimuli correspond p subpopula-
tions, each consisting of fNg excitatory neurons, where f(f < < 1) is the
‘coding level’. For the sake of simplicity, we assume subpopulations
are non-overlapping, i.e. all neurons in a given population respond to a
single stimulus. Stimuli are organized in p/2 associated pairs: Stimulus
(A, A') (B, B’), .... In our case, p=16 stimuli are divided in eight
pairs. The presentation of a stimulus is simulated by selectively
increasing the external rates afferent to the corresponding population,
Vext — (1 +X)Vex, Where A is the ‘contrast’ of external stimuli. The
architecture of the model is shown in Fig. 2.

network

F1G.2. Architecture of the model network. The network is composed of a large
number of excitatory neurons and inhibitory neurons. Circles denote functional
populations, labelled by the objects they encode. Arrows connecting popula-
tions are directional synaptic connections, whose thickness indicates their
relative strength. Both excitatory and inhibitory neurons receive connections
from 20% of excitatory neurons and 20% of inhibitory neurons (inhibitory to
inhibitory connections not shown), as well as connections from outside the
network (not shown). Inhibitory connections are stronger (on average) than
excitatory connections, in order to render spontaneous activity stable (see, e.g.
Amit & Brunel, 1997b). Disjoint populations of excitatory neurons A, B, ...
represent the ‘predictor’ images and A’, B, ... are their corresponding pair-
associates. Following learning, connections within subpopulations are much
stronger than average, while connections between pair-associate populations
(e.g. A— A) are only slightly stronger than average. The figure represents a
network with a symmetric synaptic matrix. In the asymmetric scenario, con-
nections from A to A’ are stronger than connections from A’ to A (see text).

The neurons of the network are leaky integrate-and-fire (IF) neu-
rons. The state of a neuron is described by its depolarization V(¢),
obeying the equation:

dV(2)/dt = =V (¢) + (1) (1)

where I(¢) is the total afferent current (in units of V) due to spikes
arriving from presynaptic neurons; 7y, is the membrane time constant.
When V() reaches a threshold 6, the neuron emits a spike and Vis reset
to V,, following a refractory period t,.p. The synaptic current I(z) is the
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sum of individual post-synaptic currents induced by the Cg excitatory
synapses and the Cj inhibitory synapses. Individual post-synaptic
currents obey the equation,

ol (1) /dt = —I(t) + T 0(t — 1 — 35) ()
k

where tg is the decay time constant of the synaptic current; J is
proportional to the total charge transmitted by a single spike across the
synapse (its efficacy, in mV units) and §s is the associated latencys; 7, is
the time of the synaptic activation, due to the k-th presynaptic spike,
and spikes are described by instantaneous current injections. Eqn2
implies that, upon emission of a presynaptic spike, the post-synaptic
current has, following a delay ds, an instantaneous jump proportional
to the efficacy, followed by an exponential decay with a time constant
5. Dependence on the neurotransmitter involved is taken into account
by using different rs. The inhibitory synapses produce a fast inhibitory
current mimicking the +vy-aminobutyric acid (GABA) current
(ts=35ms). The recurrent excitatory synapses have both a fast
(ts=2ms) and a slow (ts=100ms) component, corresponding,
respectively, to AMPA and N-methyl-D-aspartate (NMDA) currents.
A fraction x of the total charge is assumed to be transmitted by the slow
component, and the remaining fraction (1 — x) by the fast component.
External excitatory synapses have only a fast component, with efficacy
JEexts Jlexes tO €Xcitatory/inhibitory neurons, respectively. The total
current afferent on a neuron, /(¢) in Eqn 1, is the sum of the different
components, each evolving with its own time constant. The voltage-
dependence of NMDA is not modelled.

We have studied the behaviour of the model in two successive
stages. First, the neural dynamics is studied during single trials, with a
fixed, prestructured synaptic matrix. Second, once neuronal dynamics
is well understood, the full learning scenario is implemented, to
investigate the inter-play between neuronal and synaptic dynamics.

The protocols

We have simulated the pair-associate protocols with ordered pairs

(Erickson & Desimone, 1999), i.e. the first member of a pair (A) is used

only as a cue (predictor), while the second member appears only as a

test (choice). The simulations reproduce, in the spirit of Amit (1998),

2 days of the experiment of Erickson & Desimone (1999), consisting of

a series of 1000 trials (2 days of 500 trials each). Each trial consists of

four intervals.

1. Prestimulus (1000 ms): no selective external inputs.

2. Cue (predictor) presentation (500 ms): a randomly chosen stimulus
from the set of predictor cues (e.g. A) is shown to the network. The
activation rate of the afferents to the neurons of the corresponding
population is increased to (1 4 A)Vey.

3. Delay interval (1000 ms): no selective external inputs.

4. Test (choice) presentation (500ms): in 85% of trials, the pair-
associate (A’) of the cue (A) is shown to the network (‘valid’ trials).
In 15% of trials, another randomly chosen stimulus from the set of
choice stimuli (e.g. C') is presented (‘invalid’ trials). In the simula-
tions, the fraction of ‘valid’ trials was either 100% or 85%.
Other protocols have used unordered pairs (Sakai & Miyashita,

1991; Naya et al., 1996). In these protocols, any of the stimuli of a pair

(A or A’) can appear as a cue. The test stimulus is composed of the pair-

associate of the cue image, together with a distractor image.

Network with prestructured synaptic matrix

The synaptic matrix is constructed at the beginning of the simulation
and stays fixed thereafter. The process of building the synaptic matrix
is done in two steps. First, for each excitatory neuron, we select the set
of Cg excitatory presynaptic neighbours of that neuron, randomly and

Retrospective and prospective persistent activity 2013

independently from neuron to neuron. This defines the set of functional
synapses of the network, at which plasticity can take place. A similar
procedure is done for other populations of synapses (inhibitory
synapses on excitatory neurons, excitatory and inhibitory synapses
on inhibitory neurons), but these synapses all have a fixed and equal
efficacy Jig, Jg1 and Jy, respectively. Next, each existing excitatory
synapse on an excitatory neuron J; (where j denotes the presynaptic
neuron and i the post-synaptic neuron) is assigned one of two possible
states, a potentiated (up) state with efficacy J;;=J; and a depressed
(down) state with efficacy J;=Jo. Structuring due to learning is
expressed in shifting the proportion of synapses in the up and down
states. In the final outcome of the training stage, the probability for a
synapse to be in the up state depends on whether the protocol uses
ordered or unordered pairs (see below).

In the general case, the structure in the resulting synaptic matrix is
potentially asymmetric, with

1 if 4,7 in the same population
a if j(postsynaptic) in predictor
population (e.g. A)
and 7 (presynaptic) in choice 3)
population (e.g. A)
a' if j in choice population (e.g. A’)
and i in predictor population (e.g. A)
0 otherwise

PI'Ob(J,:/':jl ) =

where a is a forward pair-learning parameter (strength of synapses
whose presynaptic neuron is selective for a ‘predictor’, e.g. A, while
the post-synaptic neuron is selective for a ‘choice’, e.g. A’), and @’ is a
backward pair-learning parameter (vice versa). If in training the pairs
are of fixed order (first A, then A’), the resulting synaptic matrix may
have a # a’ — asymmetric structuring. If the images within the pairs are
presented at random, the resulting synaptic matrix will have a=a’ —
symmetric structuring. The symmetry/asymmetry of the synaptic
matrix depends not only on ordering of the pairs, but also on the
symmetry/asymmetry of the learning dynamics (see below). Hence, in
principle, even in the ordered pair case, the resulting inter-population
synaptic structure may end up symmetric.

In the following, for the prestructured case, we will consider the two
extremes: a =a’ (symmetric) and ' =0 (fully asymmetric).

Network with learning dynamics

Plasticity is restricted to excitatory-to-excitatory synapses. The synap-
tic matrix is initialized by assigning to each existing excitatory-to-
excitatory synapse in the connectivity scheme described above, the
efficacy J; with probability 0.05, and J, otherwise, irrespective of the
identity of pre- and post-synaptic neurons (tabula rasa). The learning
process is implemented in a Hebbian, rate-dependent way between
excitatory neurons only. Plasticity takes place only in existing synapses
of the random connectivity arrangement. The average spike rate of
every excitatory neuron is estimated as the ratio of the number of
spikes emitted into a time window T divided by 7. The time window
slides by ¥2T increments, so that each trial is divided into overlapping
bins of 7' ms. If in a window T both cells emit at a rate above a high
threshold 7', chosen to be lower than the rate of visual response, but
higher than the rate in delay activity, and the synapse has efficacy Jy, its
efficacy is potentiated to J;, with probability p, [strong long-term
potentiation (LTP) condition]; if the presynaptic cell emits at a rate
below 7', but above a low threshold T, (lower than delay activity rate
but higher than the rate in spontaneous activity), while the post-
synaptic cell emits at a rate above T,, the efficacy Jo—J; with
probability p,, (weak LTP condition 1); in the opposite case, if the
presynaptic cell emits at a rate above T',, while the post-synaptic rate is
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below T, but above T, the efficacy Jo — J;, with probability p,, (weak
LTP condition 2); if the rate of one of the two cells is above 7', and that
of the other cell is below T,, J, — Jy, with probability p_ (LTD
condition); in the remaining cases, when none of the two cells emits
at high rate, no change occurs. This plasticity dynamics is motivated in
the Discussion. To summarize,

p+ strong LTP condition

pw week LTP condition 1

p.»  week LTP condition 2

0 otherwise

Prob(Jy — J;) =

_ LTD condition
Prob(Jo — J1) = {I(; otherwise

)
The regions where plasticity takes place, in the plane of pre- and post-
synaptic rates, are shown in Fig. 3.

If pw # pw and the ordering of the images within the pairs is fixed,
this learning dynamics leads asymptotically to an asymmetric struc-
ture, Eqn 3 with a # d’. However, if during training the pairs are not
ordered, i.e. each element of the pair is as often presented as predictor
or as choice, the structuring will end up symmetric (Eqn 3, with a = a’).
The simulation of the full learning dynamics was carried out in the
fully asymmetric case (py =0), as in Erickson & Desimone (1999).
The main goal has been to check that the dynamics indeed converges to
the expected synaptic matrix.

Parameters of the network of IF neurons

The simulated network of IF neurons had the parameters given in
Table 1.

The parameters related to the network architecture were chosen to
be compatible with realistic cortical anatomy. Individual neuronal
parameters and synaptic temporal parameters were chosen in accor-
dance with known physiological data (McCormick et al., 1985; Mason
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F1G. 3. Regions of synaptic transitions in the space of pre- and post-synaptic
rates. LTP occurs when both pre- and post-synaptic rates are high, above a high
threshold 7', =65 Hz; LTD occurs when one rate is high (above 7',) and one
below a low threshold, T, =15Hz; weak LTP occurs when one rate is high
(above T, ) and one intermediate (between 7, and 7',); otherwise no change
occurs.

TABLE 1. Parameters of the network of IF neurons

Number of excitatory neurons Ng 8000
Number of inhibitory neurons M 2000
Number of recurrent excitatory connections Cg 1600
per neuron
Number of external excitatory connections Cext 1600
per neuron
Number of inhibitory connections per neuron (i 400
Coding level f 0.05
Number of stimuli )4 16
Membrane time constant, pyramidal cells TmE 20 ms
Membrane time constant, inter-neurons Tl 10 ms
Firing threshold (both types) (% 20mV
Reset membrane potential, pyramidal cells Vie 10mV
Reset membrane potential, inter-neurons | 15mV
Refractory period (both types) TARP 2 ms
Average E — E efficacy JeE 0.05mV
E — 1 efficacy JIE 0.11mV
I —E efficacy JE1 0.15mV
I—1 efficacy Ju 0.26 mV
External E — E efficacy JEext 0.055mV
External E — I efficacy Jiext 0.1mV
Potentiated E — E efficacy Ji 3.2 Jgg
Depressed E — E efficacy Jo (Jge —fI)I(A —f)

Synaptic decay type: fast excitation
(AMPA-like)
Synaptic decay type: slow excitation
(NMDA-like)
Synaptic decay type: fast inhibition

TaMPA  2mS
100 ms

TGABA 5ms

(GABA-like)
Fraction of slow excitatory current X 0.05-0.30
Latency (transmission delay) d 0.5-3.5 ms
Background external rates Vext 15Hz
Contrast of external stimulus A 0.7
High learning threshold T, 65 Hz
Low learning threshold T, 15Hz
LTP probability P, 0.007
Weak LTP probability Pw 0.0035
LTD probability p- 0.007
Learning bin T 100 ms
Pair-learning parameter (for fixed A 0-0.04

synaptic matrix)

et al., 1991; Markram et al., 1997). The synaptic latency was drawn
randomly and independently from a uniform distribution, in an interval
(8) given in Table 1. The amplitudes of synaptic efficacies and external
rates were chosen to obtain background ‘spontaneous’ activity at about
5 Hz for pyramidal cells and 10 Hz for inter-neurons. J; was chosen to
ensure stable persistent activity (for fixed network structure) or to lead
to such stable activity in the learning process (for evolving network
structure). The relationship between J, and J; is chosen so that
spontaneous activity is unchanged as J; is varied (Amit & Brunel,
1997b). The contrast of external stimuli, A, was chosen to render the
visual response, at the beginning of the learning process, higher than
the high learning threshold 7',. In simulations with prestructured
synaptic matrix, A was chosen to produce a visual response of about
80 Hz. The value of T, ensures that synaptic modifications occur only
during visual presentations, and not during delay activity or sponta-
neous activity, for structural stability reasons (Amit & Mongillo,
2003). The low learning threshold, 7, was chosen to be higher than
spontaneous activity, but otherwise as low as possible to allow synaptic
modifications in the initial part of the interval of the choice stimulus
presentation. Finally, the synaptic transition probabilities, p,, pw
(recall that py, =0), were chosen to be low, so that learning occurs
gradually over the course of many presentations; the weak LTP prob-
ability was chosen to be lower than the high LTP probability again
for stability reasons. Too high learning probabilities (in particular
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too high weak LTP probability) lead to an epileptic state, when too many
inter-population synapses become potentiated to J;.

Simplified (population-rate) model

We also studied the network dynamics by using a simplified model.
The full simulation of the network of spiking neurons, subject to the
entire experimental protocol including the synaptic formation, is quite
time consuming. For example, to run the full set of 1000 trials in the
pair-associate paradigm takes several days on a fast workstation. By
contrast, a ‘mean-field’” approach provides an explicit, complete and
rapid picture of the attractor landscape of the network, hence the
available stationary states of its dynamics. The large-scale simulation
of the network of spiking neurons is used to confirm the results of the
mean-field model and to explore the role of transitions between
attractors due to the intrinsic fluctuations related to the finite size
of the system, absent in the mean-field approach.

Note that the simplified model is not meant as an approximation to
the full simulation (as in, e.g. Amit & Brunel, 1997a), but rather as a
simple tool for a qualitative study of possible stationary network states
as the synaptic matrix is varied.

Excitatory neurons in the simplified network are chosen to have an
Jf~I curve of the form:

0 1<0
V.(I/1.)? 0<I<I, (5)

o) =
V(1)1 =30 1> 1,

giving the firing rate v vs. the mean input current /, shown in Fig. 4A. I,
can be thought of as a threshold current (again in mV), while v, is the
typical firing rate of cells at this threshold current in presence of
realistic noise. We use for the sake of illustration I.=20mV and
v.=10Hz. The f~I curve of Eqn5 is chosen for its simplicity, and

A

Firing rate v (Hz)

O 1 | 1 | 1 |
0 20 40 60
Input current /(mV)
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because it reproduces the qualitative features of spiking neurons in the
presence of noise. It has a convex subthreshold region (for I <I1.),
mimicking the noise-driven region in spiking neurons (note that the
power law behaviour is a good approximation of the f~I curve in a wide
parameter range for many neuronal models (Hansel & van Vreeswijk,
2002). It has a suprathreshold region (for / > 1.), with a square root
dependence on the input current, as expected for type I neurons
(Ermentrout, 1996).

A state of the network is described by the mean rate of the p non-
overlapping excitatory subpopulations, each selective for a particular
stimulus, and the mean rate of the non-selective inhibitory population.
For simplicity, the activity of inhibitory population is assumed to
depend linearly on the average activity of the excitatory populations.
The fraction of excitatory neurons selective to a given image, the
‘coding level’, is chosen f= 1/p. In other words, there are fN neurons
coding for each stimulus, and every excitatory neuron finds itself in
one of the p, non-overlapping subpopulations. The input current to a
neuron in population «, i.e. selective to stimulus number ¢, is denoted
by I,, and the mean spike rate in this population is v,.

The total synaptic strength from all neurons in population § to a
single neuron in population « is J, g (in mV-s units). The input current
to population « is

Li=lew+Ta+ Y Jupvp =1 > vg (6)
B B

where the first term on the right-hand side corresponds to the back-
ground (non-selective) external afferent current, the second term is the
selective input due to presentation of a stimulus, the third is the
excitatory recurrent feedback, and the last term represents the inhi-
bitory feedback, which we assume to be linearly proportional to the
average activity in the excitatory network.

40 —

Persistent activity

30 —

20 —

Firing rate v (Hz)

10 —

7| Spontaneous activity -

O I | I | | | I | I | I I
2 22 24 26 28 3 3.2
Synaptic potentiation J

F1G. 4. The simplified model: (A) f~I curve, ¢(I) of an excitatory neuron, Eqn 5, with /. =20mV, v, = 10 Hz. (B) Bifurcation diagram for the average spike rates in
spontaneous and persistent delay activity states, as a function of the strength of potentiated synapses, J;, in the absence of pair-associate learning: @ = 0. Dotted line,
boundary between the basins of the two stable states, when they coexist. For J; < 2.24 mV s only spontaneous activity is stable; above 2.24 mVs, both spontaneous
activity and selective delay activity of each of the 20 subpopulations coexist. The arrow indicates the value of J; (=2.3 mV-s) used in Figs5 and 6.
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FIG.5. Attractors in the simplified model with symmetric learning. Spike rates
(arbitrary units) in stable network states vs. the pair-learning parameter, a.
Three types of states are shown. (1) Spontaneous activity state (SAS, black
line), in which all populations are in spontaneous activity. This state is identical
to the unstructured spontaneous activity of Fig. 4B and exists in the entire range
of 0 < a <0.1. (2) Individual attractor state (IAS, red lines), in which one of the
populations (here A) emits at elevated rates (full red line), while the pair-
associate (A’) emits at a rate which is slightly higher than spontaneous activity
(dashed red line), due to increased connections between pair-associate popula-
tions. Other populations (dotted red line, B, B/, . ..) emit at slightly lower rates
than spontaneous activity, due to higher inhibitory activity caused by the delay
activity. The IAS state is the analogue, in the pair-associate protocol, of the
usual persistent activity state shown in Fig. 4B. It exists only at small values of a
(a <0.06). (3) Pair-attractor state (PAS, green lines), both populations of a pair
(here A, A’) emit at elevated and equal delay rates (full green line). Other
populations (B, B/, .. .) emit at low rates (dotted green line). This state exists in
the whole range of 0 < a < 0.1. For a < 0.06, the three types of states coexist; for
a > 0.06, only the spontaneous and pair-attractor states are stable. Insets show a
schematic histogram of the rates in different populations in the network for the
three types of states (SAS, IAS, PAS).

The stationary average rates in the network are given by v, = ¢(1,,),
Eqns5 and 6. A simplified spike rate dynamics is used (Wilson &
Cowan, 1972; Ermentrout, 1998)

tdv, /dt = —v, + $(I,) (7)

where 7 is a time constant associated with the rate dynamics.
The synaptic matrix incorporating the effect of pair-learning is
expressed as:

Ji if o« = f§, intra-population
T = Jo if o # f§, not pair-associates (8)
o = Jo+a(s—sy)  if achoice and f predictor

Jovaw,—s) ifapredictor and f choice

a, d are the pair-learning parameters, introduced in Eqn3. This
synaptic matrix corresponds to an average over individual synapses
whose weight is given by J; or Jy according to Eqn 3.
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FiG. 6. Attractors in the simplified model with asymmetric learning of tempo-
rally ordered pairs. Rates in different network states vs. the pair-learning
parameter a. Three types of selective states are shown [indicated schematically
in the panels marked individual attractor states (IAS) (A), pair attractor states
(PAS), TIAS (A")]: an IAS in which the first item of the pair (A) is active at an
elevated rate, and the second item (A’) is weakly above spontaneous activity
level. It exists only in the range a < 0.05. The IAS, in which the second item of
the pair (A') is active at elevated rates is stable in the range 0 <a < 1. This is
because elevated activity in A’ does not lead to increased activity in its pair-
associate, which acts to destabilize the IAS in the symmetric scenario and the
IAS (A) in the asymmetric scenario. Finally, the PAS exists in the range a < 0.55.
The value of a where the PAS state becomes unstable strongly depends on the
strength of inhibition. This PAS differs from the PAS of the symmetric learning
case as the activity of A’ is stronger than the activity of A. When a is sufficiently
strong, upon presentation of stimulus A, the network will make a transition either
to the asymmetric PAS (both retrospective and prospective delay activity), or to
the TAS of the second item (purely prospective delay activity).

The stationary states of the network can be represented as a
‘bifurcation diagram’ (Fig. 4B), where the stable rates are shown as
a function of the potentiation strength J,, for a=da' =0 and
Jo=1—fJ;—1D/(1 —f) (Amit & Brunel, 1997b; Brunel, 2000b).
Two types of attractor states are shown in Fig.4B: (i) unstructured
spontaneous activity, for which all populations have spontaneous
activity levels (thin horizontal line); (ii) selective delay activity states,
in which one population (the one that last received selective external
inputs) has elevated activity (thick horizontal line), while all other
populations remain close to spontaneous activity levels. Other types of
states exist, as we will see later.

The spontaneous activity branch corresponds to the horizontal line
in Fig.4B. The selective activity branch (solid bold curve) starts at
J1=2.24mV-s. Qualitative results, however, do not depend on the
precise value of J;, provided it is in the bi-stable range shown in
Fig. 4B (2.24 < Js < 2.92).
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F1G.7. Random transitions to prospective activity in the delay interval. Time
course of population-averaged activity, with prestructured synaptic matrix, in
the fully asymmetric condition with ¢=0.02 and x=0.05. The remaining
parameters are reported in Table 1. The epochs of the trial are indicated in the
bottom panel (prestimulus: 0-500ms; cue presentation: 500—1000 ms; delay
period: 1000-2000 ms; test presentation: 2000-2500 ms). Black curve: average
rate in the predictor population. Red curve: average rate in the choice popula-
tion. Rates are sampled in bins of 10 ms. Top three panels: single-trial examples
of transition at different times during the delay period. At the top of each panel,
we present a spike raster of one representative cell belonging to the predictor
population (black) and one to the choice population (red). Note that retro-
spective activity can either persist (Trials 1 and 3) or die out (Trial 2). Bottom:
predictor and choice population activity averaged over 100 trials (PSTH). The
average delay activity in the pair-associate population shows a continuously
increasing activity during the delay period.

From a computational point of view, the attractor dynamics gives to
the network properties similar to a winner-take-all network (e.g.
Ermentrout, 1992), when attractors represent single images. This
computational property is here a by-product of the dynamics of a
recurrent network of excitatory and inhibitory neurons with Hebbian
learning of discrete stimuli.

The parameters of the simplified network are: number of learned
stimuli: p =20; inhibitory efficacy: J;=1.2mV's; potentiated excita-
tory efficacy: Js =2.3 mV-s; background external inputs: I.,, = 10 mV.
The stationary states of the simplified network were investigated by
integrating numerically Eqns5-8 using the Euler method with an
integration time step dz = 0.01t, with various types of initial conditions
(0, 1 or 2 subpopulations active at 20 Hz, the others at 2.5 Hz), until a
stable fixed point was reached. The pair-learning indices a and a’ were
varied systematically. Note that the parameters of the simplified mean-
field model are rather different than those of the spiking network
model. This reflects the fact that the simplified model is not intended to
describe quantitatively the dynamics of the network model, as men-
tioned above, but rather to explore qualitatively, in the simplest
possible setting, the stationary states of the network as a function
of possible synaptic structuring. Notice that in Eqn 6, J is in mV-s and
not in mV as in the full network of IF neurons, as t,,, has been absorbed
in the synaptic strengths.

Results
Simplified (population-rate) model

We start by analysing the stationary states of the simplified model. The
synaptic matrix of the network, Eqn 8, is characterized by two pair-
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F1G. 8. Effect of pair-learning parameter a on prospective activity. Network
with fully asymmetric prestructured synaptic matrix. (A) Temporal evolution of
averaged prospective activity. Curves are trial-averaged activity of choice
population during the cue presentation and the delay interval. The increase
of the emission rate is due to the fact that the probability of having made a
transition to a prospective state increases with the passage of time. It becomes
steeper as a increases due to the decrease in the average lifetime of the IAS. For
a=10.04, transition occurs during cue presentation. (B) Temporal evolution of
'prospective’ activity, synchronized on transition time (+ = 0), defined by the first
time at which population activity, averaged over 10-ms bin, exceeds 50% of its
full increase and remains higher until the end of the delay period. The time
course is unaffected by a. x =0.05, other parameters are indicated in Materials
and methods.

learning parameters (¢ and '), which represent the strength of the
connection (A — A’ and A’ — A) between populations corresponding
to pair-associate stimuli. Figures5 and 6 show how the stable sta-
tionary states of the network (attractors) change as the pair-learning
parameters vary. Figure 5 describes the case with symmetric synaptic
matrix (a = a’), which would be obtained, for example, if training takes
place with no particular order within the pairs (Sakai & Miyashita,
1991). Figure 6 describes the case with matrix, which would corre-
spond to training with pairs of fixed order (Erickson & Desimone,
1999), and an asymmetric learning dynamics (see Materials and
methods). For illustration we show in Fig. 6 the extreme case a’ =0.
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F1G.9. Effect of synaptic kinetics on prospective activity. Network with fully
asymmetric prestructured synaptic matrix for different values of x. (A) Tem-
poral evolution of trial-averaged prospective activity for four values of the
fraction of the slow currents x. As x increases, the increase in delay rate becomes
slower. (B) Dynamics of the transition as a function of the fraction of the slow
currents. Curves are trial-averaged activity of the choice population, synchro-
nized at the transition time (1 = 0). Horizontal dotted lines: 20%, 50% and 80%
of the full rate increase. Larger x leads to slower transitions. For x =0.05, the
transition takes place in about 100ms; for x=0.20 it takes place in about
500 ms. Transition time is defined as in Fig. 8. @ =0.025, other parameters as in
Fig. 8.
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In both cases, the analysis reveals the existence of three types of
attractor states.

1. Unstructured spontaneous activity state (SAS), in which all
populations are active at low rates (black curve and black inset
in Fig. 5). The spontaneous spike rates are unaffected by the values
of a and d'.

2. Individual attractor states (IAS), one for each stimulus, in which a
single population is active at elevated rate (red curves and red inset
in Fig.5). The delay period activity of the cue population (A)
remains almost constant as a is varied. Because of the enhanced
synapses connecting pair-associate populations, this persistent
activity enhances the activity in the pair-associate population A’
(dashed red curve), above spontaneous rates. This rate increases
with a and d'.

3. Pair attractor states (PAS), in which both populations of a given pair
(A and A’) have elevated spike rates (green curves and green inset in
Fig.5). The pair state co-exists with the individual state at low
values of a and d’, down to a=a’ =0. At a=0, all possible pair
states [e.g. (A, A') (A, B) (A, B') (A', B) (A’, B') (B, B')] are
attractors and are equivalent. These states can be interpreted as
simultaneous working memory of two items. As a increases, the
basins of attraction of the learned pairs [e.g. (A, A") and (B, B')]
expand, while the basins of attraction of other pairs shrink.

Symmetric case (a=4a')

Figure 5 shows that both types of states (individual and pair) co-exist
until @ =0.06. For a > 0.06, the IAS are no longer stationary states of
the dynamics and the PAS remain the only stable selective states of the
system. This implies that for a < 0.06, if the network is stimulated by a
single stimulus of a pair, it will end up in an IAS, while to reach a PAS
it should be stimulated simultaneously by the two stimuli of the
corresponding pair. Above a =0.06, stimulating the network by any
of the individual stimuli of a pair would lead to a pair stationary state,
corresponding to the pair of which the stimulus is a member. For these
values of a, the network is not able to maintain working memory of a
single item of a pair.

Depending on the level of pair-learning, we can expect two types of
‘prospective’ delay activity in a given trial of a pair-associate task: if a
is small, and A is shown as a cue, the network settles in an IAS, the
individual predictor state, and the activity of neurons in population A’
will be only slightly enhanced compared with baseline — weak pro-
spective delay activity. If a is large enough, and A is shown as a cue, the
network settles in the PAS and the delay activity of neurons in
population A’ will be elevated — strong prospective delay activity.

Asymmetric case (2 = 0)

From Fig. 6, one can read two qualitative differences in the structure of
the state compared with the symmetric case. (i) The IAS corresponding
to the predictor stimulus (A) becomes unstable at a = 0.04, while the
one corresponding to A’ remains stable up to high values of a. As a
consequence, when a becomes sufficiently strong (0.05 <a <0.55),
the network finds two selective states accessible: the IAS correspond-
ing to A" and the PAS. (ii) In the PAS, the rate of the choice stimulus is
higher than that of the predictor. As in the symmetric case, until a
critical value (a=0.05), both IAS and PAS co-exist, in the sense
explained above. Note that in the first state, retrospective activity is
absent.

Network of spiking neurons: ‘prospective’ activity

Next, we turn to a microscopic simulation of a model of a ‘cortical’
network of IF neurons. This was done in two stages: (i) observing the
neural dynamics in the network with a prelearned, fixed synaptic

matrix incorporating pair-learning; (ii) observing the learning process
in the microscopic simulation with coupled neural/synaptic dynamics.

Random transitions towards strong prospective activity occur in
the delay period

As for the simplified network, the network of spiking neurons exhibits
various steady states of selective delay (persistent) activity. In parti-
cular, a state in which an individual population has elevated delay rates
while the remaining ones have much lower rates (IAS); and one in
which two populations have elevated delay spike rates (PAS). The
main difference from the simplified network is that the finite size of the
microscopic network causes random fluctuations in the average activ-
ity of each population (Brunel & Hakim, 1999), and those provoke
transitions between states. When such a transition occurs, the rate of
neurons in the choice population rises — from weak to strong ‘pro-
spective’ activity.

Depending on the degree of symmetry in the structuring and on the
pair-learning parameter a, the retrospective activity can either persist
all along the delay interval, or die out when the transition takes place.
In the first case, the transition is between an IAS, corresponding to the
predictor, and the corresponding PAS (i.e. the other active population
is that of the paired choice). In the second case, the transition is
between the IAS corresponding to the predictor and the IAS corre-
sponding to the choice.

Examples of stochastic transitions can be viewed in Fig.7, which
shows the average activity of two populations, predictor and choice,
during single trials, in a network with an asymmetric synaptic matrix.
Neurons selective for the predictor stimulus (black curve) show high
visual response during cue presentation and elevated delay activity
when the stimulus is removed (retrospective activity). Neurons selec-
tive for the pair-associate stimulus (red curve) see their activity
increase sharply at different instances during the delay period. These
are spontaneous transitions induced by fluctuations and occur at
random times during the delay period. The same neurons continue
to be active as a visual response to the pair-associate (choice), when it
is presented as test. As the transition takes place, the delay activity of
the predictor population can either persist (PAS, Fig. 7, first and third
panel) or die out (choice IAS, Fig.7, second panel). If the transition
does not occur, the retrospective delay activity persists all along the
delay interval (i.e. until the presentation of the choice).

The situation is somewhat analogous to the escape rate of a random
walker with a high threshold: the average time to escape is much longer
than the time constants of the single neuron or of the synaptic
dynamics, as the barrier is difficult to cross on these time scales.
The distribution of escape times is close to exponential. The average
delay activity of ‘pair-associate’ neurons becomes a slowly increasing
function of time, with the slope at the origin inversely proportional to
the average ‘lifetime’ of the individual attractor state. This slow rise of
prospective activity is shown in the lower panel of Fig.7.

Slope of rising prospective activity depends on
pair-learning parameter

Figure 8A presents the time course of prospective activity during the
delay period, averaged over 100 trials, for several values of a, in a
network with asymmetric prestructuring. One observes a monotonic
rise of the "prospective’ activity, expressing the fact that the number of
trials in which the transition has occurred increases with the passage of
time. As a increases, the lifetime of the individual (A) attractor state
decreases, and hence transitions to prospective activity occur earlier,
leading to a higher slope of the trial-averaged activity. However, the
dynamics of the transition itself, as revealed by synchronizing all
rasters at the transition time, is quite sharp for any value of a (Fig. 8B).
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The transition time is defined as the first time at which the activity
of the subpopulation selective for A’ exceeds 50% of its full in-
crease and remains higher than this level until the end of the delay
period. The transition duration, as defined by the time it takes for
population activity to rise from 20% to 80% of its full increase, is about
100 ms.

For small values of a, a <0.015, the average transition time is much
longer than the delay period. Hence, almost no transitions occur in the
delay period, and the activity of the choice population remains
approximately constant during the delay period. For a about 0.02,
the average transition time becomes comparable to the delay period,
hence the rise of prospective activity observed in Fig.8. For larger
values of a (a ~ 0.04), the transition to the PAS (prospective activity)
occurs even earlier, during the cue presentation. This leads to strong
correlations between visual responses to pair-associate stimuli.

Synaptic kinetics affects time scale of transitions in
individual trials

To study the dependence of the dynamics of transitions on the kinetics
of excitatory synapses, we varied the fraction of slow (100 ms, NMDA-
like) to fast (2 ms, AMPA-like) excitatory recurrent currents, keeping
constant the pair-learning parameter a. In Fig. 9A, one observes the
rise of prospective population activity at various levels of x. As x
increases, the ‘prospective’ activity rises more slowly, due to the
slower dynamics of recurrent excitation, as is made clearer when
the activity is synchronized at the transition time (Fig. 9B). The choice
neurons take approximately 500 ms to complete the transition from the
SAS to the elevated activity state, compared with 100 ms for a low
fraction of slow recurrent excitation. As a consequence, when slow
excitation is significant, the dynamics at the level of single trials
becomes similar to the trial-averaged dynamics.

In conclusion, the basic mechanism of stochastic transitions
between attractor states does not depend on the fraction of slow
receptors, but the time course of the transition does. Prospective
activity can rise sharply or gradually in the course of single trials.
In both cases, the average of activity over many trials shows a ramping
up of activity in neurons selective to the choice stimulus.

Individual spike trains distinguish fast/slow transitions

Can these two scenarios be distinguished experimentally? In experi-
ment, spike trains of single neurons are recorded in single trials. A
possible procedure is to select cells that show prospective activity. In
each delay period of a trial in which the corresponding predictor
stimulus is shown, the instantaneous spike rate is computed, using a bin
size that should be longer than the average inter-spike interval, yet
shorter than the average lifetime of the individual attractor states. Such
a distribution of rates would be bi-modal for abrupt transitions. The
peak at low rates would correspond to the time spent in the individual
attractor state of the predictor, before the transition. The peak at high
rates would correspond to the part of the delay interval following the
transition. In the states reached after the transition, the choice neurons
have elevated activity. On the other hand, slow transitions give rise to
unimodal distribution of rates, due to the fact that in all trials the rate of
choice neurons rises gradually from spontaneous activity to elevated
persistent activity. In Fig. 10, we compare the histograms from network
simulations in two cases, one with fast transitions (x = 0.05), the other
with slow transitions (x =0.2). Parameters are chosen such that the
time course of trial-averaged prospective activity is similar in both
cases (see Fig. 10A and B). Figure 10C is the single-cell rate histogram
for low fraction of slow receptors (x), and hence a fast transition and
the corresponding bi-modal distribution. Figure 10D is the histogram
of the single-cell rate for the gradual case, which is unimodal.
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F1G. 10. Distinguishing fast/slow transitions in single-cell recordings. Trial-
averaged prospective activity (A and B) and rate histograms for single cell
during the delay period, in bins of 200ms (C and D). (A and C) x=0.05,
a=0.15. (B and D) x=0.2, a = 0.25. Despite the similarity in the time course of
prospective activity, in the case of fast transition (x=0.05), single-cell rate
distribution is bi-modal (A and C), indicating low rates at beginning of interval
and high after a short transient. For slow transition (x = 0.2), the distribution is
unimodal (B and D), as gradual rise samples all rates until saturation.

Symmetric vs. asymmetric synaptic structuring

The results exposed refer to simulations with prestructured synaptic
matrix in the fully asymmetric condition, i.e. ¢’ =0. We also carried
out simulations with a symmetric prestructured synaptic matrix. The
main difference is that retrospective activity is more likely to survive
when transitions occur in the delay period.

Learning in the Erickson—Desimone protocol

Next we perform a full simulation in which the neural dynamics is
accompanied by synaptic plasticity, to mimick 2 days of the experi-
ment of Erickson & Desimone (1999). In this process, we can monitor
the evolution of the neural activities in different stages of the on-line
learning process, which can be compared with experiment. We go
further and monitor the evolution of the synaptic structure, beyond
experimental access, to see if it actually converges to the type of
structures assumed in the previous section; expose the different stages
of the structuring; and check the asymptotic stability of the evolving
synaptic structure.

The structuring is monitored by the fraction of potentiated synapses
in the various homogeneous synaptic populations. Of interest are three
types of populations of excitatory-to-excitatory synapses: synapses
connecting neurons selective to the same stimulus (A — A); synapses
connecting a neuron selective for a predictor stimulus to a neuron
selective for a choice stimulus (A — A’); and, finally, synapses con-
necting neurons which are selective for stimuli which belong to
different pairs (A — B). The fraction of potentiated synapses in these
three populations of synapses are denoted by C4 .4, C4_.4» and C4_.p.
In each trial, a small fraction of excitatory synapses switch from low to
high state (LTP) or from high to low state (LTD), due to predictor and/
or choice presentation.

In the following, we show the results obtained with fully asymmetric
rule, i.e. p» = 0. Synaptic plasticity with the symmetric rule leads to
results that are qualitatively rather similar.
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Fi1G. 11. Evolution of synaptic matrix and neuronal dynamics during learning.
(A and B) Synaptic structuring vs. number of trials. (A) Fraction of potentiated
intra-population synapses. Cs_.4 increases monotonically with the number of
presentations until it reaches the saturated level Co_.o =1. (B) Fraction of
potentiated inter-population synapses for 100% (red) and 85% (black) of valid
trials. Ca_. 5’ decreases monotonically from the initial level C5_, o» =0.05 until
retrospective activity becomes stable, then increases with the number of
presentations. It does not reach the level Co_. o’ =1, because also LTD takes
place among inter-population connections. C_, o» With 85% of valid trials is, on
average, lower than that with 100% of valid trials, because of extra LTD induced
by the non-valid trials. (C and D) Characteristics of neural activity vs. number of
trials, for 85% of valid trials. (C) Retrospective activity average across
successive 100 trials. Colour code: black 0-100; red 100-200; green 200—
300; blue 300-400; brown 400-500; magenta 500-600; yellow beyond 600.
Retrospective activity begins to appear between 200 and 300 trials (green
curve), and becomes stable after about 400 trials. Further trials do not affect
retrospective activity. (D) Prospective activity appears only after retrospective
activity is in place, between trials 400 and 500 (brown curve). Network
parameters as in Materials and methods, with x = 0.05.

Three stages in the evolution of the network

In the first stage (trials 0-300, Fig. 11A and B), synaptic potentiation
occurs only in synapses connecting neurons selective to the same
stimulus, as all other neurons are at spontaneous levels (see Fig. 3,
regions). The fraction of potentiated synapses in this synaptic popula-
tion, C4_. 4 increases monotonically with the number of presentations,
reaching saturation at C4 .4 =1, Fig. 11A. In the same period, LTD
takes place in synapses connecting the neurons responsive to different
images, and hence both C4 .4 and C, _.p decrease monotonically
(Fig. 11B). In this phase, the presentation of a stimulus evokes only
visual response at high rate in the corresponding population for the
duration of the presentation. As soon as the stimulus is removed,
emission rates decay back to the spontaneous level (Fig. 11C, curves
black, red), as the average strength of synapses connecting neurons
selective for the stimulus is not yet large enough to sustain delay
activity. This stage continues until the resulting synaptic structure
renders a state of persistent activity stable after the stimulus is
removed, i.e. during the delay period. Retrospective delay activity
appears.

In the second stage (trials 300-600, Fig. 11A and B), retrospective
activity has become stable and allows synaptic potentiation in the inter-
population connections. The enhanced emission rate of the predictor
populations persists until the presentation of the choice stimulus

(Fig. 11C, curves green, blue, brown and magenta). The neurons
coding for the predictor are thus active at elevated rates, in close
temporal proximity to those coding for the choice and synaptic
potentiations can take place in (predictor — choice) synapses (see
Materials and methods). The fraction of potentiated synapses Cy_, 4/
begins to increase with the number of pairings, as shown in Fig. 11B. It
does not reach saturation C,_,4» =1, because LTD also takes place in
this synaptic population, when the delay activity of the predictor has
returned to spontaneous level while the choice population is still
emitting at high rate. LTD also takes place in trials in which the
predictor is not followed by the corresponding choice (invalid trials,
see Materials and methods). This leads to an asymptotic fraction of
potentiated synapses in the inter-population connections Cy_, 4 < < 1,
whose value depends on the ratio between the probabilities of LTP and
LTD and reflects the balance between potentiating and depressing
processes in these synaptic populations. The asymptotic level of
potentiated synapses in the inter-population connections corresponds
to the forward pair-learning parameter a. When the fraction of
synapses C4_,4- becomes of the order of 0.02, transitions between
states become possible in the delay period. Prospective activity
appears, as shown in Fig. 11D.

In the third stage (Fig. 11A and B, beyond trial no. 600), the network
has reached an asymptotic synaptic structure. This structure may still
fluctuate from trial to trial, due to random LTP and LTD transitions,
especially in synapses connecting predictor to choice neurons, but the
global variables C4_.4, C4_.4 and C,_,p remain essentially constant.
As in the case of the simulations with a fixed synaptic matrix, retro-
spective and/or prospective activity occur in individual trials.

The asymptotic level of potentiated synapses, C4_, 4/, depends on the
percentages of pairings between the images during the training stage
(valid trials). Figure 11B shows the evolution of C4_, 4 with the number
of trials, for two different percentages of valid trials in the protocol,
100% (red line) and 85% (black line). Lower percentage of valid
pairings leads to lower percentage of potentiated synapses, Ca_ 4.

Statistical analysis of spike rates

To compare the evolution of the neural activity patterns in the course of
training in the simulation with Erickson & Desimone (1999), we use
the average correlation between visual responses to pair-associate
stimuli; between predictor visual response and delay activity and
between choice visual response and delay activity, vs. the number
of trials, in the course of training. We estimate the average rates of a
sample (10%) of cells in predictor, delay and choice periods, separately
for each of the eight (predictor—choice) pairs. The sample contains the
same number of cells for each pair. For each cell and in each trial, the
rate during cue and test presentations is estimated in a window 75 ms to
250ms from the presentation; delay period rate is estimated in a
window 200 ms after cue removal to 200 ms before test presentation.
The average responses are obtained by averaging single-cell rates
across trials with the same pair of stimuli, for each cell.

The simulation is divided into successive groups of 100 trials, and
correlations between predictor and choice rates, predictor and delay
rates, and delay and choice rates are computed in each group. The
correlation between the predictor visual response and the delay activity
begins to increase right from the beginning (Fig.12), while both
correlation between visual responses and between delay activity
and choice visual response remain initially at chance level. After
the first 300 trials, delay activity is significantly correlated with the
response to the predictor stimulus (Fig. 12). This is due to the presence
of retrospective activity (see also Fig. 11). As the training proceeds, the
correlation between the visual responses to paired stimuli increases
(Fig. 12). Similarly, the correlation between choice visual response and
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FIG. 12. Average correlations between visual responses to paired stimuli,
between predictor response and delay activity and between choice response
and delay activity, vs. number of trials. Predictor response and delay activity
become strongly correlated as soon as retrospective persistent activity becomes
stable, i.e. around trials 200-300. It then reaches an asymptotic high level of
about 0.7. Correlations between predictor and choice visual responses and
between choice response and delay activity begin to increase between 400 and
500 trials, only after correlation between predictor response and delay activity
reaches a high level, i.e. retrospective activity has appeared. The correlation
between choice response and delay activity reaches an asymptotic level of about
0.3, while the correlation between predictor and choice visual responses reaches
about 0.07, only after trial 500. Average values are computed in each successive
group of 100 trials separately. See text for more details.

the delay activity significantly increases (Fig.12). In contrast, the
correlation between predictor visual response and the delay activity
reaches a steady level, which is not substantially affected beyond 400
trials.

These results are a direct consequence of the increase of the pair-
learning parameter a in the course of training. As can be seen from
Fig. 11, after about 200-300 trials, the (A — A) connections reach a
potentiation level that sustain retrospective activity. At the same time,
the (A— A’) connections remain in their low state. As training
proceeds, the mean level of potentiation C,_.4 increases, reaching
the asymptotic level after 500600 trials (corresponding to a in the
prestructured synaptic matrix), leading to prospective activity.

Discussion

In the present paper, we have investigated the learning dynamics of a
cortical network model subjected to the pair-associate protocol. In a
first stage, the plasticity leads to the formation of neural representa-
tions for single images (selective delay activity). During the visual
presentation, the concurrent activation at high rate of the cells coding
for the same stimulus causes potentiation of the synapses connecting
the neurons activated by the same stimulus. When the efficacy within
each of these synaptic populations reaches a suitably high level, the
neural population becomes capable of sustaining reverberating activ-
ity, in the absence of external inputs. This persistent activity maintains
an active memory of a stimulus shown in the past (the ‘predictor’
stimulus) — retrospective activity. These states are attractor states,
expressing the fact that a large variety of neighbouring stimuli evoke
the same self-sustained distribution of the level of average rates.
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Once retrospective activity becomes stable, it persists across the
delay interval, until the presentation of the choice stimulus. The delay
period activity allows neurons coding for the predictor to be active in
close temporal proximity to the visual response of the choice neurons,
which leads to the potentiation of the synapses between the two neural
populations (inter-population connections). This potentiation is weak,
relative to that within each population, and its amplitude is governed
by the percentage of trials in which the second image is the fixed pair-
associate (in contrast to those where it is a randomly chosen image). It
is important to point out that the level of inter-population potentiation
reaches a stable (low) asymptotic level during learning, governed by a
balance between LTP and LTD. LTD in the inter-population synapses
intervenes either during the cue presentation, or in the part of the
choice presentation when the retrospective delay activity had died
down, or in the course of non-valid trials (see Results). None of these
bring about LTD in intra-population synapses. These connections give
rise to transitions, after the cue presentation, to other types of persistent
states available to the network: either pair states, combining the
neurons of both the predictor and the choice of the corresponding
pair, or the individual persistent activity state of the choice stimulus.
The activation of the choice neurons, prior to the presentation of the
choice stimulus, is referred to as prospective activity (see, e.g. Fuster,
2001 and refs therein). In the first scenario retrospective activity
persists, while in the second it dies out during the delay period.

The transitions are caused by the fluctuations in the neural spiking
dynamics. The probability of occurrence of such a transition depends
mainly on the strength of inter-population connections and on the level
of noise in the system. As the strength of inter-population connections
increases, the basin of attraction of the IAS shrinks in favour of that of
the corresponding pair states, rendering the transitions more and more
frequent. As a matter of fact, stationary pair states exist even without
inter-population strengthening (Amit et al., 2003). Yet for transitions
due to noise, from an individual state to the associated-pair state, to
occur selectively and with high likelihood within a 1-s delay period, a
sufficiently high level of inter-population potentiation is required.

In this account, the potentiation of the inter-population connections
depends on the existence of the predictor persistent state. The appear-
ance of the retrospective activity, prior both to the pair-coding neurons
and to the prospective activity, is therefore a logical prerequisite and
prediction (see below) of the scenario proposed. In the absence of the
predictor persistent state, no inter-population potentiation is possible.

In networks of neurons spiking asynchronously, the fluctuations in
population activity are due to the finite size of the network and would
vanish were the network to become very large. However, these
fluctuations can be large, even for networks of a size similar to cortical
modules (Brunel & Hakim, 1999; Brunel, 2000a).

Comparison with experiment
Prospective activity in PRh cortex and IT

Our model reproduces most of the available neuro-physiological data
obtained during delayed pair-associate tasks in the temporal lobe of the
monkey. Sakai & Miyashita (1991) and Naya et al. (2001, 2003) found
two types of cells in their recordings of area TE of IT cortex and of area
36 of PRh cortex: pair-coding cells and pair-recall cells. Our model
explains the response characteristics of both types of cells in a unifying
framework.

Both types of cells arise due to learning dynamics, which potentiate
the connections between cells that are selective for pair-associate
stimuli, while the relative occurrence of both types is related to the
magnitude of the pair-learning parameter. If a is small (of order 0.02 in
the simulations of Fig. 8), transitions from the predictor attractor to a
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pair-associate attractor (either individual or pair state) take place only
during the delay period. The visual responses to paired stimuli are only
weakly correlated, while delay activity is strongly correlated with
choice response. Such neurons have all the characteristics of pair-
recall neurons.

By contrast, if the pair-learning parameter is large (of order 0.04 in
the simulations of Fig. 8), transitions to the ‘prospective’ states occur
during the cue presentation, yielding strong correlations between the
visual response to pair-associate stimuli. Hence, at large a, cell
activities have the characteristics of pair-coding neurons.

Naya et al. (2001) found that neurons in PRh cortex are typically
pair-coding neurons (see also Naya et al., 2003), while neurons in area
TE are typically pair-recall neurons. Differences between these areas
could be due to differences in learning dynamics between areas 36 and
TE. Naya et al. (2001) hypothesize that backward projections from
PRh cortex to IT are responsible for the transitions during the delay
period to prospective activity in IT. Lesions in PRh cortex suppress
correlations between visual responses to pair-associates in IT (Higuchi
& Miyashita, 1996), lending further support to the role of backward
projections.

We would argue that these data could be accounted for if one assumes
that in area TE the pair-learning parameter is small (or even zero). In that
case, in the absence of backward projections from PRh cortex, the
average transition times are very long. Backward projections would then
provide a biased input favouring transitions to prospective activity in
area TE. In the present model, the gradual rise of activity seen in pair-
recall neurons (Sakai & Miyashita, 1991) is compatible with two
scenarios: one in which the rise is gradual on a single trial basis, and
another in which the rise is abrupt in a single trial, but occurs at random
instances during the delay, and thus is gradual when averaged across
trials (see Fig. 9). Naya et al. (2001) provide evidence that the transition
duration is short, of order 100 ms. This would indicate that in area TE,
the fraction of slow excitatory receptors is small.

The studies of Erickson & Desimone (1999) and Messinger et al.
(2001) provide evidence that modifications of neuronal selectivity due
to learning of new associations can occur on the time scale of hours.
Our model operates at the same time scale of appearance of retro-
spective and prospective activity seen in the experiment. In the model,
this time scale is related to LTP and LTD transition probabilities. Our
results are consistent in more detail. During the learning of a new pair,
there is a first stage (first day) in which the delay activity in the PRh
cortex is correlated only with the predictor (‘retrospective’ working
memory), while after a second day of training, delay activity is
correlated also with the choice (‘prospective’ activity). Our model
accounts for these two distinct stages: indeed, the presence of ‘retro-
spective’ activity is a prerequisite, before synapses connecting popula-
tions of cells selective for pair-associates can potentiate, and hence
‘prospective’ activity starts to develop. The simulation experiments
reported in Fig. 11 show that during the first 400 trials (corresponding
to the ‘novel’ condition, 1day in the experiment of Erickson &
Desimone, 1999), ‘retrospective’ activity has already become robust,
while ‘prospective’ activity has barely appeared. In the next 400 trials
(corresponding to ‘familiar’ condition, second day of the experiment),
‘prospective’ activity becomes prominent, as transitions between IAS
and PAS occur quite often during the delay period.

Our model also accounts for structure of correlations in spike rates.
In the ‘novel’ condition, i.e. following a relatively short training, the
delay activity is correlated only with the predictor visual response. By
contrast, in the ‘familiar’ condition, i.e. following a relatively long
training (2 days), the delay activity becomes correlated also with the
choice visual response. The magnitudes of the correlations in our
simulations are rather similar to the experimentally observed ones: the

average correlation between predictor and delay is in experiment 0.316
for ‘novel’ and 0.404 for familiar stimuli (0.36 average over all first
400 trials, and 0.69 average over the last 400 trials, in our simulations);
the correlation between choice visual response and delay activity is
0.079 for ‘novel’, 0.269 for ‘familiar’ (0.002 and 0.28, in our simula-
tions); the correlations between the visual responses of predictor and
choice are —0.002 for ‘novel’ and 0.145 for ‘familiar’ stimuli (0.015
and 0.053 in our simulations). In accordance with the experiment, the
correlation between visual responses does not account for the correla-
tion between choice visual response and delay activity. This is due to
the fact that at this relatively low level of a, visual responses to pair-
associates are weak, and most ‘prospective’ effects occur during the
delay period and not during the cue period.

There are two significant quantitative differences between simula-
tions and experiment (i) Between predictor visual response and delay,
for familiar stimuli (0.404 vs. 0.69). This difference could be due to the
fact that in the experiment retrospective activity dies out more often. It
would be remedied by a somewhat lower value of excitatory potentia-
tion or a higher value of the pair-association parameter. (ii) Between
‘predictor’ and ‘choice’ visual responses for familiar stimuli (0.145 vs.
0.053). This difference could be explained by differences in the
magnitude of the rate of selective visual responses. In our simulations,
the correlations between visual responses increase from 0.053 to 0.119
if the visual response of selective neurons is decreased from 160 Hz to
80 Hz.

Some studies have failed to find evidence of associative learning, i.e.
cells exhibiting ‘prospective’ activity. Gochin et al. (1994) used a
protocol similar to that of Sakai & Miyashita (1991) and Erickson &
Desimone (1999), with the difference that individual stimuli were used
in more than one pair. Our model would account for the absence of
‘prospective’ activity, as if the percentage of trials in which the two
stimuli are paired is lowered, the pair-learning parameter does not
reach the threshold to produce significant prospective activity. Another
possible reason for discrepancies between different studies stems from
differences between different areas of the temporal lobe, and in
particular between PRh cortex (area 36) and area TE of IT cortex
(Naya et al., 2001, 2003).

Prospective activity in PFC

PFC has long been involved in the expectation and preparation of
anticipated events (see, e.g. Fuster, 2001 and refs therein). Prospective
activity, i.e. increased firing of cells in apparent anticipation of the
motor response or another stimulus related to it, has been observed in
PFC (Niki & Watanabe, 1979; Fuster et al., 1982, 2000; Sawaguchi
et al., 1989; Quintana & Fuster, 1999; Rainer et al., 1999). Changes of
neuronal activity in the delay period have been shown to arise due to
associative learning (Asaad et al., 1998; Rainer et al., 1999; Fuster
et al., 2000). As training takes place, the delay activity shifts from
purely retrospective to prospective, and the shift takes place dynami-
cally during the delay period (Rainer er al., 1999). This is again
consistent with our findings. Indeed, in our model, activity is mostly
‘retrospective’ until the beginning of the delay period, and becomes
more and more ‘prospective’ as the network has time to make
transitions to the PAS, or to gradually move into these states when
recurrent excitatory synapses have a sufficiently strong slow compo-
nent. These data suggest that the basic mechanisms of the generation of
prospective activity, through the inter-play between retrospective
persistent activity and Hebbian learning, apply also to PFC. This,
despite significant functional differences between PFC and areas of the
temporal lobe, such as the facts that in PFC, cells represent not only the
external stimuli but also motor responses and errors, and cell responses
are less selective.
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Experimental predictions of the model

The main prediction from our study is that in delayed response tasks,
prospective activity can only appear if retrospective activity is stable.
This prediction could be tested experimentally by manipulating per-
sistent activity in the delay period, using iontophoresis of any neuro-
transmitter that is known to affect persistent activity, such as dopamine
(Williams & Goldman-Rakic, 1995) or GABA (Rao et al., 2000).
Tontophoresis, leading to suppression of persistent activity, should be
applied in the ‘first day’ with ‘novel’ stimuli, in the experimental
protocol of Erickson & Desimone (1999). In the second day, no
iontophoresis should be performed. The prediction is that in the second
day, retrospective activity would be observed, but no prospective
activity. The appearance of prospective activity would be delayed
by the blockade of persistent activity due to iontophoresis.

Our study makes a second clear prediction: as the pair-learning
parameter increases, the correlation between visual responses to paired
stimuli should also increase, while the time of appearance of pro-
spective activity (measured from cue onset) should decrease. The
magnitude of a can be manipulated by varying the relative frequency of
trials in which pair-associate stimuli are shown together (‘valid trials’,
in Erickson & Desimone, 1999). As the percentage of ‘valid trial’
increases so should the mean correlation between visual responses to
pair-associate images. Correspondingly, ‘prospective’ activity should
appear earlier in a trial or, equivalently, the slope of the rise of averaged
prospective activity should increase, as shown in Fig. 8.

A third prediction is that if fast excitatory synaptic transmission
predominates, the transition in a given trial should be very steep, and
not gradual as seen on average. An alternative scenario would be that
the increase of activity is gradual in every trial, as is the case for higher
proportions of slow excitatory synaptic component. The type of
transition can be identified in experiments with single-cell recording
by analysing the binned spike rate histogram of a single neuron over
several trials (Fig.10). A similar procedure was used by Chafee &
Goldman-Rakic (1998) to characterize a slow increase of persistent
activity in the delay period of a delayed oculomotor task. Manipulation
of NMDA and/or AMPA levels in parallel with neurophysiological
recordings during pair-associate tasks may put this prediction to a test.

One would also expect that, if ‘prospective’ activity is actually
related to behaviour, part of the variability in the reaction time, as well
as in the performance level, of the monkey could be due to the
variability in the transition times in the delay period. This should
be true particularly in the early stage of learning, when a is expected to
be low. Our study predicts that for low a, the transition to the pair-
associate state occurs during the delay period, with a probability that
depends on a. Thus, one can expect shorter reaction times and higher
performance level, correlated with instances when the transition
actually took place in the delay period, with respect to the instances
when transitions did not take place.

Theoretical issues

Synaptic plasticity

A serious limitation of the present study is that the synaptic plasticity
mechanism is still rudimentary, as what drives synaptic changes at
individual synapses is average rates (in sliding windows of 100 ms) of
pre- and post-synaptic neurons. Recently, much experimental work has
been devoted to the details of what actually controls synaptic changes,
at the level of pre- and post-synaptic spike trains (Markram er al.,
1997; Bi & Poo, 1998; Sjostrom et al., 2001). Thus, one may expect
that in the near future plasticity will be better grounded in the
biophysics and biochemistry of synapses. Such mechanisms should
then be incorporated in network studies to confirm that the dynamics of
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persistent activity as shown in this paper is indeed a realistic scenario.
An indication that this is feasible is provided by a study showing that
spike-driven synaptic dynamics (Fusi et al., 2000) succeed in gen-
erating a synaptic structure that sustains retrospective activity (Amit &
Mongillo, 2003).

Non-overlapping vs. overlapping stimuli

We have used non-overlapping stimuli, in the sense that a neuron
responds visually to at most one stimulus. This choice is made for
several reasons, beside its simplicity: (i) in the temporal lobe, cells that
display delay activity are typically very selective, often for only one of
the stimuli involved; (ii) preliminary simulations with randomly over-
lapping stimuli show that the formation of retrospective activity occurs
as in the case of non-overlapping stimuli (Mongillo and Amit, unpub-
lished results).

Transitions during delay period

On the theoretical side, most studies of persistent activity have no
dynamical effects in the delay period, but focused on the properties of
stationary attractor states. Recently, Koulakov (2001) has studied the
degradation of delay activity due to the unreliability of synaptic
transmission. Reutimann et al. (2001) have interpreted the rise of
spike rates in some cells during delay period in a experiment (the
‘expectation cells’) as due to short-term synaptic dynamics during the
delay period. Noise-driven transitions between selective attractor
states had only been previously considered in networks with binary
neurons (Buhmann & Schulten, 1987; Amit, 1988). In networks with
continuous rather than discrete attractors, random drifts of the network
state are observed in the presence of noise (Ben-Yishai er al., 1995;
Seung, 1996; Camperi & Wang, 1998; Compte et al., 2000; Laing &
Chow, 2001), due to the translational invariance of the continuous
attractor.

The present work shows a richer and more dynamical picture of
persistent activity. Previously, delay period activity was considered a
fast relaxation towards a fixed-point attractor, used as a vehicle for
working memory. Including Hebbian learning and allowing for transi-
tions between attractor states, which are nearby in state space, changes
significantly the picture. The system explores the space during the
delay period, as a consequence of fluctuations. Transitions are not made
to arbitrary attractors (which would be a rather pathological situation for
a memory system), but rather to states that have been linked by
associative Hebbian learning. These transitions may form the substrate
of cognitive operations used when stimulus—stimulus associations are
required. Learning allows the system to ‘garden’ its attractor landscape,
allowing barriers between attractors representing associated stimuli to
be lowered, and hence transitions between these states become easier. As
a result, the system becomes capable of predicting the appearance of
future stimuli on the basis of past experience.
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