
PHY-105: Nuclear Reactions in Stars (continued)

Recall from last lecture that the nuclear energy generation rate for the PP
reactions (that main reaction chains that convert hydrogen to helium in stars
similar to the Sun – see previous handout) could be written as a power law thus:

ǫPP ≈ ǫ′0,PPρX
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for temperatures near (within 50% of roughly) 1.5× 107K, where
ǫ′0,PP = 1.07× 10−12Jm3kg−2s−1

Also, the CNO gave (around the same temperature):

ǫCNO ≈ ǫ′0,CNOρXXCNO
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where ǫ′0,CNO = 8.24× 10−31Jm3kg−2s−1, and where X is the mass fraction of H
and XCNO is the mass fraction of oxygen/carbon/nitrogen (an average of the
three).
We noted the much larger temperature dependence for the CNO cycle compared
to the PP chains. This means that lower mass stars, with cooler core
temperatures, generate most of their nuclear energy via the PP chains, whereas in
more massive stars (somewhat more massive than the Sun) with higher core
temperatures the CNO cycle becomes increasingly important. As you can see
from the results of these different nuclear reactions, this would play an important
role for the elemental composition of stellar cores.

Also recall what happens to T and ρ as the mean molecular weight increases as a
result of hydrogen burning.



The triple alpha process

We can see from the equation that we derived for TQM (the typical temperature
required for two nuclei to overcome the Coulomb barrier and interact via the
strong nuclear force and thus be able to partake in a nuclear reaction, after
accounting for quantum mechanical effects – see class notes), that the 4

2He
produced from hydrogen burning can only begin to “burn” itself when the
temperature rises to about 64 times that required for hydrogen burning (verify
this!).
When the temperature does become sufficent for helium nuclei to undergo
“fission” (as result of the density and temperature increasing due to the fractional
collapse of the star as the hydrogen runs out), the main reactions that occur are:

4
2He + 4

2He ↔
8
4Be

8
4Be + 4

2He →
12
6 C + γ

This is the so-called triple alpha process (because it involves three alpha
particles, or helium nuclei).

The rate of energy generated by this process as a power law in T, centered around
108K is:

ǫ3α ≈ ǫ′0,3αρ
2X3
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where XHe is the mass fraction of helium nuclei in the stellar core where the
reaction occurs.
Note the extremely strong temperature dependence.

Question: if the temperature increases by 10% what does the energy generation
rate increase by ?

The result of the triple alpha process is energy generated (in the form of photons)
and carbon-12 nuclei. When the amount of 12

6 C present becomes significant other
reactions start to compete with the triple alpha process:

12
6 C + 4

2He →
16
8 O+ γ

16
8 O + 4

2He →
20
10Ne + γ

However, these can only happen when the temperature becomes large enough to
overcome the much larger Coulomb barrier compared to that of two helium nuclei
interacting.



If the star is massive enough though, this will happen, and if temperatures of
about 6× 108K can be reached then carbon begin to burn via reactions such as:

12
6 C + 12

6 C →
16
8 O+ 2 4

2He
12
6 C + 12

6 C →
20
10Ne +

4
2He

12
6 C + 12

6 C →
24
12Mg + γ

plus several other possibilities.

If the temperature can reach around 109K then oxygen can subsequently burn via:

16
8 O + 16

8 O →
28
14Si +

4
2He

16
8 O + 16

8 O →
32
16S + γ

amongst other possible reactions.

However, this can’t keep going on forever even if the star is massive enough such
that temperature can keep rising due the gravitational collapse at each successive
stage of nuclear burning. Recall that for nuclei around a mass number of A ∼ 56
(for example 56

26Fe and some isotopes of Ni), energy can no longer be released by
nuclear fission reactions, so that when/if fission reactions occur with these heavy
nuclei energy is actually absorbed. This has dire consequences for the star which
can no longer produce energy to withstand the gravitational collapse, and so.....its
lights out, literally!

Of course, the star can only reach this stage if the temperature is high enough for
the Coulomb barrier to be overcome. If the star is not massive to reach this stage
then nuclear burning, and therefore gravitational collapse, will occur earlier. For
example, if star was so light (and these exist, but they have to be less than about
half the mass of the Sun), that the temperature for helium burning could never
be reached, then the star would collapse after hydrogen burning leaving a cold
dense mass of helium nuclei. If it stops after helium burning, a cold core of
mostly carbon and oxygen (and a bit of nitrogen) is left – this is the end result of
a white dwarf (”cold” here is a relative term – its still very hot, in fact ”white”
hot, hence its name, but not hot enough for the heavier nuclei of oxygen and
carbon to ”burn”). We’ll look at this possibility, and what happens to much more
massive stars in detail later.

But before that, I want to briefly look at how energy is transported in stars.
We’ve seen how it is produced, but somehow the energy produced in the core has
to get to the surface of the star.



But first, as an interesting aside, a very famous mystery in astrophysics that was
recently (10 years or so ago) solved was the solar neutrino problem. It is worth
spending a bit of time on this.....



The solar neutrino problem

From the PP reactions, that dominate energy production in the Sun, we see that
neutrinos, νe, are produced, and we can determine fairly precisely their rate of
production from these reactions.

Neutrinos have no charge, so they can’t interact electromagnetically, and they
don’t experience the Strong nuclear force (which acts on the property of “colour”
which only quarks possess). They can only experience the Weak nuclear force,
which, because it is several orders of magnitude weaker than the others, means
that neutrinos can travel through the Sun (and Earth) without interacting at all
(or rather with only a small probability of interacting – to stop 50% of a beam of
neutrinos requires they travel through about a light-year of lead!). However, they
can be, and are, detected on Earth in various experiments (because they still do
have a tiny probability of interacting with some detector material to give a signal
that is then measured, so a very small fraction of those that pass through a
detector do in fact “stop”).

In one of the first solar neutrino detection experiments (in the early 1970’s by
Raymond Davis and collaborators), a huge detector containing about 100,000
gallons of C2Cl4 (perchloroethylene) was located about 1 mile underground, in an
old gold-mine in Homestake, SD.

As solar neutrinos travelled through the Earth and the huge tank of C2Cl4 one
isotope of the chlorine present, 37

17Cl, can interact with ν’s of sufficient energy via
the following interaction:

37

17Cl + νe →
37

18Ar + e−

where, 37
18Ar is a radioactive isotope of Argon with a half-life of τ ∼ 35 days.

Every few months the accumulated 37
18Ar was purged from the tank and the

number of Argon atoms counted (from their radioactive decays). The theory of
nuclear reactions in the Sun and neutrino interactions with the detector predicted
a rate of about 1.5 Argon atoms produced per day, however, only about 0.5 per
day were observed, about a third of the prediction.

This was called the Solar neutrino problem and was confirmed by various
other experiments in the following years.



When an observation doesn’t agree with theory, there is no shortage of physicists
espousing a solution. In this case the most promising were:

• Something was wrong with the predictions of nuclear reaction rates and/or
energy transportation rates in the Sun. A popular theory was the existence
of Weakly Interacting Massive Particles (or WIMPS, also a leading candidate
for Dark Matter in the Universe – more on that later). It was though that
WIMPS, because they are massive, are attracted to the Sun’s centre where
they could be responsible for transporting some of the energy near the centre
to other regions, thereby relieving the neutrinos of some of their role in doing
this.

• Neutrinos are not massless (a shocking possibility at the time). If ν’s have a
very small mass and m(νe) < m(νµ) < m(ντ) then they can experience
so-called neutrino oscillations from one type to another:

νe ↔ νµ νe ↔ ντ νµ ↔ ντ

The rate of these oscillations depends on the the ∆m’s (mass differences)
between the different ν species.

Subsequent experiments have conclusively shown these oscillations do in fact take
place, with the consequence that neutrinos have mass. (This details of this
consequence is outside the scope of the course, but a qualitative way to think
about it is that if neutrinos were massless then they would travel with the speed
of light and hence their “clocks” will be stopped according to our frame of
reference. If their clocks are stopped then they can’t do anything we can observe.
Because they are observed to do something, that is, oscillate into another species
which you can think of as an event in Special Relativity, then their clocks can’t
be stopped, they must be travelling with a speed less than c, and therefore they
must have mass.)

The result for the Davis experiment, meant that some of the νe’s emitted by the
Sun will oscillate to νµ and ντ along their journeys to Earth. The Davis
experiment could only detect νe’s due to the reaction given above, so the fact that
the measured rate was low meant some had oscillated to νµ’s and ντ ’s which
couldn’t be detected (in fact about 2/3 of them had).
Some experiments are now designed to detect νµ’s and ντ ’s, and the rates
observed agree remarkably well theoretical predictions.



Energy Transport

The energy produced in a stellar core must somehow be transported to the
surface. Recall that we thus far have differential equations relating Pressure,
Mass, and Luminiosity to the radius, r;

dP

dr
= −

GMrρ

r2
(hydrostatic equilibrium)

dMr

dr
= 4πr2ρ (mass conservation)

dLr

dr
= 4πr2ρǫ (energy generation)

but do not yet have an equation relating the temperature to r. Such an equation
will depend on how energy is transported and distributed in the star.

There are three main energy transport mechanisms at play in stellar interiors.
These are same mechanism as for thermal transfer you should be familiar with
from thermodynamics, though their details are somewhat different in the
environments of stellar interiors. They are:

• Radiation: the energy produced in the nuclear reactions is carried to the
surface in the form of photons, which are being absorbed and re-emitted as
they interact with matter.

• Convection: similarly to the more familiar convection in air, hot stellar
mass regions carrying energy in the form of kinetic energy of the particles
tend to move outward, while cooler regions tend to move inward. This is a
very complicated mechanism to accurately describe in stellar models.

• Conduction: energy is transported through the collisions between particles.
This is generally an insignificant mechanism of stellar energy transport.

Radiation is the most important so we’ll look at that in more detail.



Radiation

The rate at which energy flows through the stellar material via the mechanism of
radiation is determined by the opacity of the material, κ. You can qualitatively
think of opacity as the resistence of the stellar material to the passage of
radiation.

The Radiation Transport Equation relates the pressure due to radiation, Prad, at a
radius, r, to the outward radiative flux, Frad:

dPrad

dr
= −

κ̄ρ

c
Frad

Note that dPrad/dr is the radiation pressure gradient, and that the stellar material
density, ρ, is a function of r as usual. Also note that κ has units of m2kg−1.

Recall the form of the Steffen-Boltzmann law; Prad =
1

3
aT4.

⇒
dPrad

dr
=

1

3
a(4T3)

dT

dr

⇒
dT

dr
= −

3

4ac

κ̄ρ

T3
Frad = −

3κLrρ

16πacr2T3

(verify this)
Note that this equation implies that as the flux or opacity increases, the
temperature gradient becomes steeper, in this case more negative.

So now we have our long sought after equation relating T to r (which we need
because it will tell us what can and can’t happen in a given region of the star,
most importantly what nuclear reactions can occur). But we still need to
calculate the opacity, κ.

To understand how to calculate κ we must first understand the ways a photon
can interact with matter. It can lose energy in 4 main ways, as we’ll discuss, but
the rates of each interaction depend on the photon’s frequency, ν, making a
detailed calculation of κ difficult. Here, I’ll just qualitatively discuss what goes
into the calculation, then assuming values for κ, what they actually mean.

Next, we’ll look at the possible photon interactions (you’ve already seen two of
them).



Photon Interactions

(1) Bound-bound absorption: A photon is absorbed by a bound electron in an
atom moving it to a higher bound energy level. If the electron was initially in the
ground state with an energy E1, and finally in the first excited state with energy
E2, then since the photon was completely absorbed we must have:

Eγ = hνγ = E2 − E1

These processes are what produce the observed spectral (absorption) lines of
stars. Typically, temperatures are such that hνγ is much larger than E2 − E1 so
this doesn’t play a significant role in energy transport.

(2) Bound-free absorption: A photon is absorbed by a bound electron such
that the electron escapes (atom ionized):

Eγ = hνγ = −E1

Again, generally not important in typical stars, and depends on how many bound
electrons exist.

(3) Free-free absorption: A free electron of energy Ei absorbs a photon
resulting in an increase of the electron’s energy to Ef , where:

Eγ = hνγ = Ef − Ei

(4) Scattering: (see HW#3 problem 1)
This process (Compton scattering) does not lead to the absorption of a photon
but does slow down the rate at which energy escapes from a star. We have:

Eγf − Eγi =
hc

λf

−
hc

λi

where;

λf − λi =
h

mec
(1− cos θ)

Note that the reverse of the absorption processes can (and do) also occur, which
is how photons propagate through the stellar material.



As mentioned, calculation of opacity, κ, difficult because all these processes for all
the electrons in the stellar material (both bound and free) must be considered.
But in general we find: κ is low at both very high and low temperatures. At high
temperatures most photons have high energy (∼ kT ), and are less easily absorbed
than lower energy photons (and most atoms are ionized so only the 3rd and 4th
processes above contribute). At low temperatures most atoms are not ionized and
so there are fewer free electrons available to scatter radiation or take part in
free-free absorption, and most photons don’t have enough energy to ionize atoms.

Opacity has a maximum value at intermediate temperatures where bound-free
and free-free absorption are important.

For example: In the Sun;
ρc ∼ 105 kgm−3

κ ∼ 0.1m2kg−1

⇒ κρc ∼ 104m−1

Note that the units of κρc are m−1, implying the inverse of this quantity has units
of length – this is called the “mean free path” of the photon (which comes from
the definition of κ: larger κ implies larger “resistance” to photon’s propagation
which implies shorter paths between interactions (mean free paths)).

So, a typical photon travelling from the centre of the Sun is absorbed or scattered
after it has travelled about 10−4m.

Further out when ρ ∼ 103 kgm−3, we find κ ∼ 10m2kg−1 so that the mean free
path of photons (radiation) is again about 10−4m.

Also note that in the Sun,

Tc ∼ 1.5× 107K ⇒
dT

dr
∼ 2× 10−2Km−1

Therefore, ∆T between when a typical photon is emitted or absorbed is
∼ (2× 10−2Km−1)(10−4m) ∼ 2× 10−6K. That is, there is a very small
temperature difference between typical interaction lengths of the photons, which
is why thermal equilibrium is a very good approximation allowing us to use the
Black-body (Planck) distribution for photon energies, Bν(T ).


