Problem 1 [2 pts]
The lifetime of the particle called the pi meson (or pion), is $\tau_\pi = 2.5 \times 10^{-8}$ s when the pion is at rest relative to the observer measuring its decay time. What is the lifetime measured by an observer at rest for pions travelling with a speed of $v = 0.999c$?

Problem 2 [3 pts]
Consider a certain small region of the upper atmosphere where muons (μ) are produced from cosmic ray collisions with the upper atmosphere at a rate of 100 per minute and with speeds of 0.995c. At what rate will these muons be detected at the Earth’s surface (assuming we can detect all those that make it)?
(Assume the muon lifetime is $\tau_\mu = 2.20 \times 10^{-6}$ s at rest, and the upper atmosphere is at a distance of 100 km above the Earth’s surface (roughly correct).)

Problem 3 [3 pts]
Text problem 1.4

Problem 4 [3 pts]
Text problem 1.6

Problem 5 [3 pts]
(a) Write down the Lorentz transformations relating observations in a reference frame (t', x', y', z') that is moving with constant speed v relative to another reference frame (t, x, y, z).
State clearly the assumptions you are making for the form in which you write these.
(b) Show by explicit computation that the proper time interval, $d\tau$, where:

$$c^2 d\tau^2 = c^2 dt^2 - (dx^2 + dy^2 + dz^2)$$

is invariant under Lorentz transformations. That is, $d\tau^2 = (d\tau')^2$.

Problem 6 [3 pts]
In class we derived the relativistic form of the kinetic energy to be:

$$K = m_0c^2(\gamma - 1)$$

Show that this reduces to the familiar $K = \frac{1}{2}m_0v^2$ for $v \ll c$ (the Newtonian limit).
(Hint: using a Taylor expansion will be useful.)
Problem 7 [3 pts]
Show that the total relativistic energy of a particle travelling with speed v, $E = \gamma m_0 c^2$, can also be expressed as $E^2 = p^2 c^2 + m_0^2 c^4$, where m_0 is the particle’s rest mass, and p is the relativistic momentum, $p = \gamma m_0 v$.

Problem 8 [3 pts]
Text problem 1.9

Problem 9 [5 pts]
Text problem 1.10

Problem 10 [2 pts]
If you are speeding directly towards a red traffic light, at what speed would you need to be travelling for it to appear to you as green? Give you answer both as a fraction of c and in mph.
(Although this might appear as a clever way to get out of a traffic violation for running a red light, the fine for speeding will be far worse!!)