
Final Exam
Phy 781 - Spring 2016

Assigned: Tuesday April 19, 2016. Due: Noon, Tuesday May 3, 2016.
All work is to be done independently. This is an open book exam. The problems are worth

25 points each. Please feel free to stop by my office or email me if you have questions.
(Note: I will be out of town starting Friday, April 22 but will be checking email. You will
scan your exam work and submit it to me via email prior to the Tuesday May 3 deadline.)

Problem 1
Consider QED with two charged spin-1

2
fields, one of which is massive, the other massless.

The Lagrangian is

L = ψ1i /Dψ1 + ψ2(i /D −m)ψ2 −
1

4
FµνF

µν .

where Dµ = ∂µ + ieAµ.
a) Write down the equations of motion for each of the fields.
b) What are the symmetries of this theory? Specify whether they are global or gauge

symmetries. Write down the conserved Noether currents corresponding to each symmetry.
Verify using the equations of motion that these currents are conserved.

c) Suppose I take the limit m → 0. Are there additional symmetries? If so, write down
the corresponding Noether currents.

d) Suppose I add a term to the Lagrangian of the form

L′ = −e ψ2 /Aψ1 − e ψ1 /Aψ2 .

Is this interaction gauge invariant? Verify your answer by checking whether or not the matrix
element for the decay ψ2 → ψ1γ mediated by this interaction satisfies the Ward identity.

Problem 2
In class we developed the trace technology for computing unpolarized cross sections and

decay rates making extensive use of the formulae∑
s

us(p)us(p) = /p+m,
∑
s

vs(p) vs(p) = /p−m.

Using trace technology to compute cross sections/decay rates for polarized particles requires
the following generalization:

us(p)us(p) = (/p+m)
1 + γ5/s

2
, (1)

where the polarization four-vector sµ is defined by

2msµ = us(p)γµγ5us(p) . (2)

In this Problem we will verify Eq.(1) and apply it to heavy fermion decay. (The analogous
formula for vs(p)vs(p) is not needed for this problem.)



a) First verify that the four-vector sµ defined in Eq. (2) is the polarization vector of

a spin-1
2

particle by showing that in the rest frame of the fermion, pµ = (E, ~p) = (m,~0),
the time-component of sµ vanishes and space components are a unit vector pointing in the
direction of the fermion spin. For example, if in the rest frame the fermion has sz = ±1/2
then the four vector sµ = (st, sx, sy, sz) = (0, 0, 0,±1).

b) Bilinears that can be constructed from us(p) and us(p) are

us(p)us(p) = 2m (3)

us(p)γµγ5u
s(p) = 2msµ

us(p)γµus(p) = 2pµ

us(p)γ5u
s(p) = 0

us(p)σµνus(p) = 2εµναβsαpβ .

The first equation establishes the normalization of us(p) and the second defines sµ. Use the
Dirac equation to verify the last three identities in Eq. (3).

c) Argue using the completeness of the gamma matrices that us(p)us(p) can be determined
in terms of the bilinears in Eq. (3). Verify Eq. (1).

d) Consider a theory with a heavy fermion, ψ2, of mass m, and massless fermion, ψ1, and
a scalar, φ, with mass mφ(< m). These particles are coupled by the interaction Lagrangian

L = gψ2

(
1− γ5

2

)
ψ1φ+ h.c. .

Calculate partial width for the decay ψ2 → ψ1φ as well as the angular distribution

1

Γ

dΓ

d cos θ
,

where cos θ is the angle between the polarization vector of ψ2 and the direction of the ψ1

three-momentum. Can you explain your result for the angular distribution by considering
the angular momentum of the inital and final states and applying elementary quantum
mechanics?

Problem 3
Consider the following theory of two scalar fields

L =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 +
1

2
m2(φ2

1 + φ2
2)−

λ

4!
(φ2

1 + φ2
2)

2 .

Notice the mass term has the wrong sign. This means that the classical vaccuum is not
φ1 = φ2 = 0 but φ2

1 + φ2
2 = v2, v 6= 0.

a) Sketch the vaccuum energy as a function of v and find the value of v that minimizes
the energy.

In cases like this we must expand the fields around the true ground state. Define

φ1 = v + ρ, φ2 = π

and rewrite the Lagrangian in terms of the fields ρ and π. What are the masses of the fields
ρ and π? One should be massless.



b) Write down all the Feynman rules for this theory (in terms of the fields ρ and π).
c) Calculate the scattering amplitude for ππ scattering to lowest order in perturbation

theory. You should find that the amplitude vanishes as the external momenta of the π goes
to zero.

Problem 4
In this problem you will use field theory methods to solve a nonrelativistic quantum

mechanics problem. Consider a particle of unit mass moving in one-dimension in a potential
that is the harmonic oscillator potential plus small anharmonic corrections. The Lagrangian
is

L =
1

2
ẋ2 − 1

2
ω2x2 − gx3 − hx4 .

Treating the anharmonic terms as a perturbation, the shift in the ground state energy to
lowest order in g2 and h is given by

∆E =
3h

4ω2
− 11g2

8ω4
.

You will reproduce this result by treating this system as a field theory in zero space and one
time dimensions. The propagator for the x field is i/(k2 − ω2 + iε), where k is now a “one-
momentum” (energy) rather than a four-momentum. For each loop you must integrate
over dk/2π rather than d4k/(2π)4. Feynman rules for the vertices are the same as 3+1
dimensional field theory and there are no UV divergences so you do not have to worry about
renormalization. The shift in the ground state energy is given by a formula analogous to
Eq. (4.56) of Peskin. There are three vacuum diagrams that contribute to the O(h, g2)
correction in Eq. (4). One requires a evaluating a genuine two-loop integral which I will do
for you:

I2 =
∫ dp

2π

dk

2π

i

p2 − ω2 + iε

i

k2 − ω2 + iε

i

(p+ k)2 − ω2 + iε

= −i
∫ dpE

2π

dkE
2π

1

p2E + ω2

1

k2E + ω2

1

(pE + kE)2 + ω2

=
−i

12ω4
.

The first step is the Wick rotation and the second integral can be done by repeatedly using
the residue theorem.


