ABSTRACT
GROUP THEORY

2-1 Definitions and Nomenclature

By a group we mean a set of elements 4, B, C,... such that a form of
group multiplication may be defined which associates a third element with
any ordered pair. This multiplication must satisfy the requirements:

1. The product of any two elements is in the set; ie., the set is closed
under group multiplication.

2. The associative law holds; for example, 4(BC) = (AB)C.

3. There is a unit element E such that E4 = AE = A.

4. There is in the group an inverse 4 to each element A such that
Ad™ = 414 = E.
For the present we shall restrict our attention primarily to finite groups.
These contain a finite number A of group elements, where 4 is said to be the
6
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order of the group. If group multiplication"is commutative, so that
AB = BA for all 4 and B, the group is said to be Abelian.

22 Hlustrative Examples

An example of an Abelian group of infirite order is the set of all positive
and nepative integers including zero. In this case, ordinary addition serves
as the group-multiplication operation, zero serves as the unit element, and
—n is the inverse of n.  Clearly the set is closed, and the associative law i
obeyed.

An example of a non-Abelian group of infinite order is the set of all
n X n matrices with nonvanishing determinants. Here the group-multi-
plication operation is matrix multiplication, and the unit element is the
7 X n unit matrix. The inverse matrix of each matrix may be constructed
by the usual methods,? since the matrices are required to have nonvanishing
determinants. .

A physically important example of a finite group is the set of covering
operations of a symmetrical object. By a covering operation, we mean a
rotation, reflection, or inversion which would bring the object into a form
indistinguishable from the original one. For example, all rotations about
the center are covering operations of a sphere. In such a group the product
AB means the operation obtained by first performing B, then 4. The unit
operation is no operation at all, or perhaps a rotation through 2=, The .
inverse of each operation is physically apparent. For example, the inverse
of a rotation is a rotation through the same angle in the reverse sense about
the same axis.

As a complete example, which we shall often nse for illustrative purposes,
consider the non-Abelian group of order 6 specified by the following group-
multiplication table:

My O W

My AQwh b
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The meaning of this table is that each entry is the product of the element

labeling the row times the element labeling the column. For example,

AB = D = BA. This table results, for example, if we take our elements

to be the following six matrices, and if ordinary matrix multiplication is
* See Appendix A and references cited there.
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used as the group-multiplication operation:

1 0 10 A
E= A= B = 2 2
01 ¢ -1 V3 1

2 2

-1 —V3 —1 V3 -1 —V3

2 2 2 2 2 T 3

3 1 —/3 —1 v3i oo

2 2 2 2 2 2

Verification of the table is left as a simple exercise.
The very same multiplication table could be obtained by considering
the group elements 4, ..., F to represent the proper covering operations of

Fig. 2-1. Symmetry axes of equilaieral
‘trigngle.

A

an equilateral triangle as indicated in Fig. 2-1. The elements 4, B, and ¢
are rotations by = about the axes shown. Element D is a clockwise rotation
by 2w/3 in the plane of the triangle, and F is a counterclockwise rotation
through the same angle. The numbering of the corners destroys the
symrmetry so that the position of the triangle can be followed through
successive operations. Xf we make the convention that we consider the
rotation axes to be kept fixed in space (not rotated with the object), it is
easy to verify that the multiplication table given above describes this group
as well.

Two groups obeying the samemultiplicationtableare said to be isomorphic.

2-3 Rearrangement Theorem

In the multiplication table in the example above, each column or row con-
tains each element once and only once. This rule is true in general and is
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called the rearrangement theorem, Stated more formally, in the sequence
Ed,, AgAy, AsAy, o . ., Ay,

each group element 4, appears ﬁhmo& once (in the form A4,4;). The
clements are merely rearranged by Ec:%v:sm each by A,. ey
proOF: For any A, and 4,, there exists mu. element A4, = A, A" in the
group gince the group contains F<0Hmwb and is closed. Since 4.4, = 4,
for this wmaoﬁ_mn A,, A; must appear 11 ﬂrm.mmmz@nnn at least once. But
there are ki elements in the group and % terms in the sequence. Hence there

js no opportunity for any element to make more than a single appearance.

2.4 Cyclic Groups
For any group clement X, one can form the sequence
X, XX, XLt = .

This is called the period of X, since the sequence would simply repeat this
period over and over if it were extended. (Eventually we must find repe-
tition, since the group is assumed to be finite.) The integer » is called
the order of X, and this period clearly forms a group as it stands, although
it need not exhaust all the elements of the group with which we started.
Hence it may be said to form a ¢yclic group of order n. If it is indeed only
part of a larger group, it is referred to as a cyclic subgroup.t We note that
all cyclic groups must be Abelian.

In our standard example of the triangle, the period of D is D, D*= F,
D* = DF = E. Thus D is of order 3, and D, F, E form a cyclic subgroup
of our entire group of crder 6. . .

2-5 Subgroups and Cosets

Let & =E, S5, S5, ..., S, be a subgroup of order g of a larger group # of
order h. We then call the set of g elements EX, S;X, S, X,...,5X a
right coset X if X isnot in &, (If X were in &, & X would simply be the
subgroup % itself, by the rearrangement theorem.) Similarly, we define
the set X5 as being a left coset. These cosets cannot be subgroups, since
they cannot include the identity element. In fact, a coset & X contains no
elements in common with the subgroup .

The proof of this statement is easily given by assuming, on the contrary,
that for some element S; we have S, X = 8,, a member of . Then
X = §,7'§,, which is in the subgroup, and %X is not a coset at all, but just
& itself.

' Although the concept is introduced here in connection with cyclic groups, subgroups

need not be cyclic. Any subset of elements within a group which in itself forms a group
is called a subgroup of the larger group.
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Next we note that two right (or left) cosets of subgroup & in ¥ either
are identical or have no elements in common.

PROOF: Consider two cosets X and Y. Assume that there exists g
commorn element S, X = S, ¥. Then X ¥ = §,715,, whichisin &. There
fore X Y1 = &, by the rearrangement theorem. Postmultiplying both
sides by Yleadsto X = &Y. Thus the two cosets are completely identica]
if a single common element exists.

If we combine the results of the preceding paragraphs, we can prove the
following theorem: The order g of a subgroup must be an integral divisor of
the order h of the entire group, ‘That is, hlg = I, where the integer / is called
the index of the subgroup & in .

PROOF: Each of the / elements of % must appear either in & or in a coset
X, for some X. Thus each element must appear in one of the seis
L, F Xy, Xy, .., FX,, Where we have listed all the distinct cosets of &
together with & itself. But we have shown that there are no elements
common to any of these collections of g elements. Hence it must be
possible to divide the total number of elements % into an integral number of
sets of g each, and consequently & =1 X g.

As an -example, consider the subgroup & = 4, E of our illustrative
group of order 6. The right cosets with B and D are identical, namely,
FB=SFD=RD Ao FC=5FF=C,F. We note that, as proved
in general, these cosets contain no common elements unless entirely identical
and they contain no elements in common with &. Also, the order (2) of
the subgroup is an integral divisor of the order (6) of the group. To
generalize, the order of any cyclic subgroup formed by the period of some
group element must be a divisor of the order of the group.

2-6 Example Groups of Finite Order

1. Groups of order 1. The only example is the group consisting solely
of the identity element E. .

2. Groups of order 2. Apain there is only one possibility, the group
(4, A2 = E). This is an Abelian group, and in physical applications A4
might represent reflection, inversion, or an interchange of two identical
particles, .

3. Groups of order 3. In this case, if we start with two elements 4 and
E, it must be that 4% = B # E. Otherwise, if 4? were to equal £, then
{4, E) would form a subgroup of order 2 in a group of order 3, which would
violate our theorem. Thus the only possibility is the cyclic group (4, 4* = B,
A% = E).

4. Groups of order 4. With order 4 we begin to have more than one
possible distinct group-multiplication table of given order. The two
possibilities here are (1) the cyclic group (4, 4% 4% 4* = E) and (2) the
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4 Vierergruppe (4, B, ¢, E) whose multiplication iable is:

so-calle
E A B C
E E A B C
A A E C B
B B C E A
C C B A E

moE these groups are Abelian, and in both cases we can pick out subgroups
of order 2, as allowed by our theorem. A physical example of the cyclic
group of order 4 is provided by the four fold rotations about an axis. On
the other hand, the Vierergruppe is the rotational-symmetry group of a
rectangular solid, if 4, B, C are taken to be the rotations by = about the
three orthogonal symmetry axes.

5. Groups of prime order. These must all be cyclic Abelian groups.
Otherwise the period of some element would have to appear as a subgroup
whose order was a divisor of a prime number. This general result allows
us to note at once that there can be only single groups of order 1, 2, 3, 5,
7, 11, 13, etc.

6. Permutation groups (of factorial order). One group of order »! can
always be set up based on all the permutations of » distinguishable things.
(Of course, others, such as a cyclic group, can also be found.) A permuta-
tion can be specified by 2 symbol such as ,

1 2 3 -+ n
oy Oy Gy Tt Oy
where 6, o, ..., a, ==1,2,...,n, except for order. The permutation

described by this symbol is one in which the item in position i is shifted to
the position. indicated in the lower line. Successive permutations form the
group-multiplication operation. As an example, our standard example
group of order 6 can be viewed as the permutation group of the three
numbered corners of the triangle. The permutations may be expressed in
the above notation as

i 23 I 23 1 2 3
12 3 213 13 2
1 2 3 12 3 . I 23
321 31 2 2 31

For example, operator A interchanges corners ! and 2, whereas D replaces
P by 3, 2 by 1, and 3 by 2, corresponding to a clockwise rotation by 2=/3.
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Applying B followed by 4 leads to

I 2 3\/1 2 3 1 2 3
AB = == =D
2 1 3/i\1 3 2 31 2
which is consistent with the group-multiplication table worked out previously,
Because of the identity of like particles, permutation of them leaves the
Hamiltonian invariant. Accordingly, the permutation group plays ap
important role in quantum theory.

2-7 Conjugate Elements and Class Structure

An element B is said to be confugate to 4 if

B=XAX?' o A4=X71BX
where X is some member of the group. Clearly this is a reciprocal property
of the pair of elements, Further, if B and C are both conjugate to 4, they

are conjugate to each other.
PROOF: Assume that

B=XAX"1 and C= Y471

Then A= YCY
and B=XYCYX = (XY HC(XY Y2
= ZCZ-1

[In this proof we have used the fact that the inverse of the product of two
group clements is the product of the inverses of the elements in inverse
order. This is clearly true, since (RS) (SR = R(SS™HR? = RR* = E]

The properties of conjugate elements given above allow us to collect all
mutually conjugate clements into what is called a class of elements. The
class including A, is found by forming all products of the form

EAE = A, Ay A A, . .., dyd Ay~

Of course, some elements may be found several times by this procedure.
By proceeding in this way, we can divide all the elements of the group
among the various distinct classes. Luckily, we may usunally avoid this
rather tedious method by using physical-symmetry considerations, as shown
below. For example, in the group of covering operations of an equilateral
triangle, the two rotations by 2z/3 form a class, the three rotations by =
form a class, and, as always, the identity element is in a class by irself. The
latter follows, since AEA™ = A4t = E for all A. Note that E is the
only class which is also a subgroup, since all other classes must lack the
identity element.
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In Abelian groups, each-element is in a class by itself, since ¥AX ™ =

A R‘%\IH = AE = A. .
If the group elements are represented by matrices, the traces of all elements

in a class must be the same. This follows, since in this case the operation
of conjugation becomes that of making a similarity transformation, which
ves the trace jnvariant.*

Physical interpretation of class structure. In physical applications the
group clements can often be considered to be symmetry operations which
are the covering operations of a symmetrical object. In this case, the
operation B = X-14X is the net operaticn obtained by first rotating the
object to some equivalent position by X, next carrying out the operation 4,
and then undoing the initial rotation by X1 Thus B must be an operation
of the same physical sort as A, such as a rotation through the same angle,
but performed about some different {(but physically equivalent) axis which is
related to the axis of 4 by the group operation X’ ~%. This is the significance
of operators being in the same class.

As a concrete example, consider the covering operations of the equilateral
triangle indicated in Fig. 2-1. If we consider the conjugation of 4 with D,
we have D-14D = C. To follow this through in detail, D rotates the
triangle clockwise by 27/3 so that vertex 2 instead of 3 lies on axis 4; next
the rotation by 7 about the 4 axis interchanges 1 and 3; finally Dl=F
rotates the triangle back 2m/3 counterclockwise. This sequence leaves
precisely the result of a single rotation by  about axis C, which is an axis
equivalent to 4 but rotated 2m/3 counterclockwise by the symmetry operator

D

lea

2.8 MNormal Divisors and Factor Groups

If a subgroup & of a larger group ¥ consists entirely of complete classes,
it is called an invariant subgroup, or normal divisor, By consisting of com-
plete classes, we mean that, if an element A is in &, then all elements X 14X
are in &, even when X runs over elements of & which are notin &. Such
a subgroup is called invariant because by the rearrangement theorem it is
unchanged (except for order) by conjugation with any element of 4.

To allow a compact discussion, we Introduce the notion of a complex
such as ..R, = (K, Ky, . . ., K,), which is a collection of group elements
disregarding order. Such a complex can be multiplied by a single element
or by another complex. For example,

HX = (KX KX,... KX
and AR = (KR, KRy, - KRy, .. KR,

1 See Appendix A.




14 GROUP THEORY AND QUANTUM MECHANICS [Chap. 5

Elements are considered to be included only once, regardless of how often
they are generated.

We can now state our argument concisely by. treating sets of elements as
complexes. First, a subgroup is defined by the property of closure, that i
FF = . Second, if & is an Invariant subgroup, then XX — &, for
all X in the group %. From this it follows that X = X%, or, in words,
the left and right cosets of an invariant subgroup are identical.

In Sec. 2-5 we have shown that there are a finite number (J — 1y o
distinct cosets for any subgroup . We may denote each of these ag a
complex, and if 5 is an invariant subgroup, we have, for example, A, =
FK; = KF. Note that FK; = &K, if K, and X; are group elements in
the same coset, since we are not concerned with the order in which the
elements of the complex appear. Together with the subgroup %, this set of
{/ — 1) distinct complexes can themselves be regarded as the elements of a
smaller group (of order / = hfg) on a higher level of abstraction. This new
group is called the factor group of % with respect to the normal divisor (or
invariant subgroup) . In this factor group, & forms the unit element,
We can see this by considering

FA ;= P(FKY = (PP, = FK, = A,
Group multiplication works out as shown in the following example,
H A, = (FENFK) = KI K, = KFK, = FKK) = (A 1oL

where the last expression refers to the complex which is the coset associated
with the product XK. The concept of factor groups and normal divisors
will prove useful in analyzing the structure of groups.

Isomorphy and homomorphy. We have already introduced the concept
of isomorphy by noting that two groups having the same multiplication
table are called isomorphic. This means that thers is a one-to-one corre-
spondence between the elements A, B, . . . of one group and those 4’, B, . ..
of the other, such that 4B = C implies 4'B' = C’, and vice versa.

‘Two groups are said to be homomorphic if there exists a correspondence
between the elements of the two groups of the sort Ad«» 4], A}, . ... By
this we mean that, if 48 = C, then the product of any 4; with any B} wiil
be a member of the set C. In generzl, a homomorphism is a many-to-one
correspondence, as indicated here. It specializes to an isomorphism if the
correspondence js one-to-one.  For example, the group containing the single
clement E is homomorphic to any other group, since, in view of the fact
that each group element is represented by E, group multiplication reduces
simply to EE == E. A much less trivial example is provided by the homo-
morphic relation between any group and one of its factor groups (if it has
one). The invariant subgroup & corresponds to all the members of &,
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he cosets A= FK, correspond to all members of the coset (including
and ¢ 1l other group elements having the same coset, which are just the
K and a of o). Thus,if# is of order g, there is a g-to-one correspondence
%NHWMMM e ﬁwam?mm group elements and the elements of the factor

group.

1.9 Ciass Multiplication

In this section we consider a different form of multiptication of collections
of group elements in which we do keep track of the number of times an
¢lement appears. That is, & = &\ implies that each element appears as
often in & as in ", In this notation

YEY = F (2-1)

where @ is any complete class of the group and X is any element of the
group. (ProoF: Each element produced on the left munst appear on the
right because they are all conjugate to elements in % and hence are in & by
the definition of a class. But each element on the left is different, because
of the uniqueness of group multiplication, as is each on the right. These
two statements are consistent only if the two sides of the equation are equal.)

The converse of this theorem is also true: any cellection ¥ obeying
(2-1) for all X'in the group is comprised wholly of complete classes. (Proo¥:
First subtract all compiete classes from both sides and denote any remainder
by %#. Now consider any element R; of & on the left in X—'%X = Z.
Since this is assumed true for all X, % must by definition include the complete
class of R. Thus % must be composed of complete classes.)

If we now apply the theorem (2-1) to the product of two classes, we have

€%, = X €, XX"E,X
= XEF)X

for all X. Then, upon applying the converse theoiem, it follows that
%%, consists of complete classes. This may be expressed formally by
writing

CE; = W CinBy (2-2)

where ¢, is the integer telling how often the complete class %, appears in
the product #,%,.

An an example, in the symmetry group of the triangle whose class
structure we noted earlier, let ¥, =FE;, €,=2A4, B, C; and €, = D, F.
Then €1%, = €,; 6.6, = €,; €%, = 3¢, + 3%,; €., = 2%,
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EXERCISES

2-1 Consider the symmetry group of the proper covering operations of 4
square (D,). This consists of eight elements:
E = the identity :
4, B, C, D = 180° rotations about the corresponding labeled axes in Fig, 2.5
which are considered fixed in space, not on the body

Fig. 2-2. Symmetry axes of square.

F, G, H = clockwise rotations in plane ‘of the paper by =/2, =, and 3af2,

regpectively

(@) From the geometry, work out the multiplication table of the group; take
advantage of the rearrangement theorem to check your result.

{(5) From the nature of the operations, divide the group elements into classes,
If in doubt, check by using the multiplication table {from (4)] and the definition
of conjugate elements,

(¢) Write down all the subgroups of the complete group. Note that the orders
of the subgroups must be divisors of 8. Which of these subgroups are invariant
subgroups (normal divisors) ?

(d) Work out the cosets of the normal divisors,

(¢) Work out the group-multiplication tables of the factor groups corresponding
to the nontrivial normal divisors of the group. .

(f) Determine the coefficients ¢, appearing in all class multiplication products.

2.2 List the symmetries of & general rectangle. Work out the multiplicatiod
table, and divide the elements into classes.

2-3 Use the multiplication table for the symmetry group of the triangle to
verify in severa] cases the rule for the inverse of a product.

2-4 Consider the group of order (p - 1) obtained by taking as group elements
the integers 1,2, ...,(p — 1) and as group multiplication ordinary multiplication
modulo p, where p is a prime number. (Modulo p means that m - yp is considered
to be equal to m, where m and # arc any integers.)

(@) Show that this is a group, and work out the multiplication table when p = 7.

{b) Prove in general that A%~! = E, for all elements 4 of the group. In this

[Chap. ¢
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have ?.96@ Termat’s number-theoretical theorem that #? = n(med p),
u

is an integer and pis 2 prime.
iun:w .Mranw the theorem for p =7 and n = 2,3, 5.
Mnm ?.95 that all elements in the same class have the same order when used to

moun_.mnn a &amo group.
2.6 Show that there Is a

4and 2.

2.7 Provet
ment to its inverse forms
2.8 Prove that cie = Cyux 10
€%, even if the group is not Abelian.

way YO

homomorphism between the cyclic groups of order

hat a group is Abelian if, and only if, the correspondence of each
an isomorphism.

ele » in Bq. (2-2). In other words, prove that ¥,%; =
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THEORY OF

3-1 Definitions

By a representation of an abstract group we mean in general any group
composed of concrete matheinatical entities which is homomorphic to the
original group. However, we shall restrict our attention to representation
by square matrices, with matrix multiplication as the group multiplication
operation, That is, we associate a matrix '(d) with each group element A
in such a way that

T{(AT(B) = I'(4B)
These matrices then satisfy the group-multiplication table and in every way
“represent” the abstract group elements. Clearly this is possible only if
T(E) = E, the unit matrix. The number of rows and columns in the
matzix is called the dimensionality of the representation.
I8

GROUP REPRESENTATIONS
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If each matrix is different, then the two mao.zﬂm .mHo isomorphic rather
merely homomorphic and the representation is said to be frue, or

Ewn /. On the other hand, if several elements correspond to a single
\ES&: .oua can easily see that all elements corresponding to the unit matrix
Bm:.:Mm invariant subgroup of the full group. Similarly, the elements
woanw sponding to each of the other matrices of the representation form the
m“.m:% cosets of the invariant subgroup, and the matrices form a true
representation of the factor m_”ozw.ow this invariant subgroup. A .

Obviously the 2 > 2 matrices introduced in Sec. 2-2 form a true matrix
representation of our standard example group of .oaou 6. .»B&wﬂ.
representation .of the same group can be obtained by taking the determinant
of each matrix, because of the fact that

[T(4)} - | T(B)| = [T(AHT(B)| = | (4B}

This operation reduces the Emaowm. to oa&.nma\ numbers, namely, +1,
giving 2 one-dimensional representation. This representation is no longer
true, since there are only two distinet “matrices,” whereas there are six
group elements. A still simpler one-dimensional representation is obtained
by representing each element by 1. This corresponds to the rather
trivial homomorphism which can be set up by associating the unit element
with all members of the original group, and it is often called the identical
representation. We shall soon be able to prove that these three form the
only possible, essentially different representations of the example group.
Afier we establish the close connection between these matrix representations
and quantum-mechanical eigenfunctions, it will become clear that such
unconditional statements of group theory will have great practical value.

In discussing the various possible matrix representations of a group, it
is important to note that a similarity transformation leaves matrix equations
unchanged. That is, if we define ¥'(A4) = S~T(4)S, then

(AT (B) = [ST(A)S][SLI(B)S] = SI(A)T(B)S
‘= ST(4B)S = I'(4B)

ard the transformed matrices I form a representation if the I' matrices do.
However, the infinity of representations related to each other in this way
for various matrices S differ only in that they are stated with respect to
different coordinate axes of some sort, and hence all are considered to be
equivalent.

Reducible and irreducible representations. Clearly one can take two (or
more) representations and construct from them a new representation by
combining the matrices into larger matrices. For a typical element, we
could form

TOW) 0
0 rei4)

T(d4) =
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where I'1(4) and T®(4) are the matrices representing element 4 in g,
original representations and I'(4) represents 4 in the new larger represent,.
tion. However, such an artificially enlarged matrix representation is sajq
to be reducible. This reducibility might be concealed by applying ,
similarity transformation which scrambles rows and columns, leaving a5
equivalent representation which is moz in block form. Thus our rey
criterion for reducibility is that it be possible to reduce the matrices repre.
senting all the elements of the group to block form (with the same block
structure) by the same similarity transformation, If this cannot be done, 5
representation is said to be irreducible, meaning that it cannot be expressed
in terms of representations of lower dimensionality. It is customary to
indicate the structure of reducible representations by giving the irreducible
representations which form the blocks after reduction to block form, 1Ip
our example, we would write I' = [0 4 I'®; more generally, I' = X g,Tth,
where the o, are integers telling how often I appears in I'.  (Observe that

this notation does not refer to matrix addition.) In many quantum. .

mechanical applications each irreducible representation will display the
transformation properties of a set of degenerate eigenfunctions. Hence, as
we shall see, the number of irreducible representations may give the number
of distinct energy levels, a very useful piece of information.

32 Proof of the Orthogonality Theorem

We commence this section by proving several lemmas leading up to the

orthogonality theorem which is central to the development of the theory of
group representations. The method of proof given here follows closely
that in Wigner’s classic book.! A review of the various properties of
matrices which are used here may be found in Appendix A.

LEMMA: Any representation by matrices with nonvanishing determinants
is equivalent through a similarity transformation to a representation by
ynitary matrices. '

PROOF: For simplicity in notation let the matrix representing the element
A, be written A;. We can then construct a Hermitian matrix H by

)
H= M AAS . (3-1)

i1 A o
since each term is already Hermitian. (In our notation a matrix is Hermi-
tian if HY = H, or HE = H,.) But it is well known® that any Hermitian
matrix can be diagonalized by the nitary transformation made up from

1E. P. Wigner, “Gruppentheorie und ihre Anwendung auf die Quantenmechanik der
Atomspektren,” Friedr. Vieweg & Sohn, Brunswick, Germany, 1931; revised and translated
edition, Academic Press Inc., New York, 1955,

® See Appendix A.
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the orthonormal eigenvectors found by solving the associated secular
nn_cm:cs. Thus we can write
d= q|HH|H.c. - M .G.EHNP.T»&._.G
1

3.2
= 3 UAUU-A,U = 3 AjA; G2
) i i ,

where the primed matrices differ from the original ones by the unitary
transformation U. Consideration of a typical element shows that not only
is d diagonal but it has only real positive diagonal elements. This enables
us to form other real positive diagonal matrices for d* and d=* by simply
taking the appropriate power of the elements of d. Taking advantage of
the commutation of diagonal matrices, we can then write (3-2) as

E=dt 3 ALA a
i

where E is the unit matrix. We can also define a new set of doubly trans-
formed matrices by R., = __tw?,.%. We conclude the proof by showing

that these matrices A are unitary.
To do this, consider

AJAT = ﬁ_.E%ELdM AjAfTd-tatastat
=4y Rrﬂ&wﬁ&i&
i
= dFYAJAJAJADTA?
B

=d Y AAMI =K
¥

In making the change to the sum on & we have used the rearrangement

theorem. Since we have shown that AJA"T = E, we have shown that Al is
unitary. Hence we can always construct a unitary representation from
any given one by forming

; = dfU-AUdE (3-3)
where U and d have been defined above in (3-2).

SCHUR’S LEMMA: Any matrix which commautes with all matrices of an
irreducible representation must be a constant matrix (i.e., a multiple of E).
Thus, if a nonconstant commuting matrix exists, the representation is
reducible, whereas if none exists, the representation is irreducible.

'PROOF: On the basis of our first lemma, we can restrict our attention to
:ES.Q representations. Let M be a matrix which commutes with all
matrices of the representation. Then

AM=MA, i=12...,h
and taking the adjoint of both sides,




22 GROUP THEORY AND QUANTUM MECHANICS [Chap, 3

Pre- and postmultiplying the second of these by'A, leads to
AM! == MTA,

Thus, if M commutes, MT also commutes, From this, it follows that the
two Hermitian matrices H; = M + M and H, = i(M — M also commyte
with all A,. If we can now show that a commuting Hermitian matyix j5 4
constant, then it follows that M = H, — /H, is also a constant.

Confining our atteniion to Hermitian commuting matrices, we cap
always reduce them to diagonal form by a unitary transformation: d =
UIMU. If we define a transformed A; = U—*A U, then

.Pmmﬂﬂ.mwm

by the invariance of matrix equations under unitary transformations, We
now must show that d is not only diagonal but also constant. To do this,
consider the uv element of the matrix, namely,

A..A“.u_::&_uu = &t.ﬁﬁhwhe
or A\HU_:.:AQ..S.I _ctv"o w.””—uM_...u\a

Now, if d,, 5= d,,, so that the matrix is not constant, then (A7), must be
zero for all 4; and our transformation U has brought 4, to block form,
showing that the representation was in fact reducible. On the other hang,

if we assume the representation was irreducible, then it follows thatd,, = d,

and any commuting matrix must be a constant.

LeMMmA: If we are given two irreducible representations of the same group

T0(4,)) and T¥(4,) of dimensionality /4 and /4, and if a rectangular matrix
M exists such that

MTU(A) = IO i=1,2,....k (3-4)

then () if ¢ L, M =0, or (2} if =1L, M=0, or else [M|50. In
the latter case, M has an inverse, MTW(4 )M = I'"®(4)), and the two
representations are equivalent. .

PROOF: As shown in the first lemma, we may confine our attention to
unitary representations. Also, we may assume J 5 l without loss of
generality. Then, taking the adjoint of (3-4), we have

H.E?@E\ﬂ — E:_Eoﬁﬁ
or FOAIMT = MITO(4Y (3-5)

by the unitary property which implies (4, = TO(4)1 = TO(4.
If we now premultiply both sides of (3-5) by M and use the fact that (3-4)
holds for 4,7 as well as 4, since it holds for all group elements, we find

A YMMT = MM TOI(4,-) (3-6)
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rix MM ooB.EEwm with all the matrices of the representation
st be a multiple of the unit matrix, by Schur’s lemma. That is,

MM’ = ¢E 37

Consider first the case when /= l, so that M is a square matrix.
Taking the determinant of (3-7) then yields _z_m.ﬂ el Zo.ﬁ if ¢5£0,
M| # 0, M has an inverse and the two representations are n@Eﬁ.F:ﬂ On
the other hand, if ¢ =0, then MM' =0. In terms of components, this
means that > MM} HW§ M, * =0, for all 4 and v. Taking in

A

particular g = 7, We have W M4/ = 0, which is possible only if all M, = 0,

Thus the mat
and hence mu

or in other words, iTM=0.
Now consider the case when L << /[, so that M has ] columns and /,

rows. We can fill M out to a square &, X I, matrix N by inserting (5, — k)
columns of zeros. Inspection then shows that NN' = MM'. Since N
clearly has zero determinant, so does NN' and hence MM™. But by (3-7)
MM is a constant matrix, which we now see has ¢ = 0, since the determinant
vanishes. From this it follows that M = 0. This completes the full proof
of our lemma.

The great orthogomality theorem. If we consider all the inequivalent,
jrreducible, unitary representations of a group, then

. ; |
3 TORIETNR)g = 7848 P (3-8)

where in the summation R runs over all group elements E, 4,,..., 4,
and /, is the dimensionality of "%, ,

PROOF:  We first consider the case of two Inequivalent representations
'Y and T'®. Then we may construct a matrix M satisfying our third
lemma by forming

M = M H.Em.wVHH‘EﬁhJJ
.

where X is a completely arbitrary matrix having 4 columns and /, rows.
To show that this M satisfies (3-4), take

TOEM =5 TO(S)TA(RX AR
E
= 3 TS TA(R)X TR TU(S-1) TH(S)
R
= 3 I'O(SRIXTO(R-1S-HTU(S)
3

= mW T®(SRXTO(SR)TO(S)

[3 TORXTO@RDIT(S)
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by the rearrangement theorem; so finally
T'®($M = MTA(S)
Therefore, our lemma shows that M = 0. But then

5&% = = Mm” M H;EA@R;NEHJ:K.%LVE
Since X is arbitrary, we may set all X, = 0 except X;, = 1. Then
. 3 Ie(R),,[ORDY),, =0 (3-9)
E .
Using the unitary property of I, we have the equivalent form
2 TORYETO(R),; = O (3-9)
B

which completes the proof of the 8;; factor in (3-8).

Next we consider the case when i = j==1, say. In analogy with the_

previous paragraph, we may construct a matrix M which commutes with
all matrices of the representation by forming

M= M H.GAWVMH_EAWEJ
R

Then by Schur’s lemma M = ¢E. Thus, taking the uy' element,
M M “_,.;EA.NVERMDNHJEQNIHVMR = nmtt

x4 B

Choosing X, = 0 except X,,, = 1 reduces this to
W H.;CAM@E.,:HAEA.NIJ—:&. = h.ee:..wtt% , GLS

We have put subscripts on the constant ¢ to indicate the particular choice of
X. Now, choose u' = y, and sum on g This yields, on interchanging
the order of the factors, :

WM TR, T @E =c,, M 8,
or M HAEA.WIH‘NV__\Q == Ay Cye
,. R

since u runs over the / rows of the I' Hnwummg.ﬂmﬁon. We may reduce
the left member further by noting that

M H:H_Qm.ﬁhv_}_ = M H,Emmv_.._. - wH.Evaee = .«&}_
R R

Therefore ¢,,, = 46,/ Substituting back into (3-10), we have

w
W PO(R), PE(RD,,,, = I 8,08y Q,:v
1
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By using the unitary Property of TV, this becomes
h
W iy EwﬁﬂEﬁ BE = M mr..:m} (3-11a)
nd (3-11a), we have proved the general theorem (3-8).

ining (3-9@)
Combining (& (3-11) provide a generalization of (3-8) for nonunitary

Moreover, (3-9) and

representations. . . . . .
Geometric interpretation. To appreciate the significance of this result, it

is helpful to interpret it as stating the oﬂromnnm:ﬁw of a set of vectors in
waroup-element space.” This is an A-dimensional vector space in which
:m. axes or components are labeled by the various group mwaao.ﬂm R =
E Ag-.or A The vectors themselves are labeled by three indices—the

representation index 7 and the subscripts v, indicating row and cofumn

within the representation matrix. The theorem then states that all these
vectors are mutually orthogonal in this A-dimensional space.

From this result we may readily draw an extremely important conclusion.
If we count up the number of these orthogonal vectors, we find 3 12, where

3
i runs over all the distinct irreducible representations, since there are /*
entries in a matrix of dimensionality /. But clearly the maximum number
of orthogonal vectors in an A-dimensional vector space is just /. Thus it
follows that ¥ 72 < k. In fact we shall soon prove that the equality always

holds. This wm?om us the dimensionality theorem
2iE=h B (3-12)
;

which is essential for working out the irreducible representations of any
group. For example, in our example gronp of order 6, we have k=6,
and we have already found three irreducible representations—one of
dimensionality 2 and two of dimensionality I. Since 22 4 12 4 12= 6,
this simple theorem tells us that it is impossible for any other distinct
irreducible representations to exist.

3-3 The Character of a Representation

Because all matrix representations related to each other through unitary
transformations are equivalent, it is clear that there.is a large degree of
arbitrariness in the actual forms of the matrices. This makes it worth-
while to seek a way of characterizing any given representation which is
invariant under such transformations. This immediately suggests using
the traces of the matrices, since these are invariant. Accordingly, we define
the character of the jth representation as being the set of 4 numbers y'#(E)
194, . .., 47(4,), where

]

Iy

2R = Te TO(R) = ¥ TO(R),,, (3-13)

sl
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Since the matrix representations of all elements in the same clagg are
related by similarity transformations (by definition of conjugate group
elements), the invariance of traces shows that all elements in the same clagg

have the same character. This enables us to specify the character of any

given representation by simply giving the trace of one matrix from eag;

class of group elements. We denote this by x'(%,) for the kth class,

We can profitably apply the orthogonality theorem to the character iy
the following way. If wesety = u and f = « in Eq. (3-8), we have
h

.WU TO(R): TO(R),, = T 0 e

Now summing over x4 and o and use of (3-13) yields

3 HOR LB = 6,38,
k) . L a

= hdy; (319

Thus, the characters form a set of orthogonal vectors in group-element -
space. Collecting the group elements according to classes, within which .

the ¥*”*(R) are the same, we can rewrite (3-14) as

W YOG 4 HEIN, = hd; P (315

where N, is the number of elements in the class %, and the sum now ruds -

over classes.

Written in the form (3-15), our tesult shows that the characters of the *

various irreducible representations also form an orthogonal vector system

in the vector space where axes are labeled by classes % rather than group -
elements R. Since the number of mutnally orthogonal vectors in a space *
cannot exceed its dimensionality, it follows that the number of irreducible
representations cannot exceed the number of classes. In fact it can be:

shown that they are always equal. Thus,

Number of irreducible representations == number of classes § (3-16) .

This rule, together with (3-12), enables us to work out the number and
dimensionality of the irreducible representations from the numbers of
group elements and classes. Thus these numerological results are of great
importance in applications. Applying them to our example group of -

order 6, we recall that there are three classes: ¥, = E; ¥, =4, 8,

and % = D, F. By (3-16), this implies that there are just three irreducible
representations. Then, since 22 4 1% + 12 =6 is the only solution of
(3-12) for the case in which the sum of three squares must equal 6, We

conclude that there must be one two-dimensional and two one-dimensional
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srreducible representations. Of course we m:mm&.\ had noted these results
or this case, but the method is very effective in more difficult examples
_,o_mn:w the Ho?nmwnﬁmmoﬁ are by no means obvious.

v Character tables. Itis convenjent to &ﬂuﬁmw the characters of the various
representations in a character table for any given group. The columns are
tabeled by the various classes, preceded by the number N, of elements in the
class. The rows are labeled by the 52592@ representations, and the
entries in the table are the 1"%,). Thus in our example group we have

the table

%, 3%, 2%,
T 1 1 1
T i = | 1
s} 2 0 -1

as may be verified by using the explicit representations noted in Sec. 3-1.
Note that the rows of the table are orthogonal if we use the N, weighting
factors as prescribed by (3-15). We also note that the columns form
orthogonal vectors. This is not an accident, and we now proceed to prove
it to be true in geperal. :

Second orthogonality relation for characters. Since the number of classes
equals the number of irreducible representations, we may form a square
matrix Q which has the same form as the character table, namely,

yE) (&) -
Q=112F) ®F) -

Now consider the related matrix Q’ defined by
REQ%HV*.E.H FPEY*N,

h h

Q= yo@)*N, 12N,
h h

Then a typical element of the product is

) (F N\ N(F VEN, -

ﬁoo vm....ﬁ — MR A EVN} ﬁ unv k — nwn..‘_.
F

\ . gonality relation for characters, (3-15). Thus Q= QL

ut any matrix commutes with its inverse, Therefore, we also must have

by the first ortho
B
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(Q'Q); = ;. Carrying out the multiplication in the reverse order |,

) adg
directly to our result, .

h

1) (WF ) e —
3 A SN @) = 5 b 17
Since (3-17) is actually a direct consequence of (3-15), it contains no ?zam...
mentally new information. However, as we shall see directly, it is oftep ,
convenient aid in setting up character tables by inspection.

3-4 Construction of Character Tables -

Although the character table gives much less information about a group
than would a complete set of matrices for the irreducible representationg
it does give enough information for many purposes. Thus it is highly -
desirable to be able to obtain the character table of a group directly, withoy
first working out explicit representation matrices. In fact, in the simpl .
cases of most interest it is possible to work out the table by inspection wit -
the aid of a few simple rules based on the results of the previous sectiong
These rules are collected here for convenience.

1. The number of irreducible representations equals the number of =
classes of group elements. The latter is easily found by considering the
pature of the operations or, more mechanically, by computing corjugate
elements with the aid of the group-multiplication table. o

2. The dimensionalities I, of the irreducible representations are then -
determined by the fact that /> = 4. In most cases this has a unique :

i
solution. Since the identity element must be represented by a unit matri, '
the trace of a matrix of the identity class is simply /. This determines the -
first column of the table, y*)(E) =I. Also, since we always have the -
one-dimensional representation (referred to as rotally symmetric, identical, -
or invariant) in which each group elemént is represented by unity, we can
always fill in the first row by y™(%,) = 1.
3. The rows of the table must be orthogonal and normalized to &, with

weighting factor Ny, the number of elements in %,. That is,

W B A (EINy, = hdy (3-13)

4. The columns of the table must be orthogonal vectors normalized to
h/N,. Thatis, .
. . ) h
2 A(C* ' NE) = — b (3-17)
t Ny,
5. Elements within the ith row are related by

Nig U@ INey ™) = 1 3, eV iy (€ ) @-5. ;
1
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the € 26 the constants defined by the expression governing class
whet® - % . These constants may be determined gi
iplication €% = & " ¥ given
multiplication €% M e

_ultiplication table, as explained in Sec. 2-3, .
the group :_Wnnwmm that any class satisfies X—'€, X = ¥, or, equivalently,

vwooMW for all X. Now consider this equation in terms of a matrix
EX limﬁm.n. If we introduce the matrix %., which is the sum of the
represe the ¢lements in the class €}, then it follows that €. X = X€,,

ices of all L - L
mwc.“mwmamﬁm multiplication by X 18 linear and matrix addition is com-
A

tive. Butif this is so, Schur’s lemma states that €, must be a constant
a_._”mmx m.m y, e In this case, one readily sees that the matrix form of the
matrix, H "

equation defining the ¢, reduces 10 7,7, = M cpaty  We now evaluate 7,

king the trace of &, in two ways and comparing, namely,

by ta
Tr €, = Tr 7 = m3d;
Ny .
nd T, =T 3 A, = M)
o
_ Nex™(%)
Thus T = I,

and rule 5 follows directly.
The first three rules usually suffice to work out 2 character table, but

the last two often facilitate the process of inspection, For example, by use
of these rules the complete character table for the group of the equilateral
triangle, as given above, could be quickly found without any knowledge
of the explicit matrices at all. The first row and column are fixed by rule
2, and the four integers to complete the table so as to satisfy rules 3 and 4
are readily picked out. In case the characters should be nonintegral, as
may oceur in various instances, the procedure is less simple. However, if
a set of integers satisfying the rules can be found, one may normally take it
to be the proper character table.

35 Decomposition of Reducible Representations

Clearly the character of a reducible representation I' is the sum of the
characters of the component irreducible representations I'#.  This can be
scen by supposing that the representation has been brought into block
form by a suitable similarity transformation. In that case, the trace of the
large matrix is simply the sum of the traces of the submatrices in the blocks
along the diagonal. Thus we can write

HR) = % a3 (R (3-19)
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where yx is the character of I' and a; is the number of times I’ appearg
. Since the y'"{R) form an orthogonal vector system, the nxwmsmmhs,
coefficients a; can be determined as usual by taking the scalar prodyet s:w
¥'™R). Thus, using (3-14),
2 AR RY* =3 3 ay MRy I(R)* = ha,
) ]
and therefore

a; = k1 W 2Ry y(R) = b WU Ny & *x(ED P {3-20)

We conclude that the number of times the various irreducible Hawaommamzosw
appear in a given reducible representation is uniquely determined by the
character of the reducible representation, assuming that the character tapy,
of the group is known. We shall find this result central to the enumeratigy
of residual degeneracies when a representation is rendered reducible by
decreasing the size of the symmetry group. :
The regular representation. Given the multiplication table of a group
we can always form a reducible representation called the regular w%_‘.&mﬁ&_.e“
as follows: Write down the multiplication table, rearranging rows so that
they correspond to the inverses of the elements labeling the columns. [
this way one naturally obtains only the identity element E along the principal ©
diagonal. The matrix of the regular representation for the group element.: -
R is then obtained by replacing R by unity and all other elements by zerp .
in the resulting table. For our example group, the rearranged multiplication
table and a typical matrix of [ are shown below: T

E A B C D F f0F 0 00O
1 00 000
E E A B C D F o 0
AL A E D F B C Tree) () = 0001
B B F E D C A D0 0010
c C D F E A B
D! F B C A E D 000100
CF D C 4 B F E 0061000

Evidently, in general y™9(E) = k, and 4"*(R) = 0 for R+ E, since '

by construction only I'™#(E) has nonzero elements on the diagonal, and it =
has unity A times. o

Before proceeding, we should confirm that the matrices defined m&oﬁ....

do in fact form a representation. That is, we must show that

H.EB@.QV = Dl gy Tree)(C)

or in component form
Itree)( wn.v.&n:ﬁm = M Direg){ E&L&HAEEAOV A 14,

45 ¢
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Sec. 3-6]
subscripts label the rows and columns'in the rearranged multi-
able. By construction, we know that

1 if 4,74; =B

0 otherwise

where the
plication t

Hﬁa&ﬁ 5 4 td, =

clation holds for Ty, Thus the indicated sum over 4,
vl vanish unless for moan.mm both H.cwmmvﬁmv 4,14, a0d D), 1y, are
simultaneously nonzero. This will occur if, and only if,

BC = (4T ANA;TI ) = 47,

¢ sum equals unity. But this ceoincides with the definition
ber T@8(BC) -1, Hence the matrices defined above

and 2 gimilar T

in which case th
of the left mem

do form 2 representation. .
CELEBRATED THEOREM: This theorem states that the regular representa-

tion contains each irreducible representation a number of times equal to

the dimensionality of the irreducible representation.
We apply our formula (3-20) for the decomposition of repre-
Thus a;, the number of times T} appears in T¢*#, is given by

a; = b...u. M Nﬁ&ﬁ.ﬁ.v*u«mnmmvﬁmﬂv
R
= Iy Bk

PROOF:
sentations.

We now use this theorem to prove that the equality sign in (3-12) must
in fact hold. By construction, the dimensionality of ‘the regular representa-
tion is equal to A, the order of the group. But it also must equal the sum
of the dimensionalities of all the irreducible representations of which it is
composed. By the celebrated theorem, the latter is 3/, X [ =3 I3
Therefore, 4 i

M Nq..m =4h
7

This result removes the possible inequality sign left in our earlier argument
based simply on the number of possible orthogonal vectors in a space of
given dimension.

36 Application of Representation Theory
in Quantum Mechanics

Transformation operators. Let us now depart from our formal develop-
ment of the theory of group representations to examine the relation of this
theory to quanturm mechanics, which provides our reason for presenting
the theory in the first place. In the applications which we shall consider,
the group of interest is the group of symmetry operators which leave the
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Hamiltonian of the problem invariant. Each such operator can be SPecifi
by giving a real orthogonal transformation of coordinates R such thy; ﬁm
new coordinates x’ are related to the original ones x by
X' =Rx

or in terms of components

x; = 2 Ryx;

7

Depending on the particular form of R, it may represent a rotation g
coordinates, a reflection, an inversion, or any combination of these, |
all EamW cases, R iz a real orthogonal matrix, and hence R = pt __ _.w.
where R is the transpose of R.  Thus we can write the inverse transformag;

o
as :

Hu.HMhlwﬁ.kaMmm&
J 3

As discussed earlier, such a set of matrices R form a group under matrjy
nmultiplication. Although the present discussion will be given in the Hmumcmmn_..
of such orthogonal transformations, the results are readily carried over when '
the symmetry operations include, e.g., permutation of the coordinates of
identical particles and translation of coordinates. e

For our purposes, we now introduce a new group isomorphic to thiy |
group of coordinate transformations, in which the group elements ar
transformation operators which operate on functions rather than coordinates, .-
We denote the operator which corresponds to R by Py, and follow Wigner's: -
convention in defining Pp by requiring that the following be satisfied".:

identically in x:
Py fR) = f89) .
Prfx) = fR7x) @32

That is, P changes the functional form of f(x) in such a way as to compensate
for the change of variable R.

As an example, let R be the transformation to X, ¥”, Z’ axes rotated
by 90° about the X axis. Then x' = x, ' ==z, 2’ == -y, and the matrices
concerned are :

Equivalently,

1 0 0 1 0 0

R=|0 0 1 Ri=R={0 0 -1

0 —1 0 0t 0
1 0 0 /x x
Thus Rix=|0 0 —1||y]=q—z
0 I 0/ \z ¥

and from our definition above

Prf(x.y, 2) = Ppfx) = fR7%) = flx, —z,5)
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if we let this P operate on the three orthogonal p-like functions

 For example, +h nucleus at the origin, we obtain

for an atom Wi
_ Prixp(r)} = ()

Pulyp(r)} = —zo(r)
Prize(r)} = yor)

. e #3¥ is invariant under such a rotation. We note that
since '~ ¢ these functions are rotated clockwise with respect to the
the contor® ﬂrm axes are rotated counterclockwise. These two rotations
axcs, izo_.‘mmmmm required by the definition of Pg, and one can consider the
noavn.:mm“ﬂoa either point of view. However, we shall emphasize the
o._x“::_wzﬁ M_. which the transformation operator Py rotates the contours of
MM;%M%&: so that we minimize the chance of confusion with several sets

i axes. _
o nmm%“ ﬂﬁwoonn&um“ let us 5&@ that the group o.m operators Pp, is E fact
jsomorphic to the group of coordinate transformations R. To see this, we

nesd to show that
PgPp=Pgp

where § and R are two transformations. We consider the successive
operations in detail. First,

Prfix) = fR7x) = g(x)

where g(x) is the new function which incorporates the effect of R™ into the

functional form. [In our example above, if f(X) = yg(r), then g(x) = —z¢(r).]
Now we apply the second operator Py, obtaining

PolPpf(x)] = Pgg(x) = g(57x) = fR7H(S7'x)]
= fISRYx] = Pggf(x)

Thus the transformation Pgy, arising from the product SR is the product of
the transformation Pg and Py applied in the proper order. .

“The group of the Schridinger equation. Now let us consider that special
group of operators Pz which commute with the Hamiltonian operator B
for any given problem. These will be the operators arising from trans-
formations which leave the Hamiltonian invariant. 'For example, if the
potential energy in an atom depends only on the distance from the nucleus
und is independent of the angular coordinates, then any rotation or reflection
leaves the potential unchanged. To illustrate precisely what we mean by
this, consider a simple Coulomb potential ¥ = —e?/r = —e2/(x% 4 y2 + 22

. Now, under the example transformation treated above, this becomes’

V= lm.ﬁkm + (—2)* 4 y*]*, which is in fact the same as the expression
with which we began. A similar argument could be applied to the kinetic
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energy operator —(#{2m)(82/0x2 4 &%/8)2 -+ 8%/3z%. Clearly, ifan Opera
leaves H invariant, it is immaterial whether it appears to the left or right of
it, that is, PrHy = HPyy, and the two operators commute. The St of g
- such operators which commute with X are said to form the group of
" Schrédinger equation. They certainly do form. a group becanse Eégn
coordinate transformations exist and because the product of two OPerator
which leave H invariant will also leave it invariant since the product simp}
indicates that the two operate in succession. In the alternate Hmumsmmw
the product of two operators which commute with H will also ooEEEm
with H. :

If we apply one of these commuting transformation operators t4 the
Schrédinger equation, we have :

ﬁﬁm@q— = .muh.__.m.a (3
or HPpy, = E,Ppy,

since Pr commutes with A and of course with the eigenvalue E,, From"
this result we conclude that any function Pgy, obtained by operating gy
an eigenfunction ¢, by a symmetry operator fromthe group of the Schrédingey
equation will also be an eigenfunction having the same energy as the origingl
one. Thus, given any eigenfunction, we can generate other eigenfunctions’.
degenerate with it by application of all the symmetry operators which
commute with H. If this procedure yields all the degenerate functions, the
degeneracy is said to be normal. For example, given one atomic p function,
we can generate the other two degenerate with it by making rotations of -
coordinates, which commute with the atomic Hamiltonian because of jig
spherical symmetry. (Depending on the particular choice of p functions, -
it may be necessary to use linear combinations of rotated functions, but this .-
is a trivial extension.) Any degenerate functions which cannot be obtained -
in this way are said to comprise an accidental degeneracy, meaning one with
no obvious origin in symmetry. A classical example is the degeneracy in
the hydrogen atom of states of different angular momentum / but the same -
principal quantum number 7, for example, of 25 and 2p functions. Deeper :
‘study usually shows either that the degeneracy is not exact or else that a
hidden symmetry in the Hamiltonian can be found which “explains” the
degeneracy. In the example of hydrogen, Fock® has shown that the °
degeneracy can be considered to arise from a four-dimensional rotational
symmetry of the Hamiltonian in momentum space.

Representations. Let us assume that the cigenvalue E,, is /,-fold degen- &
erate (excluding any accidental degeneracies). Then we may choose a set
of I, orthonormal eigenfunctions belonging to E,. By our result above,
operation with any commuting P on any one of the /, functions produces

1V. Fock, Z. Physik, 98, 145 (1935).

_where the sum
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Seoc. 3-6)
» having the same energy, which accordingly must be ex-

: linear combination of this complete set .&. degenerate functions.
1@&? asé of algebra, the /, degenerate functions form basis vectors
In the Es.mcmmm. nal vector space. This space is a subspace of the entire
.a_aonmwo eigenfunctions of H, a subspace invariant under all the
Hilbert %mnm mﬁ roup of the Schrodinger equation. Thus, the effect of
operations © qmmmmmoaammo: operators on any function in this subspace
each of these nted by a matrix which can be worked cut by considering the
ow_.__ Woﬂﬂ%wﬂﬂmﬂoﬂ on each of the basis functions in turn. These matrices
eftec .

T arc defined formally by -
P, =3 M TO(R),, (3-23)
#=1

another functio

inan /e

~uns over the /, degenerate eigenfunctions %, having the
same energy E, as ™. These I,-dimensional Bmﬁ:n...wm.%g H.oﬂs. an
| -dimensional representation of the group of the mof.o&ﬂmﬂ B:m.ﬁom.
m._znm_ a representation can be wmmwm on each set ow. mammuﬂmﬁm Smmd?ﬁoﬁo.sm.
These representations are WR&.ﬁEEa since A@N&w&:m accidental ammmmﬂmommmv
there is always an operator in the group which ﬁmummoa.ﬂm each function
into any other degenerate with it. Thus no smaller Emﬁ_oﬂ could express
the most general transformation. To prove that the Hmﬁoow @mmm&.ﬁ
(3-23) actually form a representation of the group, we oouman.H two successive
operations. For simplicity we suppress the index n, which denotes the
particular representation.

.wumm&ﬁce = .m..m..mummﬁm\«. = .Nuh M ﬁhﬁm%vi
= M ﬁ.ﬁ.ﬁﬁ&bﬁﬁhﬂunq = M A\\_MH—.JA.WVL%H_A.NVH:

= wu wITSTR)L,
But by definition of T'(SR), ]
Pary, = W w'(SR),,

Thercfore T(SR) = T(S)T(R)

and the matrices do in fact form a representation of the group. Thus we
conclude that the ser of I, degenerate eigenfunctions. ,'™ of energy E,
form basis functions for an 1-dimensional irreducible representation 1'%
of the group of the Schriédinger equation. One can readily show that the
representation is unifary if one chooses an orthonormal set of basis functions.

PrOOF: 1f we denote the Hermitian scalar product of y and ¢ by
(¥, ¢} = {9*p dr, and if we assume the basis functions ¥, to be ortho-
normal, then

%z: = mﬁzu @cev - A‘mu.mw.wtku .W.W@ev
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since in the second form the integral may be considered simply to be carried
out in a rotated coordinate system. Using the definition of the representa-
tion matrices, we find

mi = AW” @»H.._Qﬂv»ﬁ M ﬁtﬁﬁﬁvﬁv
= m (p2, pIU(RET(R),,
= M PRFIR),, = M PRLT(R);,

= [DR)'T(R)),,

Thus T'(R)'T(R) = E, and the matrix representation is unitary.

Group theory and quantum numbers. Finally, Iet us consider the effect of
choosing a different set of linearly independent basis functions ¢, which
are linear combinations of the first set. That is,

i I
Ve = 2Py OT P D el
pe=] A==l

Then Py = P2 vy = 2 (R,

H»M ﬂmglwphﬂm.mvxeonen = M QM_HRIHH.:NVQ“_»_:

= 3 vl @),
where I" is the new Hnwan.mnﬁmmou matrix. Thus we see that

T'(R) = a'T(R)a (3249

and the different choice of basis functions merely produces a representation
equivalent to the old one. Thus, within a similarity transformation, there
is @ unique representation of the group of the Schrédinger equation corre-
sponding to each eigenvalue of the Hamiltonian. A set of eigenfunctions
can always be classified uniquely according to the irreducible representation
to which it belongs, i.e., the one for which the eigenfunctions form a set of
basis vectors.

If a ‘particular choice of matrices (within the range allowed by the
similarity transformation) is made, then a function may be characterized
even more precisely by giving its row index within the representation. In
this way group theory provides “good quantum numbers™ for any problem
in the form of the labels of the representations and the rows within each
one. The associated degeneracy is simply the dimensionality of the repre-
sentation. Thus, by finding the dimensionalities of all the jrreducible
representations of the group of the Schridinger equation (as described in
Sec. 3-4), we are able to determine unequivocally the degrees of (nonaccidental)
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degeneracy possible in any problem. From this orm.n?”&mo.u it mn.uzos.a that
a perturbation can lift degeneracies if, and only if, its inclusion in .Ea
Hamiftonian reduces the symmetry group and hence changes the possible
srreducible  Tepresentations. Moreover, if representation matrices are
worked out, they contain the transformation properties of all eigenfunctions
under all the symmetry operators of the group.

An example. As an example using our standard group of order 6,
imagine that we are interested in finding the eigenstates of an electron
moving in the potential field of three protons located at ﬁﬁ. corners of .mu
equilateral triangle. In this case the group of the Schrddinger equation
contains all six rotational operations considered in this example group.
(it also contains six more operations involving a reflection in the plane,
but as we shall see later these extra operations do not affect the degeneracies.)
This group has three irreducible representations of dimensionality 1, 1,
and 2. Thus only nondegenerate and doubly degenerate states are possible.
All higher degeneracy is excluded by group theory alone. Those eigen-
functions belonging to the identical representation M2 are invariant under
all the group operations. Similarly, basis functions of I'® are invariant
under E, D, and F, but they change sign under the 180° rotations 4, B, and
¢. This can be seen from the character table, since for a one-dimensional
Bmanmoimmg X(R) = T(R). The doubly degenerate eigenfunctions of I'®
symmetry can be chosen so as to transform between themselves in accordance
with the 2 X 2 matrix representation. For example, an eigenfunction
belonging to the first row of I'® will transform into —4y; + (V'3[
under Pg. Of course, a different choice of the degenerate eigenfunctions
would transform according to a set of matrices related to those given above
by a similarity transformation, which will also be unitary if the new linear
combinations are chosen to preserve orthonormality.

3-7 lllustrative Representations of Abelian Groups

In an Abelian group, each element forms a class by itself. Therefore the
number of classes, and hence the number of irreducible representations,
equals the number of group elements s But in this case, (3-12) requires
that

This is possible only by choosing [}, =L, = - -- = [, = 1. Thus an Abelian
group of order h has h ome-dimensional representations and no others.
Each of these representations is simply a set of complex numbers, one
number being associated with each group element. Note that the absence
of any larger irreducible representations implies that there are no degeneracies
if the symmetry group of the Hamiltonian is Abelian.
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Cyclic groups. Cyclic groups are Abelian groups with elements 4; = 4,
Ay =A%, ..., A" =FE. Let the number representing A4 itself in some
representation of this group be denoted I'{4) = r. Then I'(4,) = I'(4)"* =
r®, and in particular I'(E) = 1 requires that

Ay =rt=1
or pe=gik 5 =1,23,...,h

since these & values of r form the /th roots of unity. In this way we have
found all / of the irreducible representations. They can be written in the
form

TUO(4) = e*olh 5 1,2,3,... P (G-25)

Bloch’s theorem. The cyclic group of order A is the symmetry group of
the Hamiltonian for a periodic potential with A periods in a ring or in a
linear arrangement with periodic boundary conditions applied at walls &
periods apart. In this application the group element A represents a displace-
ment through one period. For definiteness, let 4 represent a displacement
by @ in coordinates (or by —a in the contours of the function) so that
Py(x) = w(x + a). By our general theorem, all eigenfunctions of a
Hamiltonian having this symmetry must transform according to some
representation of the group. For example, all solutions from the pth
representation must have the property

pu{x -+ @) = Py (x) = DO Ay (x) = 2Py (x)
Upon introducing the total length L = ah, this can be written as

c_emk + av = p2winalL e@& —_ mmwaﬁunﬁv

where k is related to p by k= 2mp/L. Relabeling the function with the
equivalent index k, we have

wilx + @) = e (x) (3-26)

This equation gives the transformation property imposed by the translational-
symmetry group. As is easily seen, any function y,(x) satisfying (3-26) can
be written in the form

i) = w(x)e™* (3-27)

where 4,(x) is periodic with the period a. This result is the celebrated
Bloch theorem of solid-state physics.  Clearly it is based purely on symmetry
through the machinery of group theory. Therefore it is & rigorous result,
free of special approximations, and & defined in this way is a “goed quantum
number™ for characterizing eigenfunctions for a periodic potential.
Two-dimensional rotation group. Any group composed of rotations about
a fixed axis is clearly an Abelian group. If all angles of rotation ¢ are
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allowed, the group is of infinite order. However, it is so simple that we can
handle it anyway. Being Abelian, its representations are just numbers.
The group-multiplication property for successive rotations implies that the
representations satisfy

Dip) g = Dign + ¢2)

This can be satisfied only by an exponential relation of the sort
I™(tq) = & (-29)

the plus sign referring to a rotation of axes and the negative sign to a rotation
of the contours of the function. We choose the latter convention in dis-
cussing rotations. The representation index m is restricted to the values
m=0, 41, 42, ... by the requirement that I'™2») = T"E)= 1, It
is readily verified that any function satisfying

.ﬁq:@.u mv ¥ — ch = T@:.Eﬁ@.u mu Qv
= D™ gohwn(r, 8, @) = e~y _(r, 6, g)

depends on @ only through a factor ¢™%. Hence any eigenfunction for a
Hamiltonjan whose symmetry group is the group of all rotations about an
axis must have the form

.ﬂq:mﬂu mu ﬂv ".\.Q.u mvm&:ﬁ = Ow H_uHu H_HN“ e

This resuit is a familiar consequence of the fact that angular momentum
along an axis of symmetry is conserved and hence has a good quantum
number m associated with it.

3-8 Basis Functions for Irreducible Representations

The foregoing simple examples have piven a small indication of the way in
which irreducible-representation labels serve as good guantum numbers in
physical applications. We now wish to develop methods for dealing with
the representations of dimensionality greater than 1, which arise when the
symmetry group contains noncommuting elements leading to the possibility
of degeneracy. In this case we need 7wo labels for a basis function, one for
the irreducible representation and one for the row (or column) within the
Tepresentation. Naturally the second label retains a.definite significance
only as long as we confine ourselves to a particular choice of representation
matrices from among all the equivalent sets related by a similarity trans-
formation.

Let a basis function belonging to the xth row of the jth irreducible
representation be denoted @ ‘%, The other functions ;P required to
complete the basis for the representation are called the partners of the given
function. Then by definition the result of operating with any element of
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the group on ¢, can be expressed as a linear combination of P angs
_partoers as follows, !

1
Peg =3 g ITO(R),,

where / is the dimensionality of the representation. Now, if we Iy
through by I'?(R)f, ., sum over R, and use the great orthogonality the,
(3-8), we obtain

ltiph
0re

. ok
W ﬁﬁuvﬁ‘ﬁvﬂkrvwﬂh:u = H %&.mhh.@uﬁ&_ mu-uo

From this equation we conclude that application of the operator

N A
P20 = | S TR, Py (33

to a basis function has the property of yielding zero unless the function’
being operated on belongs to the «th row of I'"?.  Moreover, we see that,
if this condition is satisfied, then the result of the operation is % Thig
gives us a prescription for generating all the partners of any given bagis
function. Also, if we set 2 = «, we obtain :

P g D = g () (333
In other words, ¢, is an eigenfunction of 2 _ 1 with eigenvalye uaity,-
This property serves to identify uniquely the labels of any basis functipg,-
Note that, since &, is a linear operator, any linear combination of.
functions belonging to the «th row of I'? (but coming from different choicss -
of basis functions) such as ap,? -+ by, ¥ will also belong to that row and -
representation. .

THEOREM: If I’ 1@ 1@ ars ail of the distinct irreducible repres:
sentations of a group of operators Py, then any function F in the space
operated on by Py, can be decomposed into a sum of the form

F = W W., @ (3-3) ”_

d=1a=]

where f,? belongs to the «th row of the jth irreducible representation. -
. ProoF: Consider the set of all functions F, Fs,...,F, formed by -
operation with the operators Pg, P, ..., P 4, on F. Discard all functions.
which are not linearly independent of the others, and orthogonalize the -
remainder (e.g., by the Schmidt procedure). Denote the resulting set of n.
functions by F, F,, ..., F, These functions form the basis for a unitary
representation of the group, since the result of successive operations must.
always be expressible as a linear combination of the set. This follows:
since the equation PgPpF = PgpF is in the space spanned by the set, by
construction.

._:n 3-8]
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jonal representation T, so that

Ppby = M FI(R)y

1=l

Call this n-dimens

‘ two possibilities: either I' is one of the irreducible repre-
There are now U wﬁ If it is, then F has been shown to belong to-a
sentations, O 1 mmﬂwﬁ.ﬁ .R resentation and the theorem is proved. If it is
?&2_2.32 M Unocmrm to block form in terms of the chosen irreducible
not, then _”. owmam,”:.nnm by a similarity transformation, so that
ﬂnv_..amn:ﬁm 10 H:_&va 0 0

o T(R)o = 0 TRy 0 (3-34)
0 ) .

ne matrix & now defines a set of functions Fy which transform according
. Mw.ut and hence are functions of the type £\ for various values of j and
to Using the inverse oL, we may express the Fy, and in particular F, as
K.

inear combinations of the Fg or f.\. This completes the proof.

Having established the validity of (3-33), we may now use the operators

# O defined in (3-31) to determine the individual terms in the sum in
a.ws. We have noted that .

%ﬁ:uﬂé = u;ﬁm&%ﬂ@ qu&

Therefore PF =f0 (3-36)

and 2" is a projection operator which projects out the part of any function
which belongs to the xth row of the jth representation. Such a projection
operator is called idempotent because of the property that

%&an& n%aatu — a%kxau_

i.t., all powers of the operator are equal.

We now are able to form a set of basis functions for any representation
at will. Starting with an arbitrary function F, we can project out one /9,
which after normalization is a suitable basis function ¢,?. Then use of the
transfer operators &, 9 vields all its partners, since &, YW W = @9,
Van Vieck has aporopriately styled this procedure as the basis-function
generating machine. ; .

THEOREM: Two functions which belong to different irreducible repre-
sentations or to different rows of the same unitary representation are
orthogonal,

PROOF:  Consider the scalar product

(@, 9 = (Pro, D, Pryp Y™

— M .._uG.vA‘NNVWRH.G;ANVN.KAG»G_u d.e.u..c;uv

i
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We may sum the right member over all R and divide by &, since it must be
independent of R. Applying the great orthogonality theorem, we obtain

N.._ B - _
(@, P = m&.maﬁ»MH@»Eu PRLIA 1

Thus, not only have we proved the theorem, but we have also shown that
the scalar product (@, ¥,) is independent of x. ,

The results derived above have required knowledge of the complete
representation matrices TY(R) or at least all the diagonal values TR, p-
We can get similar but less detailed results- with knowledge of only the
characters of the representations. To do this, we set A = « in (3-31) and
sum over x. This defines a new projection operator

P =F F_h ﬂm G(R)*Pg (3-37)
M KK \n £ R

Following arguments similar to those above, We sec that any .msﬁomob & G
expressible as a sum of functions belonging only to rows within the jth
representation will satisfy Pt = f19 and that

PIF = 15 : (3-38)

That is, from an arbitrary function £ projects out the part belonging to ﬁ.rm
jth representation. These results are of course unaffected by similarity

transformations which scramble the basis functions, and hence the rows, 1

any given representation. o

As a rather trivial example of these results, consider the group consisting
of the identity and the reflection operator & which takes x into —x. .,E:m
group has two classes, hence two one-dimensional irreducible representations.
The character table is

E o

e 1 1
r 1 ~1

Hence, the projection operator for I'® is % = (#)(Pgz + P,), and that
for T'® is P® = (3)(Pg — P,). Operating on an arbitrary function F(x),
these yield POF() = (DIF() + F(—x)] and POFE) = GUF) —F—»)-
Clearly these projected functions are, respectively, even and odd ‘mzaﬂ.
reflection, as required for them to belong to I'V and I'®, respectively.
Our other theorems are iflustrated by the facts that any function can be
expressed as the sum of odd and even parts constructed as above and that
any odd function is orthogenal to any even one.
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The techniques developed in this section are useful in setting up proper
zero-order symmetry orbitals which belong to a given row of a given
H%Rmmﬁmmou. We shall later prove that, since the Hamiltonian commutes
with the entire group of symmetry operators, then it can have matrix elements
only between functions of the same representational classification. This
leads to a maximum reduction in the size of the secular equations that must
be solved.

3-9 _.umxmnn-_u_.om:nn Groups

Tt often occurs that the complete symmetry of the system under consideration
can be broken up into two or more types such that the operators of one type
commute with those of any other. An important example is that in which
the two types of operators operate on entirely different coordinates. For
example, in H;O we can permute the two protons, permute the 10 electrons,
and rotate the molecule as a whole. One of each of these three types of
operations could be carried out in any order with the same final result. A
second example is the separation of orbital and spin operators. A third
example is the inversion operator and the group of proper rotations.

Although such cases could be treated with no special attention, we can
simplify our work considerably by taking advantage of these properties by
introducing the concept of direct-product groups. If we have two groups of
operators, ¥, = E, A,, ..., 4, and %, = E, By, ..., B, such that all of
%, commute with all of #,, then

G X Gy== E, Ay, .oy An, By AsBo, o Ay Bo L, Ay By

forms a group of Ak, elements, assuming that the only common element in
the groups is the identity. To check that this is so, we consider the muiti-
plication of two elements

A B AGB, = (A A4,)(B,By)

since B, and 4, commute. But the right member is found in the direct-
product group defined above since ¥, and ¥, are separately groups closed
under multiplication. Therefore &, X %, is also closed, as required.
Representations. It is natural to suppose that the direct-product matrices
of the irreducible representations of the component groups might form
irreducible representations of the direct-product group. = This in fact is the
case. As described in Appendix A, the direct product of two matrices A
and B is a matrix A x B whose elements are all the products of an element
of A and one of B. Each element bears a double set of subscripts. For
example, the element obtained from A, B, is labeled (4 X By ;. the two
initial indices being given before the comma. The fact that these direct-
product matrjces in fact have the requisite group-multiplication property
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follows from the commutivity of ordinary matrix multiplication and the
direct-product operation. Thus
T@D(4 BT 4 By) = [TO(4) x TOBITO(4y) x TOB,)]
= [TOAY T (4,)] x [TOBYTO(B,)]
= T4, d,) x TO(BBy)
= H.stﬁkamw:wwwﬁv

By an application of Schur’s lemma it can be shown? that the direct
product of two frreducible representations forms an irreducible representation
of the direct product group. We now show that we get all the irreducible
representations of the direct-product group in this way. Let 1% 4% ...
and 1%, 1%, ... be the dimensionalities of the irreducible representations of
¥, and &,. By our dimensionality theorem (3-12),

.M Q.ms 2= &n“ and M Q.‘_.vvu = .m:_.
3 J

By the definition of the direct-product matrices, their dimensionalities will
be I; = **. Then applying (3-12} to the product group

2t =2 A =3 U T ()
] i B i
= Bl =k
where / is the order of the direct-product group. Since 3 [, =/, there

L
can be no other irreducible representations than those nanwmm:u_m as direct
products. Note that these direct-product representations carry a double
set of representation and row labels. This illustrates how extra quantum
numbers arise when there are extra independent degrees of freedom charac-
terized by extra commuting symmetry operators.

Class structure and characters. The class structure of the product group
is easily obtained from knowledge of the class structure of the component
groups since elements from ¥, commute with those of &,. Therefore, the
number of classes is simply the product of the numbers of classes in %, and
in #,, in agreement with the number of irreducible representations in the
product group. _

An important observation is that the character of any direct-product
representation is the product of the characters of the component representa-
tions. This is proved by simple inspection of the character,

$ (A B = 2 DexOABY,
_ M H:Sﬁkmv:ﬁﬁsﬁwwv& — _”M., H;E?Fvnm_”..M H:Eﬁ.wﬂvﬁu_

= x4y ™(B)
* Wigner, op. cit., chap. 16.
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This allows us to write out-the character table of any group which can be
expressed as a direct product with knowledge of only the character tables
of the smaller groups from which it is composed. Naturally this provides a
great practical simplification.

Example. Let us consider the direct-product group composed of the
rotation group of the equilateral triangle (called Dy in standard notation}
and the group & = (E, ¢,). In the latter group, o, is the operation of
reflection in the plane of the triangle. In standard notation, the direct-
product group is called Dy, It is the symmetry group for an equilateral
triangle of finite thickness, so that we have-an additional six inequivalent
positions in which the “numbers on the triangle” have been reflected through
onto the other surface. There are now 12 group elements, the original 6
from D,, each multiplied both by the identity and by o,. This is what we
mean by the notation Dy, = Dy x . The elements of Dy and & commute
because it makes no difference whether the triangle is first rotated and then
subjected to reflection in the plane, or vice versa.

The multiplication table of & is

E Ty,

E E O,
&, oy E

The group is Abelian; so there are two classes and two one-dimensional
irreducible representations. Upon denoting the two representations I'* and
I~ for even and odd, the character table is simply .

7 E Ty,
I+ 1 1
- 1 -1

Multiplying this table by that for D, given in Sec. 3-3, we obtain the character
table for the product group Dy,

.Unw E m..&» .mu Qv Abu Nﬂu Oy, Q.J?Au mu 9 Q&Abu .mu.v
i 1 1 1 1 1 1
Tzt 1 -1 1 1 -1 1
rEh 2 0 -1 2 0 —1
i) 1 1 I —1 -1 -1
re-) 1 -1 1 —1 i -1
8- 2 0 1 -2 0 1
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For clarity, we have labeled the columns by giving the actual group elements
in the class rather than using arbitrary class labels €3, ..., %;. Now that
the table is worked out, we could dispense completely with the observation
that the group Dy, may be viewed as a direct product and simply treat it as
an ordinary group of order 12. However, the distinction is very worth-
while in reducing the effort required to work out the table. We note in
passing that going from Dj to Dy, has not changed the degeneracies (one or
two) which are possible in view of the dimensionalities of the irreducibie
representations. This verifies the assertion made in the example treated
mﬁroosa%mmn.w,m. :

310 Direct-product Representations within a Group

A distinct, although related, example of the use of the direct product is in
the formation of a new representation I of a given group from two repre-
sentations '™ and I'® of the same group. This is done by using as basis
functions all possible products of the basis functions from the two initial
representations. Let the two bases be

Prree e Po and Y vnes Um

where n and m are the dimensionalities of I'™ and I'®, respectively. Then
the functions ¢, form a basis for an nm-dimensional representation I'.
This may be verified by considering the effect of a transformation operator,

Palperd = 3 2T OB, T 11 TR

- M PV _”HJHHVA‘NNVR\KHJAMuﬁ\Wu»\»u

Py

= M%ua.ﬁ».ﬂA&sz,H.xp
where T(R) = T®(R) x T'®(R). Thus the direct-product matrices T'(R)
form a representation of the group based on the functions ¢,
As in the previous section, the character is obtained by taking the product
of the characters of the component representations. That is,

1R = xM(R)xP(R)

where y is the character for the representation I'.

An important difference between these direct-product representations
and those treated in the previous section is that in the present case the
representations are in general reducible. This is obviously true, in view of
the limited total number of distinet irreducible representations for any given
group. If one then forms a new mm-dimensional representation, it must

i
i
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in general be reducible to a sum of irreducible representations. 'We express
this schematically by writing

[ % TD =73 q,,'® (3-39)
%

As before, this notation means that, if T¥}(R) x T")R) is brought to block
form, I'™(R) appears a,, times along the diagonal. We may find the
coefficients a,5, by using our standard formula (3-20) for the decomposition
of a reducible representation. Since

1(R) = Ry (R) = W @y (R)
Qe = B W AR PRy P (RY*
=k MN Ny E (& )€ D* B (3-40)

Note that if, as is usual, the ¥ (%) are real, then a,;, is independent of the
order of the indices.

This technique of decomposing a direct-product representation wilf prove
of great usefulness in determining selection rules and in other applications.

EXERCISES

31 (a) How many inequivalent irreducible representations of D,, the symmetry
proup of the square considered in Exercise 2-1, exist? What are their dimension-
alities 7

(&) Work out the character table of this group by inspection, using the rules
given in Sec. 3-4. Verify the formula based on the ¢,y in several instances.

32 Show in general that M ¥R =0 for all Hduaamasﬁmaonm except the
B

identical representation TW_in which all elements are represented by 1. 'What is
the value of the sum for T}

3-3 Write out the matrices of the regular representation of the group 1, for
the elements E, F, G, H. Using these matrices, verify by direct matrix multi-

» plication that FG = H.

3-4 Using the regular representation, prove that
3 L (R) = b
H

if R = E and is zero otherwise. In this /; is the dimensionality of the jth repre-
sentation. This result is an additional aid in working ount the character tables,

3-5 Work out the orthogonal transformation matrices R,(6,), R,(6,), and
R,(8,) for rotations of axes by angles 0,, §,, 6, about the x, y, z axes, Hmmwmn:ﬁq
Take the sense of rotation so that the y axis is rotated toward x in R,, etc. Using
them, compute the matrices R (0, }R(0,) and R, (0,)R{8,). Note that these
rotations do not commute. What is the mairix for R,R, — R,R,? Show that
this matrix vanishes as 92 if 6, = 8, = ¢ is much less than 1 and corresponds to
the change (R, — E) produced by a rotation throngh 62 ahout the z axis.
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3.6 (a) Find the transformed functions Pgf, Psf, Po(Prf). Psr f, and Prgf,
where f = x, R = Ry(8,), and § = R,(6,). Note that R =Rt =R. Genertal-
izing from your results, you may observe that the three p-like functions x, y, z form
a basis for a three-dimensional representation of the complete rotation group since

Prps = 2 piT R
7

where 1, J = x, y, z and Rrepresents any arbitrary rotation. This property is true
of the (2 -- 1) polynomials equivalent to the spherical harmanics corresponding
to any / and of the spherical harmonics themselves. .

(b) Repeat (a) for £ = xy. Find a convenient set of partners to xy in a basis
for representing an arbitrary rotation. ‘

3-7 (a) Form a representation of D, the rotational symmetry group of the
equilateral triangle, which has F = x%z¢(r) as part of its basis. The z axis is the
three-fold axis, and g(r) is such as to assure radial convergence in the normalization
integral. 'What are the other basis functions?

(b) ¥f this representation is reducible, into what irreducible representations does
it reduce?

{c) If your basis functions are not orthonormal, choose a new set of linear
combinations of them that are. (You need orthonormalize only the angular part.)
By applying the corresponding similarity transformation to the matrices of your
representation, transform it into a unitary representation. If you have chosen
your orthonormal functions wisely, the matrices will now be in block form. If not,
reduce them to block form by a suitable unitary transformation to a new ortho-
normal basis. ,

(d) Express F = x2zg(r) explicitly as a sum of parts 3 f &, each of which

transforms according to a particular row of one of the _.Qo%._&Ea representations,
3-8 Write out the character table of Dy, taking advantage of the fact that
Dy, = D, » i, where i is the group containing only the inversion and the identity.
39 () Find unitary matrices for all the irreducible representations of D,
(Hint: Consider the transformation properties of the coordinates x and y in the
plane of the square.)
(%) How could yon now obtain matrices for all the irreducible representations
of D,,?
3-10 Work out all direct products 49 x I'? = ¥ a4 T® of the irreducible
&

representations of the group D, Note that a4y, is independent of the subscript
order since all the characters involved are real.

3-11 Repeat Exercise 3-10 for the groups D, and O, O being the octahedral
group discussed in Sec. 4-6, where a character table is given.
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