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FIG. 7.16
Show that
| 7ifn
dx = —_—
o L+x sin(r/n)
Hint. Try the contour shown in Fig. 7.17.
yh
X
- FIG. 7.17

{a} Show that

flz)=z% - 2cos282" + 1

T " o
and has zeros at %, 279, —¢' and —e™*.

{b) Show that

a mH la
|_.|Bxp —2cos20x*+1  2sind

n
T2 — cos 260

Exercise 7.2.24 (n = 4) is a special case of this result.
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7226  Show that -

” x2dx =
WXt —2c0s20x*+1 2sind

T
221w~ cos 20342

Exercise 7.2.21 is a special case of this result.

71.2.27  Apply the ﬁnnr.:mn:mm of Example 7.24 to the evaluation of the improper

- integral
00
I= .— S
Xt —o
@ Lete—o+iy
(b) Lete—o—1iy
{(c) Take the Cauchy principal value.

7.228  The integral in Exercise 7.2.17 may be transformed into
@ 2 3

£ Iw'.w\llu h..uw = ﬂnl

o I+e* 16
- Evaluate this integral by the Gauss—Laguerre quadrature, Appendix A2, and

compare your result with =3/16.
ANS. TIntegral = 1.93775 (10 points).

7.3 DISPERSION RELATIONS

The concept of dispersion relations entered physics with the work of Kronig
and Kramers in optics. The name dispersion comes from optical dispersion,
aresult of the dependence of the index of refraction on wavelength or angular
frequency. The index of refraction » may have a real part determined by the
phase velocity and a {negative) imaginary part determined by the absorption—
see Eq. 7.79. Kronig and Kramers showed that the real part of (n* — 1) could
be expressed as an integral of the imaginary part. Generalizing this, we shall
apply the label dispersion relations to any pair of equations giving the real
part of a function as an integral of its imaginary part and the imaginary part
as an mtegral of its real part—Eqs. 7.71a and 7.71b that follow. The existence
of such integral relations might be suspected-as an integral analog of the
Cauchy—Riemann differential relations, Section 6.2,

The applications in modern physics are widespread. For instance, the real
part of the function might describe the forward scattering of 2 gamma ray in
anuclear Coulomb field (a dispersive process). Then the imaginary part would
describe the electron—positron pair production in that same Coulomb field
{the absorptive process). As will be seen later, the dispersion relations may be
taken as a consequence of causality and therefore are independent of the details
of the particular interaction.

We consider a complex function f{(z) that is analytic in the upper half-plane
and on the real axis. We also reauire that
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lim |£(z)] = O,

|zl—w

O<argz<m, (7.66)

in order that the integral over an infinite semicircle will vanish. The point of
these conditions is that we may express f(z) by the Cauchy integral formula,
Eg. 6.43,

(7.67)

__1 } fe.
flze) = el g INomN.
The integral over the upper semicircle’ vanishes and we have
_ 17w
flzg) = o Py, dx. (7.68)

—0o0
The integral over the contour shown in Fig. 7.18 has become an integral along
-the x-axis.

Equation 7.68 assumes that zo is in the upper half-plane—interior to the
closed contour. If z, were in the lower half-plane, the integral would yield zero
by the Cauchy integral theorem, Section 6.3. Now, either letting z, approach
the real axis from above (z, — Xg), or placing it on the real axis and taking an
average of Eq. 7.68 and zero, we find that Eq. 7.68 becomes

_ 157 _f&)
flxo) = Mw %a e dx, (7.69)
where P indicates the Cauchy principal value.
Splitting Eq. 7.69 into real and imaginary parts? yields
flxo) = ulxo) + fv(x)
® . o (7.70)
me% o) g _ip| M) gy
T —w X HQ i —w X — Hc

Finally, equating real part to real part and imaginary part tQ imaginary part,
we obtain

1The use of a semicircle to close the path of maomnmao.ﬂ is convenient, not
mandatory. Other paths are possible.
2The second argument, y = 0, is dropped. u(xq, 0) = ulxp).
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%éuw&% e dx (7.71a)
oixo) = ~ 1P xw@s? | (7.71)

These are the dispersion relations. The real part of our complex function is
expressed as an integral over the imaginary part. The imaginary part is expressed
as an integral over the real part. The real and imaginary parts are Hilbert
transforms of each other. Note that these relations are meaningful only when

. flx)is a complex function of the real variable x. Compare Exercise 7.3.1.

From a physical point of view u(x) and/or v(x) represent some physical
measurements. Then f(z) = u(z) + iv(z) is an analytic continuation cver the
upper half-plane, with the value on the real axis serving as a boundary condition.

Symmetry Relations
On occasion f(x) will satisfy a symmetry relation and the integral from — o0
to +oo may be replaced by an integral over positive values only. This is of
considerable physical importance because the variable x might represent a
frequency and only zero and positive frequencies are available for physical
measurements. Suppose’
f=x) = fHx). (7.72)
Then
(7.73)

The real part of f(x) is even and the imaginary part is odd.* In quantum me-
chanical scattering problems these relations (Eg. 7.73) are called crossing
conditions. To exploit these crossing conditions, we rewrite Eq, 7.71a as

ufxo) = Lp .—.o X gy 1p h.s —

n
Letting x — —x in the first integral on the right-hand side of Eq. 7.74 and
substituting v(—x) = —uv(x) from Eq. 7.73, we obtain

1

X - Xg

u(—x) + iv( —x) = u(x) — (x).

(7.74)

1 « 1
u{xg) = m‘~u v{x) Wkl..ﬂlko + dx

a
o
~2p
Fin

(7.75)
Iwmcﬂlvm dx.
o X — Xg

Similarly,

*This is not just a happy coincidence. It ensures that the Fourier transform
of f(x} will be real. In turn, Eq. 7.72 is a consequence of obtaining J(x)asthe
Fourier transform of a reaf function.

“u(x, 0} = u(—x,0), v{x,0) = —v(—x,0). Compare these symmetry condi-
tions with those that follow from the Schwarz reflection principle, Section
6.5.
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MBX:O&
Gohov =|.... |m~u ,—.o ﬁ&% Aqg_@
The original Naoamlﬂmmao_..,m optical dispersion relations were in this form.
The asymptotic behavior (xg — o¢) of Egs. 7.75 and 7.76 lead to quantum
mechanical sum rules, Exercise 7.3.4.

Optical Dispersion
The function exp[i(kx — wt)] describes a2 wave moving along the x-axis in
the positive direction with velocity v = w/k.  is the angular frequency, k the
wave number or propagation vector, and n = ck/w the index of refraction
From Maxwell’s equations, electric permittivity & and Ohm’s law with con-
ductivity ¢ the propagation vector k for a dielectric becomes®

»n m|AH + H§|qv aé
C we

{with g, the magnetic permeability taken to be unity). The presence of the
conductivity (which means absorption) gives rise to an imaginary part. The
propagation vector k (and SQ&OHm the index of refraction n) have become
complex.

Conversely, the (positive) imaginary part implies absorption. For poor
conductivity (4ro/we << 1) a binomial expansion yields

k= z\||+umﬁ

/e

and
N-..,.FHIB& — plol/ et} mINAQH._.P\M
»

an attenuated wave. .
Returning to the general expression for k*, we find that Eq. 7.77 the index of
refraction becomes
c2k?
=Sk _ oy 4 (.7%)
w? w
We take n? to be a function of the complex variable w (with ¢ and ¢ depending
on ). However, n* does not vanish as @ — oo but instead approaches unity.
So to satisfy the condition, Eq. 7.66, one works with f(w) = #n%(w) — 1. The
original Kronig—Kramers optical dispersion relations were in the form of
2 —
R[r*we) — 1] = mw.ﬁ l&%mx () — 1] de,
7T 0 - 80
N —
|m& eo&? @-1,
T Q

|eo

(779

Sn(wo) — 1] =

38ee J.D. Jackson, Classical Electrodynamics, 2nd ed., Section 7.7, New York:
Wiley (1975). Equation 7,77 follows Jackson in the use of Gaussian units.
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Knowledge of the absorption coefficient at all frequencies specifies the real
part of the index of refraction and vice versa.

The Parseval Relation
When the functions ixv and v(x) are Hilbert Emnmmo_.Bm of each other and
each is square integrable,® the two functions are related by

%8 _:?u_uaxﬂ ._.8 _co&_n&p Q.wov

This is the Parseval relation.
To derive Eq. 7.80, we start with

.ﬁs ?E_Naxﬂ,ﬂ w%,a c@%m.ﬂ gS&&p
T IS@IHS” Inon.l.H

—.| -

using Eq. 7.71a twice.
Integrating first with respect to x, we have . -

0 © (= 4 (@ d o
h,ua _:Gs_p dx = h.la \qnam‘—,rs%c@% v(p)dt.  {7.81)

From Exercise 7.3.8 the x integration yields a delta function:

1 (™ dx
l% =0k 1)
We have

B 8 B
._. _:Oa_umxﬂ .—, .— c@&ml&%g@&. Q.mmv
Then the s integration is carried out by inspection, using the defining property
of the delta function.

8
u_. c@m@l&%ﬁe@. Q.muu
Substituting Eq. 7.83 into Eq. 7.82, we have Eq. 7.80, the Parseval relation.
Again, in terms of optics, the presence of refraction over some frequency range
{n # 1) implies the existence of absorption and vice versa.

Causality

The real significance of the dispersion relations in physics is that they arc a
direct consequence of assuming that the particular physical system obeys
causality. Causality is awkward to define precisely but the general meaning is
that the effect cannot precede the cause. A scattered wave cannot be emitted
by the scattering center before the incident wave has arrived. For linear systems
the most general relation between an input function G (the cause) and an output
function H (the effect) may be written as

®This means that [, [w(x)]* dx and [*,_, |o(x)|? dx are finite.
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F(r — 1YG(t)dr. (7.84)
Causality is imposed by requiring that
Fz-~th=0
Equation 7.84 gives the time dependence. The frequency dependence is obtained
by taking Fourier transforms, By the Fourier convolution theorem, Section

155,

H{t)=

fort—t <O

h{w) = flw)glw),

where f{(w}) is the Fourier transform of F(z), and so on. Conversely, F(z) is the

Fourier transform of f{ew).
The connection with the dispersion relations is provided by the Titchmarsh

theorem.” This states that if f{c) is square integrable over the real w-axis, then

any one of the following three statements implies the other two.

1. The Fourier transform of f(w) is zero for t < 0: Eq.
7.81.

2. Replacing w by z, the function f{z) is analytic in the
complex z plane for y > Oand approaches f(x) almost
everywhere as y — 0. Further,

|fx +in|?dx <K fory>0,
—od
that is, the integral is bounded.
3. The real and imaginary parts of f(z) are Hilbert
transforms of each other: Eqgs. 7.71a and 7.71b.

The assumption that the relationship between the input and the output of
our linear system is causal (Eq. 7.81) means that the first statement is satisfied.
If /() is square integrable, then the Titchmarsh theorem has the third statement
as a consequence and we have dispersion relations.

EXERCISES

7.3.1 The function f(z) satisfies the conditions for the dispersion relations. In addition,
fiz) = f*(z¥), the Schwarz reflection principle, Section 6.5. Show that fiz) is

identically zero.

7.3.2 For f(z) such that we may replace the closed contour of the Cauchy integral
formula by an integral over the real axis we have

7 Refer to E. C. Titchmarsh, ntroduction to ihe Theory of Fourier Integrals,
Ind ed., New York: Oxford University Press 1937. For a more informal
discussion of the Titchmarsh theorem and further details on causality see
J. Bilgevoord, Dispersion Relations and Causal Description. Amsterdam:
North-Holland Publishing Co. (1962).

7.3.3

“ qﬁ

..,.\‘..u.m

7.3.6

13.7

1.3.8
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243%™ %o 2ni €y

Here C, designates a small semicircle about %, in the lower half-plane. Show that
this reduces to

e g,

X — Xg

s = [ L+

i |, X —Xp

Sleo) = t_gm. -—qa E&p

al |_,

which is Eq. 7.69.

(a) For fi{z) =&, Eq. 7.66 does not hold at the end points, argz = 0, n. Show,
with the rmpm. of Jordan's lemna, Section 7.2, that Eq. 7.67 stil! holds.
{b) For f(z) = ¢” verify the dispersion relations, Eq. 7.71 or Eqs. 7.75 and 7.76,

by direct integration. .

With flx) = u(x) + iv(x) and f{x) = f*(—x), show that as x, ~» o0,
2 [ .

t(xg) ~ 1
0Jo

xv(x)dx,

(@)

(b)

M‘ =]
vxg) ~ —— .—. t{x)dx.
In guantum mechanics relatjons of this form are often called mE.x rules.

Xg Jg

{2) Given the integral equation

.
1+x§ =n wX— X

use Hilbert transfortms to determine u{x,).

(b} Verify that the integral equation of part (a) is satisfied.

(€) From flz),mo = u(x} + iv(x), replace x by'z and determine f(z). Verify that
the conditions for the Hilbert transforms are satisfied.

(d) Are the crossing conditions satisfied?

__ %0
ANS. {a) :@&||:+x$,
© f@={+i"

If the real part of the complex index of refraction (squared) is constant (no
optical dispersion), show that the imaginary part is zero (no absorption).
Conversely, if there is absorption, show that there must be dispersion. In
other words, if the imaginary part of n” — 1 is not zero, show that the real
part of n? — 1 is not constant,

Given u(x) = x/(x* + 1)and v{x} = —1/(x* + 1), show by direct evaluation of each
integral that

% ?E_AN dx ﬁ,‘, |o(x)? dx.
z

ANS. .‘,a _ﬁxv_u_&aﬂ,‘a Jox)Fdx ==,

—w - 2

Mmmn u(x) = &(x), a delta function, and assume that the Hilbert transform equations
old.
{a) Show that

L7 dy
owp = w’ bn Yy —wy
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ASéu.ﬂrnrmnmnmo?m:.mgamsﬂmInmuakﬂml Fs,mnmmoHEEa d representa-|
tion of part (a) into _

O dx ,
Ss=1 2 e (X — 8)x ~ 1)

Note. The & function is discussed in Section 8.7,

_
7.3.9 Show that _ !

1™ dt :
&xvuﬂ e tlt — x}

is a valid representation of the delta function in the sense that
[ rwpseran = o

Assume that f{x) satisfies the condition for the existence of Hilbert transform.
Hint. Apply Eq. 7.69 twice,

74 THE METHOD OF STEEPEST DESCENTS

In analyzing problems in mathematical physics, one often finds it desirable |
to know the behavior of a function for large values of the variable, that 5_
the asymptotic behavior of the function. Specific examples are furnished by the
gamma function (Chapter 10) and the various Bessel functions (Chapter 11), |
The method of steepest descents is a method of determining such asymptotic
behavior when the function can be expressed as an integral of the general form

(7.85)

I(s) = ._. g(z)e 7@ gz,

For the present, let us take s to be real The contour of integration C is then |
chosen so that the real part of f (z) approaches minus infinity at both limits and
that the integrand will vanish at the limits, or is chosen as a closed contour.
It is further assumed that the factor g(z) in the integrand is dominated by the
exponential in the region of interest.

If the parameter s is large and positive, the value of the integrand will become
large when the real part of f(z) is large and small when the real part of f(z) is
small or negative. In particular, as s is permitted to increase indefinitely {(leading |
to the asymptotic dependence), the entire contribution of the integrand to the
integral will come from the region in which the rea] rart of f(z) takes on a
positive maximum value. Away from this positive maximum the integrand will
become negligibly small in comparison. This is seen by expressing f(z) as

Sz} = ulx, y} + iv(x, y).
Then the integral may be written as

I(s) = % gla)e = Neiw gy, (7.86)
c :

If now, in addition, we impose the condition that the imaginary part of the
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exponent, iv(x, y), be constant in the region in which the real part Mm.an on its
maximum value, that is, v(x, ) = v{x, o) = vy, We may approximate the
integral by

I{s) = g% ,—, g(z)e =N dz. (7.87)
(&

Away from the maximum of the real part, the imaginary part may be voziﬁ.am
to oscillate as it wishes, for the integrand is negligibly small and the varying
phase factor is therefore irrelevant.
The real part of sf(z) is 2 maximum for a given s-when the real part of f(z),

u(x, ), is a maximum. This implies that

w_nm_,

Ox dy
and therefore, by use of the Cauchy—Riemann conditions of Section 6.2

4@ _

88
o (7.88)

We proceed to search for such zeros of the derivative. .

It is essential to note that the maximum value of u(x, y) is the maximum
only along a given contour. In the finite plane neither the real nor the W.Emmmmmé
part of our analytic function possesses an absolute EmﬁEcE, This may be
seen by recalling that both u and v satisfy Laplace’s equation

Fu | Fu

) + ay? =0
From this, if the second derivative with respect to x is positive, the second
derivative with respect to y must be negative, and therefore neither u nor v
can possess an absolute maximum or minimum. Since the ?snnom. fiz) was
taken to be analytic, singular points are clearly excluded. The SEEEbm.% the
derivative (Eq. 7.88) then implies that we have a saddle point, a mﬁﬂgm@
value, which may be a maximum of u(x, y) for one contour and a minimum
for another {Fig. 7.19). . .

Our problem, then, is to choose the contour of integration to mmﬁ.mm@ two
conditions. (1) The contour must be chosen so that u(x, v} has a maximum at
the saddle point. (2) The contour must pass through the saddle in such a way
that the imaginary part, o(x, ), is a constant. This second condition leads to
the path of steepest descent and gives the method its name. From Section 6.2,
especially Exercise 6.2.1, we know that the curves corresponding to u = constant
and v = constant form an orthogonal system. This means that a curve v = ¢,,
constant, is everywhere tangential to the gradient of », Vu. Hence the curve
v = constant is the curve that gives the line of steepest descent from the saddle
point.*

(7.89)

'The line of stecpest ascent is also characterized by constant v. The saddle.
point must be inspected carefuily to distinguish the line of steepest descent
from the line of steepest ascent. This is discussed later in two examples.




(5.244)
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(5.246)

(5.247)

=72 >0,
ind has the

(5.248)

{5.249)
n,and y =

© ‘he vacuum

(5.250)
a0 =0

1l negative-
" mean value

0)
7 (x)|0)

(5.251)
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But by (5.247), these commutators aré Ay(x—y)and A(y —x). Thus the mean
value in the vacuum of the time-ordered product

TG} 10) = 06 — y)AL(x = ) +6G° = XA~ %)
= —iAp(x —¥) (5.252)

is the Feynman propagator (5.241) multiplied by —4. |

5.19 Dispersion relations

In many physical contexts, functions occur that are analytic in the upper
half-plane (UHP). Suppose for instance that f(#) is a transfer function that
determines an effect e(r) due to a cause e(t)

e(H) = f_ ” dt ft — £y e(@). (5.253)

If the system is causal, then the transfer functionf(t —{}iszerofort—¢ <0,
and so its Fourier transform
o= [ —Ljme= | T e (5.254)
oo~/ 2T o 27 )

will be analytic in the upper half-plane and will shrink as the imaginary part of
z = x + {y increases.

So let us assume that the function f(2) is analytic in the upper half-plane and
on the real axis and further that

tfim. fre®)| =0 for 0<6=<m. (5.255)

By Cauchy’s integral formula (5.32), if zo les in the upper half-plane, then f(z0)
is given by the closed counterclockwise contour integral

1 f)
= —— p T dz, 5.256
fe 2ri ] z— 20 ? ( )
in which the contour runs along the real axis and then loops over the semicircle
lim re® for 0<6 <nm. ' (5.257)
=00

Our assumption (5.255) about the behavior of f(z) in the UHP implies that this
contour (5.257) is a ghost contour because its modulus is bounded by

8 ,

fim ] Ve 4o — tim |f(re®)] = 0. (5.258)
o0 21 ¥ r=»co

So we may drop the ghost contour and write f{(zo) as

flz0) = -1—— * S0 g ' (5.259)
2l J_oo X 20 ‘
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Letting the imaginary part yo of zo = X0 + iyo shrink to €

R T i)
flxo) =5 f_oo pry—— dx (5.260)

and using Cauchy’s trick (5.220), we get

PV S Ragp i€ i % B
fey =3P T dx+ 5— f_ oof(x) 5(x —xp)dx  (5.261)

or

IR hariC)) 1
fe =3P STa dx + 5 f(x0), (5.262)

which is the dispersion relation

1 ool
flxpy=—7F —f—(i)-— dx. (5.263)
wi Jooo X — X0
If we break f(z) = u(z) + iv(2) into its real u(z) and imaginary v(z) parts, then
this dispersion relation {5.263)

u(xo) + iv(xo) = J—}; P L - “—u(’?c—i’—%x—) dx (5.264)

=—1—P[oo w—vgﬂ"dx—inoo ux) dx

7 Jooo X— X0 7 Joo X X0

breaks into its real and imaginary parts

Lp [ 2 ! [ * MY g (5.265)

u(xg) = —P dx and v(xg)=-~—7P
T Jso X — X0 r J_oex— X0

which express « and v as Hilbert transforms of each other.

In applications of dispersion relations, the function f(x) for x < 0 sometimes
is either physically meaningless or experimentally inaccessible. In such cases,
there may be a symmetry that relates f(—x) to f(x). For instance, if f(x) is the
Fourier transform of a real function f’ {k), then by equation (3.25) it obeys the

symmetry relation 7
L) = ux) — wux) = f(—x) =u(-x) + v(—x), (5.266)
which says that u is even, u(—x) = u(x), and v odd, v(—x) = —u(x). Using
these symmetries, one may show (exerci'se 5.36) that the Hilbert transformations
(5.265) become

2 %0 xv(x) o 2xo ™ ux)
u(xp) = rrP_[o- xz—x%dx and v{xg) = ~ Pfo xzw—x% @x, (5.267)

which do not require input at negative values of x.

206
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(5.261)
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(5.263)

- 1) parts, then

(5.264)

dx

dx, (5.265)

. 0 sometimes
~ 1 such cases,
if £(x) is the
1 it obeys the

(5.266)

* _w(x). Using
1sformations

Ldx, (5.267)

520 KRAMERS-KRONIG RELATIONS

5.20 Kramers—Kronig relations

If we use o E for the current density J and E(f) = e~ B(1) for the electric field,
then Maxwell’s equation V x B = uJ + e uE becomes

VxB=—iwep (1 + if—-)E = —iwn*equokE (5.268)
(3]
and reveals the squared index of refraction as
i (w) = —F- (1 + ii). (5.269)
€010 €w

The imaginary part of n? represents the scattering of light mainly by electrons.
At high frequencies in nonmagnetic materials n*(w) — 1, and so Kramers and
Kronig applied the Hilbert-transform relations (5.267) to the function n2(w) — 1
in order to satisfy condition (5.255). Their relations are

o] 2
Ro(w (o)) = 1 + = P f ‘”—I%("—(‘j)) de (5.270)
) 0 W — wy
and
fe%s] 2 _
Im(n*(wp)) = ~ 2 p f —Rﬂﬂ@%ﬁl dw. (5.271)
T 0 W — Wy

What Kramers and Kronig actually wrote was slightly different from these
dispersion relations (5.270 & 5.271). H. A, Lorentz had shown that the index
of refraction n(w) is related to the forward scattering amplitude f(w) for the
scattering of light by a density N of scatterers (Sakurai, 1982)

2
nw) = 1+ 25 Nf(w). (5272)
o

They used this formula to infer that the real part of the index of refraction
approached unity in the limit of infinite frequency and applied the Hilbert
transform (5.267)

2 f * o Imfp(w)] , (5273

=14+ —
Refp(@)] =1+ 2P | =20

The Lorentz relation (5.272) expresses the imaginary part Im[n(w)] of the index
of refraction in terms of the imaginary part of the forward scatiering amplitude

flo)
Im[n(w)] = 27 (c/w)? Nim[f (). (5.274)

And the optical theoremrelates Im[f ()] to the total cross-section

oor = T 1mlf @] = T I/ @) (5219
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Thus we have Im[n(w)] = ¢Nowot/(2w), and by the Lorentz relation (5.272)
Re[n(w)] = 1 + 2m{c/w)*NRelf(w)]. Insertion of these formulas into the
Kramers-Kronig integral (5.273) gives a dispersion relation for the real part
of the forward scattering amplitude f(w) in terms of the total cross-section

2 oo /
@ otet(ew)
Relf ()] = 55 P [D o) d. (5.276)

5.21 Phase and group velocities
Suppose A(x, ) is the amplitude

Afx, 1) = f PX—ENIR 4(py Pp = f kX0 popy Pk (5.277)

where B(k) = h>A(hK) varies slowly compared to the phase exp[i(k - x — wi)].
The phase velocity v, is the linear relation x = v, ¢ between x and ¢ that keeps
the phase ¢ = p - x — Et constant as a function of the time

O=p-dx—Edi=(@p-v,—E)dt & v,= i (5.278)

= |y
=i

in which p = |p|, and k = [k|. For light in the vacuum, v, = ¢ = (w/k) k.

The group velocity v, is the linear relation x = v, ¢ between x and 7 that
maximizes the amplitude A(x, #) by keeping the phase ¢ = p - x — Et constant
as a function of the momentum p

Vo(px — Ef) = x — V,E(p)t =0 (5.279)

at the maximum of A(p). This condition of stationary phase gives the group
velocity as

v = VpE@) = Via(®). (5.280)

If E = p?/(2m), then vy = p/m.

When light traverses a medium with a complex index of refraction n(k}, the
wave vector k£ becomes complex, and its (positive) imaginary part represents
the scattering of photons in the forward direction, typically by the electrons
of the medium. For simplicity, we’ll consider the propagation of light through
a medium in one dimension, that of the forward direction of the beam. Then
the (real) frequency «(k) and the (complex) wave-number k are related by k =
n(k) w(k)/c, and the phase velocity of the light is

w C

Y™ Re(®)  Re(n(k)’

(5.281)
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521 PHASE AND GROUP VELOCITIES

If we regard the index of refraction as a function of the frequency w, instead
of the wave-number k, then by differentiating the real part of the relation
wn(w) = ck with respect to w, we find
dnw) _ dis

dw de’
in which the subscript r means real part. Thus the group velocity (5.280) of the
light is

n(w) +w

(5.282)

dw c
= —— = . 5.283
ve dike  ne(w) -+ wdn /dw ( )
Optical physicists call the denominator the group index of refraction
ng(@) = ne(w) + o d’;g") (5.284)

so that as in the expression (5.281) for the phase velocity vp = ¢/m{w), the
group velocity is vy = ¢/ng(w).

In some media, the derivative dn;/dw is large and positive, and the group
velocity vg of light there can be much less than ¢ (Steinberg ef al, 1993; Wang
and Zhang, 1995) —as slow as 17 m/s (Hau et al., 1999). This effect is called slow
light. In certain other media, the derivative dn/dw is so negative that the group
index of refraction ng(w) is less than unity, and in them the group velocity vg
exceeds ¢! This effect is called fast light. In some media, the derivative dn,/dw
is so negative that dn,/dw < —n(w)/w, and then ng(w) is not only less than
unity but also less than zero. In such a medium, the group velocity v, of light is
negative! This effect is called backwards light.

Sommerfeld and Brillouin (Brillouin, 1960, ch. IT & I1I) anticipated fast light
and concluded that it would not violate special relativity as long as the signal
velocity — defined as the speed of the front of a square pulse — remained less than
c. Fast light does not violate special relativity (Stenner et al., 2003; Brunner
et al., 2004) (1.éon Brillouin, 1889-1969; Arnold Sommerfeld, 1868-1951).

Slow, fast, and backwards light can occur when the frequency « of the light
is near a peak or resonance in the total cross-section oy for the scattering of
light by the atoms of the medium. To see why, recall that the index of refraction
n(ew) is related to the forward scattering amplitude /() and the density N of
scatterers by the formula (5.272)

2 c?

)
and that the real part of the forward scattering amplitude is given by the
Kramers—Kronig integral (5.276) of the total cross-section

2 [00 orot{ew’) de’

) o)
Re(f(w)) = 2n2c ’ 0 w?—w?

nlwy=1+

Nf () (5.285)

(5.286)
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So the real part of the index of refraction is

N o0 ! d‘ /
m(w) =1+ — P f o) 30 (5.287)
14 0 we —w
If the amplitude for forward scattering is of the Breit-—Wigner form
r/2
=y —— 5.288
f@) =h =072 (5:289)

then by (5.285) the real part of the index of refraction is

_ ' Csz(}F(a)o - a))
nr(w) =1+ o2 [(w _ CU())2 +1—'2/4]

(5.289)

and by (5.283) the group velocity is

22 -1
v = {1 weNfey @70 = /412] - (5.290)
W [(—w0? +T2/4]

This group velocity vy is less than ¢ whenever (@ — wo)® > T'?/4. But we get fast

light vg > ¢, if (@ — wy)? < T'?/4, and even backwards light, vg < 0, if @ =~ wo

with 4w c?Nfy/ Tawp > 1. Robert W. Boyd’s papers explain how to make slow

and fast light (Bigelow et al., 2003) and backwards light (Gehring et al., 2606).
We can use the principal-part identity (5.224) to subtract

N ee]

=P f ooll@) gy (5.291)
i1 g W-—w

from the Kramers-Kronig integral (5.287) so as to write the index of refraction
in the regularized form

eN * Utot(wl) - Gtot(w) d(.l)’, (5292)

=1+ —
nl‘(w) + T 0 a)"2 _ 602 |

which we can differentiate and use in the group-velocity formula (5.283)

oo N 2, 2 -1
vg(w):c[1 LNy fo [G101(e) — O10t(@)] (@ + @) dw,} 5299

(wa . 0)2)2

5.22 The method of steepest descent

Suppose we want to approximate for big x > 0 the integral
. , .
10 = [ deha) explaf @) (5.294)
4
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