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Linear algebra

1.1 Numbers

The natural numbers are the positive integers and zero. Rational numbers are
ratios of integers. Irrational numbers have decimal digits d,

oo

ty
107

H=iMyx

that do not repeat. Thus the repeating decimals 1/2 = 0.50000...and 1/3 =
0.3 = 0.33333... are rational, while # = 3.141592654 . .. is irrational, Deci-
mal arithmetic was invented in India over 1500 years ago but was not widely
adopted in the Europe until the seventeenth century.

The real mambers R include the rational numbers and the irrational numbers;
they correspond to all the points on an infinite line called the real line.

The complex numbers C are the real numbers with one new number / whose
square is —1. A complex number z is a linear combination of a real number x
and a real multiple i y of

X =

(1.1)

z=Xx4 iy, (1.2)

Here x = Rez is the real part of z, and y = Imz is its imaginary part. One adds
complex numbers by adding their real and imaginary parts

z1+z2 = x1 + iy +x2 4 iya = x1 4 xp iy 4 po). (1.3)

Since 2 = —1, the product of two complex numbers is

z1z2 = (x1 + )02 +iy2) = x1x2 — yrya + ilxyy +yixz). (1:4)
The polar representation z = rexp(i8) of z = x + iy is

z=x+iy=re' =r(cos@ + isind) : (1.5)
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in which r is the modulus or absolute value of z

re=lz] = X2+ 2 (1.6)
and @ is its phase or argument

g = arctan {(y/x). (1.7

Since exp(2mi) == 1, there is an inevitab.le ambiguity in the deﬁnition‘ of
the phase of any complex number: for any integer #, the‘: phase 6 + 27 n gives
the same z as 6. In various computer language§, the function atanZQ, x) returns
the angle 6 in the interval —m < 8 < w for wh_mh (x,y) = r(cos 8, sm: 8).

Thete are two common notations z* and  for the complex conjugate of a

complex number z = x + iy
H=zZ=x—1p (1.8)
The square of the modulus of a complex number z = x + iy is
P =2 = i - i) =iz =22 (1.9)
The inwerse of a complex number z = X + iy is
-1 s a1 X““ly _ x_ly :Z_*_:_Z_*_ (1.10)
7 =0T = (x— x +iy) x>+t 'z 1z|?
Grassmann pumbers §; are anticommuting numbers, that is, the anti-
commutator of any two Grassmann numbers vanishes

So the square of any (rassmann number is zero, Gf = 0. We-won’t use.these
numbers until chapter 16, but they do have amusing properties. The highest
monomial in N Grassmanti numbers §; is the product_ 8%82 ...0x. So the most
complicated power series in two Grassmann pumbers is Just

101,60 =fo+fib1 202+ 126102 (1.12)
(Hermann Grassmann, 18091871,

1.2 Arrays

An array is an ordered set of numbers. Arrays pigy big r01e§ in co’mputer science,
physics, and mathematics. They can be of any (m?egra,i) dimension. _
‘A one-dimensional array (a1, @, . . ., @) is variously cal'led an n-‘tuple, a row
vector when written horizontally, a column vector when written vertically, or an
n-vector. The numbers gy, are iis entries or componesits. o
A two-dimensional array ay with / running from | tonand & fro'm ltomis
an # x m matrix. The numbers ay, are its entries, elements, or matrix elements.
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One can think of a matrix as a stack of row vectors or as a queue of column
vectors. The entry ay is in the ith row and the kth column.

One can add together arrays of the same dimension and shape by adding
their entries. Two n-tuples add as

(al: . --,an) + (b1: ' "3b!1) = (al +b19" . ,an + b?i) (1'13)
and two n x m matrices ¢ and b add as
(@ + D) = ay + bjk. (1.14)

One can multiply arrays by numbers, Thus z times the three-dimensional
array a;y is the array with entries z 2. One can multiply two arrays together
no matter what their shapes and dimensions. The outer product of an n-tuple
and an m-tuple b is an # x m matrix with elements

(ab)y = a; by _ (1.15)

or an m x n matrix with entries (ba)y; = bra;. If a g.wnd b are - complex, tl_len one
also can form the outer products @) = @ by, (b a)iy = by a;, and (b, =

by @;. The outer product of a matrix @z and a three-dimensional array bigm is @
five-dimensional array

(a b)h’cjﬂm = ajf bjﬂm- (1.16}

An inner product is possible when two arrays are of the same size in one of
their dimensions. Thus the inner product {a, b)) = {(a|b} or dot-product @ - b of
two real n-tuples g and b is

(@, b= {(alb) =a-b={ar,...,an) (b1,.... b)) =a1b) + --- + apby. (1.17)
The inner product of two complex »-tuples often is deﬁned_as
(a,b)=lalb) =@ -b=(@1,....a0 (b,...,by) =ai b1 + - +dy by (1.18)
or as its complex conjugate '
(a,0) = {a|b)* = @ -bY* = (b,a) = (blay =b . a (1.19)

so that the inner product of a vector with itself is nonnegative (g, a) = 0.

The product of an m x n matrix ay times an n-tuple by, is the m-tuple & whose
ith component is

A
By = ajby + apby + - + apby = Z @i br. (1.20)
=1

This product is & = a b in matrix notation.

If the size # of the second dimension of a matrix ¢ matches that of the first
dimension of a matrix b, then their product a b is a matrix with entries

(ab)ie = ag bie + -+ + ap bue. ©(1.2D)
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1.3 Matrices

Apart from n-tuples, the most important arrays in linear algebra are the two-

dimensional arrays called matrices. o
The trace of an n x 7 matrix « is the sum of its diagonal elements

n
Traztra:cm+a22+---+a,m:Za,~,~. (1.22)
i=l

The trace of two matrices is independent of their order

n

n n n
Tr(ab) = Y 9 awbki = ) ) buiaw = Tr (bo) (1.23)

=1 k=l k=1 i=1

as long as the matrix elements are numbers that commute with each other. Tt
follows that the trace is eyclic

Tr(ab...2)=Tr(b...za). (1.24)

The franspose of an n x £ matrix aisan € x n matrix ¢ with entries

(aT)I.j. = aj;. (1.25)

. . .1 -
Some mathematicians use a prime to mean transpose, asmna = a', but physi

cists tend to use primes to label different objects or to indicate differentiation.
One may show that

(ab)T=b"d". (1.26)
A matrix that is equal to its transpose ' ,
a=a ' (1.27)

is symmetric. _ .

The (hermitian) adjoint of a matrix is the complex conjugate of its transpose
{Charles Hermite, 1822-1901). That is, the (hermitian) adjoint at ofan N x L
complex matrix @ is the [, x N matrix with entries

(@)y = (ap)* = aj. ' (1.28)

One may show that
(abyl = btal. (1.29)

A matrix that is equal to its adjoint
(@y = (@) = dj; = aj

4
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(and which must be a square matrix) is hermitian or self adjoint

a:aT.

Example 1.1 (The Pauli matrices)

01 0 —i 10
o] = (1 0) , 02 = (; OI) , and a3 = (D _1) (132)

are all hermitian (Wolfgang Pauli, 1900-1958). O

A real hermitian matrix is symmetric, If a matrix ¢ is hermitian, then the
quadratic form

N N
(vlalv} = Z Z viagu € R (1.33)
i=1 j=1
is real for all complex n-tuples v.

The Kronecker delta §; is defined to be unity if i=k and zero if
i#k (Leopold Kronecker, 1823-1891). The identity matrix / has entries
Lip = 8i.

The inverse ¢! of an n x »n matrix ¢ is a square matrix that satisfies

ala=aat =1 (1.34)
in which 7 is the n x » identity matrix.

So far we have been writing n-tuples and matrices and their elements with
lower-case letters, It is equally common to use capital letters, and we will do so
for the rest of this section. '

A matrix U whose adjoint U is its inverse
vt =vut =1 (1.35)

is unitary. Unitary matrices are square.
A real unitary matrix O is orthegonal and obeys the rule

OTOI OOT :]'

Orthogonal matrices are square. .
An N x N hermitian matrix 4 is nonnegative

- A=0
if for all complex vectors V the quadratic form
N N _
Py =33 Vidy¥;= 0
i=1 j=1

5
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is nonnegative. It is positive or positive definite if
(VidlV) > 0

for all nonzero vectors | V).

Example 1.2 (Kinds of positivity) The nonsymmetric, nonhermitian 2 x 2

matrix
( 11 i) (1.40)

is positive on the space of ali real 2-vectors but not on the space of all complg
2-vectors.

Example 1.3 (Representations of imaginary and Grassmann numbers) The

2 % 2 matrix
0 -1 (1.41)
1 0

can represent the number { since

D06 )= 0

The 2 x 2 matrix
((l) 8) (1.43)

can represent a Grassmann number since

00 00_00:0 o (1.44)
690 =6 o=
To represent two Grassmann numbers, one needs 4 x 4 matrices, such as

001 0 U
o000 = a6 = 0 , (1.45)

000 0 0
0 0 0 0 0

n 1 .
The matrices that represent 7 Grassmann numbers are 27 x 27, i3

Example 1.4 (Fermions) The matrices (1.45) alsq can represent lowering or
annihilation operators for a sysicm of two fermionic states. For ¢4 = 9

and @7 = 0, and their adjoints aJ{ and a;E, the creation operators satisfy the
anticommutation relations

{ai,a,t}z&k and {as,akl={a?,a,t}=0 (1.46)

14 VECTORS

where 7 and & take the values 1 or 2, In particular, the relation (a.:-r)2 = 0 imple-

ments Pauli’s exclusion principle, the rule that no state of a fermion can be doubly
occupied. O

1.4 Vectors

Vectors are things that can be multiplied by numbers and added together to
form other vectors in the same vector space. So if U/ and V are vectors in a
vector space 5 over a set F of numbers x and y and so forth, then

We=xU+yV ' (1.47)

also 18 a vector in the vector space S.

A basis for a vector space S is a set of vectors By fork = 1,..., N in terms
of which every vector I/ in .S can be expressed as a linear combination

U=uB +wBy+-- +uyBy (1.48)

with numbers u; in F. The numbers ;. are the components of the vector U/ in
the basis By.

Example 1.5 (Hardware store) Suppose the vector W represents a certain kind
of washer and the vector N represents a certain kind of nail. Then if # and m are
natural numbers, the vector

H=nW-+mN : (1.49)

would represent a possible inventory of a very simple hardware store. The vector
space of all such vectors H would include all possible inventories of the store.
That space is a two-dimensional vector space over the natural numbers, and the
two vectors W and N form a basis for it. : [

Example 1.6 (Complex numbers} The complex numbers are a vector space.
Two of its vectors ar¢ the number 1 and the number i; the vector space of
complex numbers is then the set of all linear combinations

z=xl+yi=x+ip (1.50)

So the complex numbers are a two-dimensional vector space over the real
numbers, and the vectors 1 and 7 are a basis for it. -

The complex numbers also form a one-dimensional vector space over the
complex numbers. Here any nonzero real or complex number, for instance the
number 1, can be a basis consisting of the single vector |, This one-dimensional
vector space is the set of all z = z] for arbitrary complex z, O
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Example 1.7 (2-space) Ordinary flat two-dimensional space is the set of all
linear combinations

r=xX+y¥ 1.5 |

in which x and y are real numbers and X and § are perpendicular vectors of unit

length (unit vectors). This vector spac, called R?, is a 2-d space over the 1'eials.
Note that the same vector r can be described either by the basis vectors X and
§ or by any other set of basis vectors, such as —y and X

r=xk 4y = — (=9 + 2k (1.52)

So the compoﬁents of the vector r are (x, y) in the {%, §} basis and (—y, x)-;'n the
[~§, %} basis. Each vector is unique, but its components depend upon the basis. )

Example 1.8 (3-space) Ordinary flat three-dimensional space is the set of all
linear combinations

r=xX+yy-+z2 (1.53)
in which x, v, and z are real numbers. Tt is a 3-d space over the reals, |

Example 1.9 (Matrices) Arrays of a given dimension and size can be addeg
and multiplied by numbers, and so they forn} a vector- space. For n.'nstan:e,r ad
complex three-dimensional arrays dgi inwhichl < i=<31<j=4an

1 < k < 5 form a vector space over the complex numbers, [

Example 1.10 (Partial derivatives) Derivatives are vectots, so are Qarti_al deriva-
tives. For instance, the linear combinations of x and y partial derivatives faken
atx=y=0

(1.54)

|
form a vector space. .

Example 1.11 (Functions) The space of all Tinear combinations of a set of
functions fi(x) defined on an interval [a, b

70 =) zfild) (1.55)
i o
is a vector space over the natural, real, or complex numbers {z:}. O

Example 1.12 (States) In quanium mechanics, a state is represented by a vec-
tor, often written as ¥ or in Dirac’s notation as j¥). If 2 and ¢ are o'omplex
numbers, and [y} and |y} are any two states, then the linear combination

i) = al) + eln) : (1.56)

also is a possible state of the system. -

1.5 LINEAR OPERATORS

1.5 Linear operators

A linear operator A maps each vector U in its domain into a vector U’ = A(U) =

AU in its range in a way that is linear. So if U and V" are two veclors in its
domain and b and ¢ are numbers, then

ADU + ¢V = bAUY + cA(V) = bAU + cAV. (1.57)

If the domain and the range are the same vector space S, then A4 maps each
basis vector B; of § into a linear combination of the basis vectors By,

N
AB; = a;By + @By + - +anBy = Z ag; By. (1.58)
k=1
The square matrix ay; represents the linear operator 4 in the By, basis. The effect
of A onany vector U = u\ By +us By + - -+ +uy By in S then is

N N N N .
AU =4 (Z u,'B,') = Zu,-AB; = Zui Zak; By
i=1 i=1

=l k=1
N N
= Z Z akfuf) By.
k=1 \i=!

So the kth component i}, of the vector U" = AU is

N
Wy = iUy + agauy - F AUy = Y Aty (1.60)

i=1
Thus the column vector # of the components u of the vector U’ = AU is
the product &' = awu of the matrix with elements ay; that represents the linear
operator A4 in the By basis and the column vector with components u; that rep-
resents the vector U in that basis. So in each basis, vectors and linear operators

are represented by column vectors and matrices.

Each linear operator is unique, but its matrix depends upon the basis, If we
change from the By basis to another basis B}

N
Bi =) uw By (1.61)
f=1

in which the N x N matrix ug has an inverse matrix u;l.l so that

N

N N N N N
D g Be= 3wy Y By = (Z uucu;f) By= buB; =5,
£=1 fe=1 =1

k=1

(1.62)
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then the new basis vectors B) are given by
N o
Bi=Y uy' B O (16)
k=L .

. . o
Thus (exercise 1.9) the linear operator A maps the basis vector B; to
N

N N .

" ~1 = azts! B, 1.64

ARB; = Zukil ABj = Z vy, By = Z Ugjlliti; Be-_ (1.64)
k=1 Jle=1 e =1

So the matrix @ that represents A4 in the B’ basis is related to the matrix @ that
represents it in the B basis by a similarity fransformation

N .
Y ugapil or o =uau”! 1.65)
/ . —_ ' .
dy = Y ugaply; or 4 =uau ( |
Je=1

in matrix notation.

Example 1.13 (Change of basis) Let the action of the linear operator 4 on the
basis vectors {B1, B2) be AB| = By and AB; = 0. If the column vectors

by = ((1)) and by = (‘D\ (1.66)

represent the basis vectors B) and Bs, then the matrix

0 0 1.67
az(l 0) (L67)

I’Bpresents the linear Operator A But if WeE U5¢ the baSiS 'veCtOI'S
= _1 2’ _ - ) (1 68)
B = B + B ﬂnd _B (Bl B ) .

then the vectors

, 1N L1 ey
) wone () oo

would represent By and B, and the matrix

= — ‘ 1.;0)
[I

would represent the linear operator A (exercise 1.10).

A linear operator A also may map a veclor space S with basis By mio a
different vector space I" with its own basis Cr. In this case, 4 maps the basis
vector B; into a linear combination of the basis vectors Ci
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M

AB; = Z ari Ci
k=1

and an arbitrary vector U = u By + - - - + uy By in S into the vector

M N
AU = Z ( Qi u,-) C.
1

k=1

o=

1.6 Inner products

Most of the vector spaces used by physicists have an inner product. A positive-
definite inner product associates a number (f,g) with every ordered pair of
vectors f and g in the vector space I and satisfies the rules

fe) = @ (1.73)

(fizg+wh) = z({,e) +w(f,h) (1.74)

(F)=z0 and (f./)=0 = f=0 (1.75)

in which f, g, and % are vectors, and z and w are numbers. The first rule says that
the inner product is hermitian; the second rule says that it is linear in the second

vector z g +w /i of the pair; and the third rule says that it is positive definite. The

first two rules imply that (exercise 1.11) the inner product is antilinear in the
first vector of the pair

(zg+whf)=2%g, /) +w*(h[). (1.76)

A Schwarz inner product satisfies the first two rules (1.73, 1.74) for an inner
product and the fourth (1.76) but only the first part of the third (1.75)

SN =0 (1.77)

This condition of nonnegativity implies (exercise 1.15) that a vector [ of zero
length must be orthogonal to all vectors g in the vector space

(f)=0 = (g.f)=0 forall ge V. (1.78)

So a Schwarz inner product is almost positive definite.

Inner products of 4-vectors can be negative. To accommodate them we define
an indefinite inner product without regard to positivity as one that satisfies the
first two rules (1.73 & 1.74) and therefore also the fourth rule (1,76} and that
instead of being positive definite is nondegenerate

(figy=0forall feV = g=0. (1.79)

11
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This rule says that only the zero vector is orthogonal to all the vectors of
the space. The positive-definite condition (1.75) is stronger than and implies

nondegeneracy (1.79) (exercise 1.14).
Apart from the indefinite inner products of 4-vectors in special and general

relativity, most of the inner products physicists use are Schwarz ner products
or positive-definite inner products. For such inner products, we can define the
norm |f] = ||/ || of a vector /" as the square-root of the nonnegative mner

product (/. /)
17 1= VT.D. (150

The distance between two vectors / and g is the norm of their difference

f—zgl. (1.81)

Example 1.14 (Buclidean space) The space of real vectors U, ¥ with N com-
ponents U;, ¥; forms an N-dimensional vector space over the real numbers with
an inner product

hi

=1

that is nonnegative when the two vectors are the same

N N
U= UilUi=) 0720 (1.83)
IE=H

i=1

and vanishes only if all the components U; are zero, that is, if the vector U = 0.
Thus the inner product (1.82)is positive definite. When (U, ¥} is zero, the vectors
I/ and V are orthogonal. |
Example 1.15 (Complex euclidean space) The space of complex vectors with
N components U;, V; forms an N-dimensional vector space over the complex
numbers with inner product

. N -
(U, Vy=Y UVi=(V. Uy (1.84)

i=1

The inner product (U, U) is nonnegative and vanishes

N N
W, U)y=3 U= U =0 (1.85)

i=1 i=1

only if U = 0. So the inner product (1.84) is positive definite. If (U, V) is zexo,
then U and ¥ are orthogonal. O

1.6 INNER PRODUCTS

Example 1.16 (Complex matrices) For the vector space of N x L complex mafri-

ces 4, B, ..., o S . :
brodua the trace of the adjoint (1.28) of 4 multiplied by B is an inner

N L . N L
(AB)=TeAB=3" %" (aly8; =3 3" 4t By (1.86)

i=1 je=l i=l J=i
that is nonnegative when the matrices are the same

N L N L .
(A.A) =TedTd =33 Ardy =554y 2 0 (1.87)

i=1 j=1 i=1 j=I

and zero only when 4 = 0. So this inner product is positive definite. O

' A vector space with a positive-definite inner product (1.73-1.77) is called an
inner-product space, a metric space, or a pre-Hilbert space.

}_\ sequence of vectors f, is a Cauchy sequence if for every ¢ > 0 there is
an integer N(e) such that ||f;, — /]| < € whenever both n and m exceed N(e)
A sequence of vectors £, converges to a vector f if for every ¢ > 0 there is‘
an integer N(e) such that {|f - f,|| < ¢ whenever n exceeds N(e). An inner-
product space with a norm defined as in (1.80) is complete if each of its Cauchy
sequences converges to a vector in that space. A Hilbert space is a complete
1nner-pr‘oduct space. Every finite-dimensional inner-product space is complete
and S0 is a Hilbert space. But the term Hilbert space more often is used to
describe infinite-dimensional complete inner-product spaces, such as the space
of all square-integrable functions (David Hilbert, 1862—1943’).

Example 1.17 (T he Hilbert space of square-integrable functions) ’For the vector
space of functions (1.55), a natural inner product is

b
(f.g) = [ dx (). (1.88)

The squared norm || f || of a function f(x) is

b
T f dx LG, (1.89)

A function is square integrable if its norm is finite. The space of all square-

m:tegrabie functions is an inner-product space; it also is complete and so is a
Hilbert space. O

Exacznple 1.18 (Minkowski inner product) The Minkowski or Lorentz inner
product (p, x) of two 4-vectors p = (E/c,p1,pz,p3) and x = (ct, x1, x3, X3) is

13
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p-x—Et. Itis indefinite, nondegenerate, and invariant under Lorentz transfor-
mations, and often is written as p - X OT as px. If p is the 4-momentum of a freely
moving physical particle of mass 1, then

pp=p p-Eji=—dm <0 (1.90)
The Minkowski inner product satisfies the rules (1.73, 1.75, and 1.79), but it is

not positive definite, and it does not satisfy the Schwarz inequality (Hermann
LI\/Iinkowski, 1864-1909; Hendrik Lorentz, 1853-1928).

1.7 The Cauchy-Schwarz inequality
For any two vectors f and g, the Schwarz inequality

(/N8 = (8 (1.91)

holds for any Schwarz inner product (and so for any positive-definite inner
product). The condition (1.77) of nonnegativity ensures that for any complex
aumber A the inner product of the vector f — g with itself 1 nonnegative

(- rg.f —rg) = (frH =2 @) -2/ 8+ Mg, 8) = 0. (1.92)

Now if (g, ) = 0, then for (f — Ag, f — \g) to rémain nonnegative for all com-
plex values of A it is necessary that (f,g) = 0 also vanish (exercise 1.15). Thus
if (z,2) = 0, then the Schwarz inequality (1.91) is trivially true because both

sides of it vanish. So we assume that (g,g) > 0 and set A = (g, /(g 8). The

inequality (1.92) then gives us

o A eh e 8))
(f =g/ =2 = (f (2.9) &~ o) (2.9

which is the Schwarz inequality (1.9}).(Hermann Schwarz, 1843-1921) _
()8 = (. : (1.93)

Taking the square-root of each side, we get

LS g =108l | | (1.94)

/"
0

./ g) - (f,8)e.f)

Gxamp]e 1.19 (Some Schwarz inequalities) For the dot-product of two re;‘
3.yectors r and R, the Cauchy-Schwarz inequality is

P R-R) > R =1 RR) cos’d (1.95)

where @ is the angle between r and R.
The Schwarz inequality for two teal n-vectors x is

(o) (- p) = (8- p)F = (%) () cos 0 (1.96)
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and it implies (Exercise 1,10} that

el + il = Al + pll. (1.97)
For two complex n-vectors # and v, the Schwarz inequality is
{w* ) (vF-0) = |u*- v|2 = (u* - u) (v* v) cos’f (1.98)
and it implies (exercise 1.17) that
el + flo]l = la+ vl (1.99)

The inner product (1.88) of two complex functi i
. ct g
somewhat different instance ? fons /and g provides &

2

b b b
fa dx |[f ()| [1 dx g0 = [ dx [*(x)g(x) (1.100)

of the Schwarz inequality. O

1.8 Linear independence and completeness

A set of N vectors V1, V2, ..., ¥y is linearly dependent if there exist numbers
¢i, not all zero, such that the linear combination

e+ -+ewVun=0 (1.101)

vanishes, A set of vectors is linearly independent if if is not linearly dependent

A set. {.V,-} of linearly independent vectors is maximal in a vector space § .if
the addition of any other vector U in S to the set {V;} makes the enlarged set
(U, V) lingarly dependent,

A set of N linearly independent vectors V7, V3, ..., ¥ that is maximal ina
vec_tor space S can represent any vector U in the space S as a linear combination
of 1lts vect-ors,l U=uwuy V| +  +uyVx. Forif we enlarge the maximal set {7}
by Ipcludmg in it any vector U not already in it, then the bigger set (U, V;} willi
be linearly dependent, Thus there will be numbers ¢, ¢; ¢x, not ’alll ZET0
that make the sum o ’

cU+eV+-+eyVy=0 (1.102)

vanish. Now if ¢ were 0, then the set {V;} would be linearly dependent. Thus

c ¥ 0,‘ ané so we may divide by ¢ and express the arbitrary vector U as a linear
combination of the vectors V;

| - B
Us——(@Vi++enVw)=uVi+ - +uyly (1.103)

g-ltil‘uk = —¢ifc. So a set of linearly independent vectors { ;) that is maxi-
al in a space S can represent every vector U in S as a linear combination

15
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U=u Vi+...+unVy of its vectors. The set {¥;) spans the space S; itisa
complete set of vectors in the space S.

A set of vectors [ V;) that spans a vector space S provides a basis for that space
because the set lets us represent an arbitrary vector [/ in S as a linear combi-
aation of the basis vectors {¥;). If the vectors of a basis are linearly dependent,
then at least one of them is superfluous, and so it is convenient to have the
vectors of a basis be linearly independent.

1.9 Dimension of a vector space

If ¥y, ..., Vy and Wi, ..., Wy are two maximal sets of N and M linearly

independent vectors in a vector space S, then N = M.
Suppose M < N. Since the Us are complete, they span S, and so we may
express each of the N vectors ¥; in terms of the M vectors W

M .
Vi= Y AyW. (1.104)
j=1

Let A; be the vector with components 4. There are M < N such vec-
tors, and each has N > M components, So it is-always possible tofind a
nonzero N-dimeansional vector C with components ¢; that is orthogonal to all

M vectors Aj

i :
> ady=0. - _(1109)
i=1

Thus the linear combination

N N M :
Sevi=p ) adyW=0 (1.106) -
i=1 .

i=1 j=1

vanishes, which implies that the N vectors V; are linearly dependent. Since these
vectots are by assumption linearly independent, it follows that N < M.
Similarly, one may show that M = N. Thus M = N. :
The number of vectors in a maximal set of linearly independent vectors in a
vector space S is the dimension of the vector space. Any N linearly independent
vectors in an N-dimensional space form a basis for it.

1.10 Orthonormal vectors

Suppose the vectors Fi, V2, ..., Vy are lincarly independent. Theén we can
make out of them a set of N vectors U; that are orthonormal

(U, Up) = 8. (1.107)

16
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There are many ways to do this, because there are many such sets of orthonor-
mal vectors. We will use the Gram-Schmidt method, We set

4]
Ul o ————
(V1, V1) (109
so the first vector UJ; is normalized, N
. Next wi = : i
that uy be orthogonal to Uy et = Vot enti and require
0= (U, u)=(L", c12U| + VoY= e12 + (U1, Vo). (1.109)
Thus ¢;3 = — (U1, ¥2), and so

uy = Vo — (U1, Vo) U, (1.110)
The normalized vector U then is
Uy - 2
o) (1.11H

We next set uy = V3 4+ ¢13U) + ¢23U; and ask that us be orthogonal to Uy

0= (U, u3) = (U, e13Us + eos Uy + V3) = 13 + (U7, V3) (1.112)
and also to U

0= (Up,ua) = (Uz, call + e23Us -+ V3) = ¢33 + (U, V3). (1.113)
So c13 = —(Uy, V3) and ¢33 = —(U, V3), and we have

w3 = V3 = (Uy, 3) Uy — (U, ¥3) Us. (1.114)
The normalized vector I/3 then is |
3

Uy = ——— .
3 s w3). (1.115)

We may continue in this wa i
. y until we reach the last of the N i
independent vectors. We require the kth unnormalized vector i el
i
k—1
=V + Z i Ui (1.116)
i=1
to be orthogonal to the k — 1 vectors U; and find that ¢y, = —(U;, V%) so that
k—1
we= Ve = (U, VOU. (1.117)
=1 '
The normalized vector then is
Uy

g o). - (1.118)

A basis is more convenient if its vectors are orthonormal,

Uk =
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1.11 Outer products

From any two vectors f/ and g, we may make an operator A that takes any vector
h into the vector f with coefficient (g, /)

Al =f{g.h. (1.119)

Since for any vectors e,  and numbers z, w

| A(zh+we) =f{g,zh+we) =zf (g, h)+wf (g, e} = zAht+wAde (1.129)

it follows that A4 is linear. . |
If in some basis f, g, and & are vectors with components fi, gi, and A, then

the linear transformation is \
N N 1
(ahy = Ayhy=fi) g b (1.121)
j=1 =1
and in that basis 4 is the mafrix with entries

Ay =fig}. o (1122)

1t is the outer product of the vectors f and g.

Example 1.20 (Outer product) If in some basis the vectors f and g are
i P
| 2) ) | (1.123)
= and g= 1 )

then their outer product is the matrix
2 , N (202 —6i 1124
A= (3) (< 1 -3)= (mm‘ 3 9 (1.124)
Dirac developed a notation that handles outer products very easily. 0l

Example 1.21 (Outer products)  If the vectors [ =|f)and g = lg) are
a B
Iy = and g = ( " ) (1.12%)

then their outer products are

azt v za*  zb*  zc”
i = (b o) ana = (G By ) 0429

wa™
cz¥  ew*

1,12 DIRAC NOTATION

as well as

aa®  ab®  act : " N
)t = { ba* Bb* be* | and Ig)(glz(zz Z“"). (1.127)

* *
wZ Wi
ca* cob* ot

Students should feel free to write down their own examples. |

1.12 Dirac notation

Outer products are important in quantum mechanics, and so Dirac invented
a notation for lincar algebra that makes them easy to write. In his notation, a
vector f is a ket /' = |f). The new thing in his notation is the bra {g|. The inner
product of two vectors (g, f) is the bracket (g,/) = (g|f). A matrix element
(g, Af) is then (g, Af) = (gl4|f} in which the bra and ket bracket the operator.
In Dirac notation, the outer product 44 = f (g, k) reads A |h) = |/ {glh}, so
that the outer product A itself is 4 = |} {g|. Before Dirac, bras were implicit in
the definition of the inner product, but they did not appear explicitly; there was
no way to write the bra {(g| or the operator [/ {g].

If the kets |n) form an orthonormal basis in an N-dimensional vector space,
then we can expand an arbitrary ket in the space as

; |
=" caln). (1.128)

n=1

Since the basis vectors are orthonormal {€|n) = &g, we can identify the
coefficients ¢, by forming the inner product

(€)= ) cn (Elm) = Y g = co. (1.129)
' =1

n=1
The original expansion (1.128) then must be

N N

N N N -
)= alny = lfyiny =Y jm) (alf) = (Z 1) (nl) ). (1.130)
n=1

=1 n=1 =1

Since this equation must hold for every vector |f) in the space, it follows that .

the sum of outer products within the parentheses is the identity operator for the
space

N
I=3 Inptnl. SR
n=1 ’ :
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is {0 = e
Every set of kets |a,) that forms an orthonormal bas1‘s {atplag) = 8¢ for th
Spaci: gives us an equivalent representation of the identity operator

N N
1.132)
I= ety {otn] = |72} {ml. (
Do

n=1

1 i r
Before Dirac, one could not write such equations. They provide for every vecto
[/} in the space the expansions

N .
) =3 lew) () = D I alf. (1.133)
=l

n=1

Example 1.22 (Inner-product rules) In Dirac’s notation, the rules {(1.73-1.76)
of a positive-definite inner procuct are

B 1,134
{flgd = &lh (1 135;
(flaig + g2 = alflgn +2fie) (1.136)
(i +2f2lgy = g + a0kl (1-137)
=0 and {1NH=0 & F=0 (1.
Usually states in Dirac notation are labeled |y) or by their quantum numbers

i inside
|n, I, m), and one rarely sees plus signs or complex numbers or operators
L L]
bras or kets. But one should,

Example 1.23 (Gram-Schmidt) In Dirac notation, thp formuta (1.117) for the
kth orthogonal linear combination of the vectors | V¢) 18 -

k-1 k-1 R
i) = Vi) — DN UMUi Vi) = (I -2 ;mwfl) Vi) (1.138)

j==1 i=1
and the formula (1.118) for the kth orthonormal linear combination of the
vectors | Ve) is

U = (1.139)
T Vndmd

i |
The vectors | Uy} are not unique; they vary with the order of the | V).

Vectors and linear operators are abstract. The numbers we comf;utef w1;c:101t2?;
inner products like {g|/} and (g|4|f}. In terms of N orthonprmal 1 ;flstv hors
ln) with fy, = {n|f} and g = (gin), we can use the expansion (1.131) to
r W=
these inner products as

1.12 DIRAC NOTATION

N

N
G = @) =) o) = 3 g,
n—1

=1

N N
GA) = @UANN) = 3" (elminidieyely = 3 gl dufe (1.140)
nb=1 w,E=1

in which d,¢ = (n|A4|€). We often gather the inner products Je = {L|f) into a
column vector / with components Je=n

"y A

2

( _!f) fz (1.141)
If) £

and the (n|A[€) into a matrix 4 with matrix elements A,,g = (n|A|£}. If we also

line up the inner products (g|n) = {gln)* in a row vector that is the transpose of
the complex conjugate of the column vector g

g" = (g™, 2y, (NgY*) = (gt 85, .. &%) (1.142)

then we can write inner products in matrix notation as {glf) = g'f and as
gldlf) = gl4r.

If we switch to a different basis, say from |n)s to letn)s, then the components
of the column vectors change from Jo = {nlf) to !

» = {aalf), and similarly
those of the row vectors g! and of the matrix 4 change, but the bras, the kets,
the linear operators, and t

he inner products {glf} and (g|4{f) do not change
because the identity operator is basis independent (1.132)

N N

) =3 (elminlf) = 3 (gl (enlf),

=] n=]
N N

(E1AY) = D ImelAleel) = 3 (glanhlon| Alag) (welf). (1.143)

n,e=1 n =1

Dirac’s outer products show how to change from one basis to another. The
sum of outer products

N
U= Jay){nl - (1.144)
n=1

maps the ket |£) of the orthonormal basis we started with into |ag)

=1

N N
UIE) =} lonb(me) = 3 ou) ug = for). (1.145)
n==1
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basis) If the ket |ay) of the new basis is

. imple change of
Example Lt ) + 1} = (1) then the operator that maps the

simply le) = In+ 1) with jex) = [N
N kets |n) into the kets lom) 18

N N

U= lannl =)+ 1)l (1.146)
a=l n=l1

nges the basis; it sends |n) to |7 + 2). The set of

U? of U also ¢ha
e T N forms a group known as Zy. il

Bperators Ukfork=1,2,...,

1.13 The adjoint of an operator

¢ most general linear operator on an N-dimensional vec(;
tor space is a sum of dyadics like z [} {£| in which z is a complex number‘ a;x
the kets |#) and |£) are two of the N orthonormal kets that make up a basis for

the space. The adjoint of this basic linear operator 18
(z|m DT = 2* 16 (nl.
Thus with z = {#]4|£), the most general lincar operator oi the space 18
N

In Dirac’s notation, th

(1.147)

A=IAl = Z ) (nl A1£) (€] (1.148)
ni=1 _ )

and its adjoint 4T is the operator IAT ' -

N N o , kg
At =3 AT el = > 1o nidiey nl = > Imel Al el

nf=1 n,f=1 me=1

1t follows that (n|AT€) = {£]l4]m)" so that the matrix A,, that represents A in

this basis is 7
Al = (ala|e) = (@ Adin)* = A, = AYT (1.149)

reement with our definition (1.28) of the adjoint of a matrix as the

e ate, At = 4*T. We also have

transpose of its complex conjug |
@A) = (gl A11f) = (F14ig)* = (f14g)" = (Aglf)-

Taking the adjoint of the adjoint is by (1.147) :
[cment] =100 =zl (1.151)

m the matrix formula

(1.150)

the same as doing nothing at all. This also follows fro
(1.149) because both (A*)* = A and (A" = A4, and s0

(A’f)T = (4TYT =4, (1.152)
the adjoint of the adjoint of a matrix is the original matrix.
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Before Dirac, the adjoint 4! of a linear operator A was defined by

(& AY) = (Ag.f) = (f,4g)". - (1183)
This definition also implies that A = 4 since

(&, ATf) = (Alg, 1) = (f, Alg)* = (4f, 0)* = (g, 4}, (1.154)
We also have (g, Af) = (g, ATf) = (4tg, ).

1.14 Self-adjoint or hermitian linear operators

An operator 4 that is equal to its adjoint, 4! = 4, is self adjoint or hermi-
tian. In view of (1.149), the matrix elements of a self-adjoint linear operator 4
satisfy (nj4116) = (£ldln)* = {nl4|£) in any orthonormal basis. So a matrix
that. represents a hermitian operator is equal to the transpose of its complex
conjugate

nt =

Ane = (0l A1) = (| AT[ey = (£ Amy* = 4T = 41, (1.155)
‘We also have

BIAN) = (Aglf) = {(fldg)* = {f1 4 |g)* _ (1.156)
and in pre-Dirac notation

A matrix A that is real and symmetric or imaginary and antisymmetric is her-
mitian. But a self-adjoint linear operator A that is represented by a matrix Ay
that is real and symmetric (or imaginary and antisymmetric) in one orthonor-
mal basis will not in general be represented by a matrix that is real and
symmetric (or imaginary and antisymmetric) in a different orthonormal basis,
but it will be represented by a hermitian matrix in every orthonormal basis,

A ket |¢'} is an eigenvector of a linear operator 4 with eigenvalue ¢’ if A|a') =
d'|a'}. As we'll see in section 1.28, hermitian matrices have real eigenvalues and
complete sets of orthonormat eigenvectors, Hermitian operators and matrices
represent physical variables in quantum mechanics.

1.15 Real, symmetric linear operators
In quaptum mechanics, we usually consider complex vector spaoeé, that is,
spaces in which the vectors |f) are complex linear combinations
N

=2zl (1.158)
=1

of complex orthonormal basis vectors 7).
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i i ector
But real vector spaces also are of intercst. A real vector space 1s a v
space in which the vectors |f) are real linear combinations
N

)= xln) (1.159)

n=1

*
of real orthonormal basis vectors, x¥ = xp and [n)* = |n).
A real linear operator A on a real vector space

N N
A=Y iminldim)ml = 1n)Ann(ml (1160

=1 nm=1

eal linear is seif
is represented by a real matrix A%, = Awn A 16.51% linear operator 4 tl;itl tls Z "
adjoint on a real vecior space satisfies the condition (1.157) of hermiticity
with the understanding that complex conjugation has no effect

(g, Af) =(dg.N) = (49" = ([, 48). (1.161)

i i i itian
Thus its matrix elements are symmetric, ( gl AN = (f jA|g). Since A 1si Sh??;; and
as well as real, the matrix Ap that represents it (in a real basis)

) ; Lk
hermitian, and so is symmetric Apm = AL, = A

1.16 Unitary operators
A unitary operator U is one whose adjoint is its inversg : |
vut=vtu=1 : (1.162)

. —
Any operator that changes from one orthonormal basis |#) to another |0}

N o
U= laninl | (1.163)

n=l ) _
is unitary since

N . o
vut =3 lowiel Y Imb{aml = 3 le)nlm) (el
n=1 1

mm=l (1.164)
N
=1

_ }E |t} S m (el ﬁzm)(anl =1

=1 n

m=

as well as y

N N .
Ut =3 ) el ) lemd ] =
n=1

m=1

|my{nj = 1. (1.165)
1 .

=
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1.17 HILBERT SPACE

A unitary operator maps any orthonormal basis |#) into another orthonormal
basis |t). Forif ja,} = Uln), then {oy,|oy,) = Onm (exercise 1.22). If we multiply
the relation |a,) = Uln) by the bra (1| and then sum over the index n, we get

N

N N
D laninl =Y Uyl = U Injinl = U. (1.166)
n=1

n=l n=l

Every unitary operator is a basis-changing operator, and vice versa.

Inner products do not change under unitary transformations because (glf) =
(Ut UIfy = (UglUl) = (UglUf), which in pre-Dirac notation is (g,/) =
(& UM U = (Ug, Uf).

Unitary matrices have unimodular determinants because the determinant of
the product of two matrices is the product of their determinants (1.204) and
because transposition doesn’t change the value of a determinant (1 194y

L= I = |UUY = |U||\UF| = |0\ U = | U U (1.167)

A unitary matrix that is real is orthogonal and satisfies

O0"=0"0 =1, : {1.168)

1.17 Hilbert space

We have mostly been talking about linear operators that act on finite-
dimensional vector spaces and that can be represented by matrices. But
infinite-dimensional vector spaces and the linear operators that act on them
play central roles in electrodynamics and quantum mechanics, For instance, the
Hilbert space H of all “wave” functions v(x, 7) that are square integrable over
three-dimensional space at all times ¢ is of infinite dimension.

In one space dimension, the state |x') represents a particle at position x” and
is an eigenstate of the hermitian position operator x with eigenvalue x’, that
i8, x|x"y = x'|x). These states form a basis that is orthogonal in the sense that
{x]x") = 0 for x # x' and normalized in the sense that {x|x') = 8x —xNin
which 8(x — ') is Dirac’s delta funciion. The delta function 8(x — x') actually
is a functional ./ that maps any suitably smooth function Jinto

SXJ[f]zfﬁ(x—x’)f(x)dx = f(x), (1.169)

its value at x'.

Another basis for the Hilbert space of one-dimensional quantum mechanics
is made of the states |p) of well-defined momentum. The state |p’} represents
a particle or system with momentum p'. It is an eigenstate of the hermitian
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momentum operator p with eigenvalue p', that is, p| #) = p'\p"}. The momentum
states also are orthonormal in Dirac’s sense, (plp/) = 8@ — 1),
The operator that translates a system in space by a distance a 13

U(a) = f [x + a){x}| dx. (1.170)

It maps the state {x} to the state |x’ 4+ a) and is unitary (exercise 1.23). Remark-
ably, this translation operator is an exponential of the momentum operator
U(a) = exp{—ipafh)n which h = /27 = 1.054x 10734 Js is Planck’s constant

divided by 27 o
In two dimensions, with basis states |x,y} that are orthonormal i D_1rac’s

sense, {x, ', V) = 8x — )8(y — ), the unitary operator
U= f |xcos@ — ysin@, xsind + ycos8){x, y| dxdy ' (1.171)

rotates a system in space by the angle 0. This rotation operator is the exponen-
tial U(8) = exp(—it Lz/ %) in which the z component of the angular momentum

s L, =Xpy— VPx- . -
We may carry most of our intuition about matrices over to these unitary

transformations that change from one infinite baii: to another, But we must
use common sense and keep in mind that infinite sums and integrals do not

always converge.

1.18 Antiunitary, antilinear operators

Certain maps on states ¥y — 1), such as those involving t%revérsai, are
implemented by operators K that are antilinear

K (zr +w) = K (zly) + w|$)) = 2 K|y} +w K|} = z*KgU+W*IK¢ (1.172)

and antiunitary . o
(K K) = (KPIKW) = o 9) = @) = (1) = 0 9)- (.173)
In Dirac notation, these rules are K(z|y)) = z* (¥} and K(w{g|) = w*i¢).

1.19 Symmetry in quantum mechanics

In quantum mechanics, a symmetry is a map of states |y) — |¢'y and ¢} — 19"}
that preserves inner products and probabilities

L 1) = Lol 1™ (1.174)

1.20 DETERMINANTS

Eugene Wigner (1902-1995) showed that every symmetry in quantum mechan-
ics can be represented either by an operator U/ that is linear and unitary or
by an operator K that is antilinear and antiunitary. The antilinear, anti{mi-
tary case scems to occur only when the symmetry involves time rever;al Most
symmetries are represented by operators that are linear and unitary. Linitar

operators are of great importance in guantum mechanics. We use the'm to r;epji

resent rotations, translations, L - ' i
, . Lorentz transformations, and int -
transformations. ) ernak-symmetry

1.20 Determinants

The determinant of 2 2 x 2 matrix 4 is

det A = |A| = Ay1 A2 — Ay Asa. (1.175)

In terms of the 2 x 2 antisymmetri i
‘ Clej = —ep) matrixepp = 1 = ~ i
e1] = ey = {, this determinant is s v o Witk

2 2
detd =373 ejdndp. (1.176)
i=1 j=1

It’s also true that

2 2
eredet A = Z ZEQ'A;]cAjg. . (L.177
=1 j=1

These definitions and results ex
. tend to any square matrix. If A i
maitrix, then is determinant is : Al

3

detd = > epdidpdis (1.178)
ijk=1

in which ey is totally antisymmetric with ej33 = 1, and the sums over i, j, and
f run from 1 to 3. More explicitly, this determinant is ”

3

det 4 Z e AndpAis
i k=1

3 3
EAH Z e ApAis
i=1 Jk=1

= Ayl (A2 A3z — AzpAn) + Az (ApAdz — A12433)
+ Axp (A1adp — AnArs). C(1.179)
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The terms within parentheses are the 2 x 2 determinants I(E?,Hed minors) of the
matrix 4 without column 1 and row i, multiplied by (~1)"""

det A = Ap(—=1) (Ands — Andn) + Ay (~1) (Aypdss — Andia)
F Ay (=1 (A1pdx — Andr3) .
= A Cp 4 A21Can + 431 O ' (1.1$ )
The minors multiplied by (— 1)+ are called cofactors:
Ci1 = Andaz — 423432,
Cyy = And1z — A12433,
Ca) = A12dn — Andu. S (118D

T i The determinant of a 3 x 3
le 1.25 (Determinant of a 3 x 3 rqatnx) ‘
Eﬁg‘f is the dot-product of the vector of its first row with the cross-product of

the vectors of its second and third rows:

o 3 3 =U-(VxW)
vov v | = 3 enliVWe= Y Uty x W= Ul

W, Wi Wi i k=1 i=1 ]

which is called the scalar griple product.

O

Laplace used the totally antisymmetric symbol €,y wi.th N indices and
with ey23. w = | to define the determinant of an N x N matrix A as
N

detd= Y, i, in A 142 - - AigN (1.182)

—

. it iz s in=1
in which the sums over i ... iy tun from 1 to N. In terms of cofactors, two
forms of his expansion of this determinant are

N N
detA = ZAr‘kCik- = ZAikcik | (1-133)_
=1 k=1

in which the first sum is over the row index i but not the (arbitrary) columa ..

index k, and the second sum is over the column index k bl?.t not the_ {(arbitrary)
row iud’ex i The cofactor Ci 18 (— 1)”" My, in which the minor M, is the deter-
minant of the (N — 1) x (N — 1) matrix 4 without its ith row and kth column.

It’s also true that
N

Chyka.. ey detd = Z eflfz...iNAﬂfC]Aizkz e AiNkN' (1184)

i 21200 iy =1

1.20 DETERMINANTS

The key feature of a determinant is that it is an antisymmetric combination
of products of the elements 4y of a matrix 4. One implication of this antisym-
metry is that the interchange of any two rows or any two columns changes the
sign of the determinant. Another is that if one adds a multiple of one column

to another column, for example a multiple xA; of column 2 to column 1, then
the determinant

N . : '

detA’ = Z Efiiyiin (Aill +xA,-12) A;ﬂ. Ay (1.185)

182 yeesin=1 '

is unchanged. The reason is that the extra term § det A4 vanishes

N .
sdetd= Y Xeyp.iyAiodip.. Ay =0 - (1.186)
fluf iy =1

because it is proportional to a sum of products of a factor e j,..;y that is anfi-

symmetric in ) and i and a factor 4;24;,2 that is symmetric in these indices.
For instance, when i1 and 7, are 5 & 7 and 7 & 5, the two terms cancel

es7. iy Asadn . Ajgn +ers iyAnds . Ay =0 (1.187)

because es57..iy = —€75...iy-
By repeated additions of xy4,, x3ds, ete. to 41, we can change the first
column of the matrix 4 to a linear combination of all the columns
N
Aq — An+ ) xdin o (LI8Y)
k=2
without changing det.4. In this linear combination, the coefficients x; are
arbitrary. The analogous operation with arbitrary yx
N
A — A+ ) vedie (1.189)
k=1 kst
replaces the £th column by a lincar combination of all the columns without
changing det 4. _
Suppose that the columns of an N x N matrix 4 are linearly dependent
(section 1.8), so that the linear combination of colnmns

N U Co
> kA =0 fori=1,...N ' (1.190)
k=1

vanishes for some coefficients y not all zero. Suppose ¥ # 0. Then by adding
suitable linear combinations of columns 2 through N to column 1, we could
make afl the modified elements A}, of column 1 vanish without changing det 4.
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But then det 4 as given by (1.182) would vanish. Thus the determinant of any
matrix whose columns are linearly dependent must vanish.

The converse also is true: if columns of a matrix are linearly independent,
then the determinant of that matrix can not vanish. The reason is that any lin-
early independent set of vectors is complete (section 1.8). Thusif the columns of
o matrix A are linearly independent and therefore complete, some linear combi-
nation of all columns 2 through N when added to column 1 will convert column
1 into a (nonzero) multiple of the ¥ -dimensional column vector (1,0.0,...0),
say {(c1,0,0,...0). Similar operations will convert column 2 into a {(nonzero)
multiple of the column vector (0,1,0,...0), say (0,c2,0,.. .0). Continuing in
this way, we may convert the matrix A to a matrix with nonzero entries along
the main diagonal and zeros everywhere else. The determinant det A is then the
product of the nonzero diagonal entries ¢1¢ ... CN # 0, and so det 4 can not
vanish.

We may extend these arguments o the rows of a matrix. The addition to row
& of a lincar combination of the other rows

y |
Ay — A+ Y zedu (1.191)
=1,k

does not change the value of fhe determinant. In this way, one may show that
the determinant of a matrix vanishes if and only if its rows are linearly depen-
dent. The reason why these results apply to the rows as well as to the columns
is that the determinant of a matrix 4 may be defined either in terms of the
columns as in definitions (1.182 & 1.184) or in terms of the rows:

N .
dotd= > enpiyAindzi . ANy (1.192)
T2 in=1
N
Clerky. dey det A = Z Ciyigin Atyiy Ateoiy - + - Akyin: (1.193)

i daenin=1

These and other properties of determinants follow from a study of permutations
{section 10.13). Detailed proofs are in Aitken (1959).
By comparing the row (1.182 & 1.184) and column (1.192 & 1.193) defini-
tions of determinants, we see that the determinant of the transpose of a matrix
is the same as the determinant of the matrix itself:

det (A7) = det 4. (1194

Let us return for a moment to Laplace’s expansion (1.183) of the determinant

det A of an N x N matrix 4 as a sum of Ay Cy over the row index 7 with the .

column index k held fixed
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N .
detd =Y AyCy (1.195)
i=t
in order to prove that

N
Skedetd =Y AuCu. (1.196)

i=l
qu k = £, this formula just repeats Laplace’s expansion {(1.195). But for k& # £
it is Laplace’s expansion for the determinant of a matrix A’ that is the same a;
4 but with its £th column replaced by its kth one. Since the matrix 4’ has two

1denti.cal colummns, its determinant vanishes, which explains (1.196) for & # £

Thls-mle (1.196) provides a formula for the inverse of a matrix A4 whc;se
determinant does not vanish. Such matrices are said to be nonsingular. The

1+ _] . . i
inverse A~ of an N x N nonsingular matrix 4 is the transpose of the matrix of
cofactors divided by det A4

_ Ci ol
A 1 = it -1
( )Ei derd A™ = detA’ (1.197)

To verify this formula, we use it for 4™ in the product A~14 and note that by
(1.196) the £kth entry of the product 4714 is just 8

N N
(A_lA)zk - Z (A—I)Er’AIk - dSTrilAik = Ok (1.198)
]

=1 1=

Exa.mple 1.26 (Inverting a 2 x 2 matrix) Let’s apply our formula (1.197) to find
the inverse of the general 2 x 2 matrix

A= (‘; Z) (1.199)

- 1 d -b
A= ——— (_c a), (1.200)

which is the correct inverse as long as ad # be. 0

We find then

The simple example of matrix multiplication

a b e\ [t x g xa+b yvatzb+c :
d e f 0 1 z]l=|d xd+e yd+zet+f (1.201)
g h i 0 0 1 g xg+h yg+zh+i

:th;)ws Fhat the operatiqns {1.189) on columns that don’t change the value of the
eterminant can be written as matrix multiplication from the right by a matrix
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that has unity on its main diagonal and zeros below. Now consider the matrix

4 ON\{I BY (4 AB) (1.202)
7 B/\O I} \~I 0
in which 4 and Bare N x N matrices, I is the N x N idefntlilty zzlla?zixilani 1?1 ;s;
i X i ithe left-hand side has
N x N matrix of all zeros. The second mat'rlx on i
g;?its main diagonal and zeros below, and so it does not change the value of the

determinant of the matrix to its left, which then must equal that of the matrix
on the right-hand side:

A0 A AB (1.203)

By using Lapiace’s expansion (1.183) along the first colurﬁnltotevalute(t)tz OtIi;e
i - i his expansion along the last Tow -
terminant on the lefi-hand side and { .
?)iti: the determinant on the right-hand ide, one finds that the determinant of
the product of two matrices is the product of the determinants

product

det 4 det B = det AB. (1.204)

rExample 1.27 (Two 2 x 2 matrices) When the matrices A and Bareboth 2 x 2,
the two sides of (1.203) are

ap az 0 0

A 0 ay  axn O 0
det (—[ B) = det -1 0 by biz
0 -1 by bnm
= g1y det B - az1a12 det B = det Adet B (1.205)

—_—

ajl aip  abn  abiz
A AB ay  an abn  abxn
d"‘t(-l 0) =dtl ) 0 0 0
¢ -1 0 0 o
= (~1)Cq = (=1)(~1)det AB = det4B  (1.206)
G
and so they give the product rule det A det B = det AB.
L—

Often one uses the notation |A| = det 4 to denote a determinant. In tms

more compact notation, the obvious generalization of the product rule 18
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|ABC...Z| = |A||B|...|2|. (1.207)

The product rule (1.204) implies that det (4~1} is 1/ det A since

| = det] = det (AA"‘) = det A det (A—l) . (1.208)

Incidentally, Gauss, Jordan, and modern mathematicians have developed
much faster ways of computing determinants and matrix inverses than those
(1.183 & 1.197) due to Laplace. Octave, Matlab, Maple, and Mathematica use

these modern techniques, which also are freely available as programs in C and
FORTRAN from www.netlib,org/lapack.

Example 1.28 (Numerical tricks) Adding multiples of rows to other rows does
not change the value of a determinant, and interchanging two rows only changes
a determinant by a minus sign. So we can use these operations, which leave
determinants invariant, to make a matrix upper triangular, a form in which its

determinant is just the product of the factors on its diagonal. For instance, to
make the matrix

2 1

A=1-2 -6 3 (1.209)
4 2 =5

upper triangular, we add twice the firsi row to the second row

1 2 |

0 -2 5 (1.210)
4 2 -5 '

and then subtract four times the first row from the third

1 2 i

0 -2 517. {1.211)
6 -6 -9

Next, we sublract three times the second row from the third

i 2 1

0 -2 5 i, (1.212)
6 0 -24

We now find as the determinant of 4 the product of ifs diagonal elements:

4] = 1{—2)(~24) = 48. (1.213)

The Matlab command is d = det(4). O
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e

1.21 Systems of linear equations

Suppose we wish to solve the system of N linear equations

N
ZAikxk =y (1.214)
k=1 .

for N unknowns x. In matrix notation, with 4 an N x N matrix and x and y
N-vectors, this system of equations is Ax = y- If the matrix A is nonsingular,
that is, if det(4) # 0, then it has an inverse AL given by (1.197), and we may
multiply both sides of 4x = y by 4! and so find x as x = A~' y. When 4 is
nonsingular, this is the unique solution to (1 214).

When A is singulas, det(4) = 0, and so its columns are linearly dependent
(section 1.20). In this case, the linear dependence of the columns of A implics
that A z = 0 for some nonzero vector z. Thusif x is a solution, so that A x =Y,
then A(x + ¢z) = AX + ¢ Az = yimplies that x -+ ¢z for all ¢ also is a solution.
So if 'det(4) = 0, then there may be solutions, but there can be no unique
solution. Whether equation (1.214) has any solutions when det(4) = 0 depends
on whether the vector y can be gxpressed as a linear combination of the columns
of A. Since these columns are linearly dependent, they span a subspace of fewer
than N dimensions, and so (1.214) has solutions only when the N-vector y lies
in that subspace.

A system of M < N eguations

S dprg=y; for i=12...M (1215)
k=1

in N unknowns is under-determined. As long as at least M of the N columns A
of the matrix A are linearly independent, such a system always has solutions,
but they will not be unique.

1.22 Linear least squares
Suppose we have a system of M = N equations in N unknowns x

N
> duxe =y for i= 1,2,..., M.
k=1

This problem is over-determined and, in general, has no solution, but it does
have an approximate solution due to Carl Gauss (1777-1855). '

1 the matrix 4 and the vector y are real, then Gauss’s solution is the N values
x;, that minimize the sum E of the squares of the errors
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2

M N
E= ; (yr- - ZAkak) . (1217)

k=1
The minimizing values x; make the N derivatives of £ vanish

N .
Aikxk) (—djey (1.218)
1

DE

M
%0 0=§2(J’i—

or in matrix notation ATy = AT 4x, Si ; -
A"y = A" Ax. Since A is real, the matrix A" 4 is nonnega-

tive (1.38); if' it also is positive (1.3 i :
solation is P (1.39), then it has an inverse, and our least-squares

fe=

x = (ATA) M ATy, (1.219)

If the matrix 4 and the vec

tor y are complex, and if the matri i iti

/ , trix A1

then one may show (exercise 1,25) that Gauss’s solution is Apositie

x= (A’fA)”l Aty (1.220)

1.23 Lagrange multipliers

f(" ) f § ] k]

are among the points at which its gradient vanishes I

Vf(x) = 0. (1.221)
These are the stationary points of /',

Example 1.29 (Minimum) For i i
rinimum s at ) For instance, if f(x) = x{ + 2x3 + 3x%, then its

VI(x) = (2x7,4x2,6x7) = 0

| 1.222
thatis,at x1 = x2 = 33 = 0. ( )

|

- But how do we find the extrema () i i i
a I}agtrlange multiplier (Joseph-L0u;)sf{51)‘;)1';11;1);61:n 111’?; Zitllgiyi’»? constraintt Weuse
n i , .

© Vanil: lfagi toft :ni :):'on:tramt c(x) = 0, we no longer expect the gradient V(x)
S t,he Constgl).ai iic éon c{x - Vf{x) must vanish in those directions dx that
o Th‘. o dx - Vf(x) = 0 for all dx that make the dot-product
v v - This means that ij {(x) and Ve(x) must be parallel. So the

| [f(x) subject to the constraint ¢(x) = 0 satisfy two equations

Vi(x)=AVe(x) and e(x)=0. (1.223)
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1.24 BIGENVECTORS

These equations define the exirema of the unconstrained function : 5 1.24 Eigenvect
_ . oS
Lix, ) =f(x)—} ¢(x) (1.224) If a linear operator 4 maps a nonzero vector ju) into a multiple of itself
; se

of the n + 1 variables x, ... ) Xs A
Alu) = Mu)

VL(x,A) = Vf(x) - AVe(x)=0 and BL(;):D = —c(x)=0. (1.225)

(1.234)

then the vector |u} is an el
0 the v eigenvector of A with ei
adjective eigen means special or proper.) P cigenmalue 2. (The German

The variable A is a Lagrange multiplier.
In the case of k consiraints X)) =0,..., clx) = 0, the projection v/ must - If the vectors {ik)} fork =1 N fi :
. =1, ..., N form a basis for the vector s i i
pace in which

vanish in those directions dx that preserve all the constraints. So dx - Vf (x)=0 A acts, then we can write the identi
. . ? ntit %
for all dx that make all dx - Vi(x) = 0 for j = 1,...,k. The gradient vf will «+-++|N)(N|. By inserting this formulg 1?%1;? :fﬁzef?;tghfhzie}ce > It = L1+
1genvecior equation

satisfy this requirement if it’s a linear combination

V=M Ty 4o Ak Vg (1.226)

(1.234), we can write it as

of the k gradients because then dx-Vf will vanish if dx-V¢j = Oforj=1,....k Z("‘TMW)(EIM) = A (klu) (1.235)

The extrema also must satisfy the constraints _ £=1
ey =0,...,c(x) =0 (1227 In matrix notation, with Axe = (k|4]£) and ug = {£|u), thisis Au =2
_ > M= Al

Equations (1 226 & 1.227) define the extrema of the unconstrained function
Lix,») =f(x)— M ey (x) 4+ hk %) (1.228) Example 1.31 (Eigenvalues of an orthogonal matrix) The matri d
ix equation

of the n + k variables x and A ( cosf  sin 9) ! o f 1 .
VLR = V) — A Ve () = o = A Vel =0 (1229 —sing - cosd (i") = (if) (1236)

- ?ﬂl:llsi gs “Eﬁit 1.:he eiglenveci(gs of th'is 2 % 2 orthogonal matrix are the 2-tuples
JL(x, ) , : : nail) D §1genv§ ues e, The eigenvalues A of a unitary (and of an orthop 0-
o= T () =0 for j=1...k (1.230) re unimodulas, {A| = 1 (exerelsc 1.26). 0

J .

m

Example 1.30 (Constrained extrema and eigenvectors) Suppose Wwe want to find-
the extrema of a real, symmetric quadratic form f(x) = x"T4x subject to the : il
| constraint Xy =x-x—1 which says that the vecior x is of unit length. We form Z Aj g = huj. (1.237)
the function h ) k=1

e antisymmetry Ay = — Ay of 4 implies that

L(x,)u)w—-xTAxﬁ)k(x-x— D (1.231)
N

and since the matrix A is real and symmetric, we find its unconstrained extrema 4
' Ui Aj Ul =
as P 0. (1.238)

VEI(x,3)=24x— 22 x= 0 and x-x=1 Q231 : Thus the last two relations imply that
The extrema of f(x) = xTAX subject to the constraint e(x) = X X — 1 arc the . .
pormalized eigenvectors ' 0= Z g = i P S
par i ' (1.239)

Ax=rx and x-x=1 (1.233) ife==1

. Thus either the ei.
genvalue A - : .
m _ lfnishes. or the dot-product of the eigenvector with itsell

of the real, symmetric mairix A.
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i frix
A subspace celug) ¥ + oyl spanned by any et of eigenvectors of a ma

{is left invariant by its action, that is . (1.240)
A (celugy + o A crlur) = cohelug) + -0+ Crbelie). '

]
Eigenvectors spah jnvariant subspaces.

1.25 Eigenvectors of a squaré matrix

i ‘with N entries
Let Abean N X N matrix with complex entries Ag. A ve.:otor Yy with N e
e entrl
¥V (not alt zero) is an eigenvector of A with eigenvalue A if
‘ R

N .
AV =2V = Y AuVie= Vi (1.241)
k=1
Every N x N matrix 4 has N eigenvectors 7 and eigenvalues g
w AVO = a VY (1.242)

for ¢ =1...N.Tosee why, we write the top equation (1.241) as

S 1.243)
3 (Aige = 28i) Vie = U : (1.243)
- N matrix with
i i — — 0 in which I is the N x Nma :
! trix notafion as (A-rDV e
O;tlge?? e = Ok This equation and (1.243) say that the cglgn;?igfste ciion oy
il - M -Iconsidered as vectors, are linearly dependjcnt, as defin e apen.
We sa\n; in section 1.20 that the columns of a maltrg A;hki :r;o; e o
! i i — aJ) vanishes. Lhu
nd only if the determinant \/_1 : . '
g??;;;f ezilgenvahyle equation (1.241) exists if and only if the determinant

dot(d - A = 14— M) =0 (1.244)

4 ;\-

~1,N—1 YN
|A—M\EP(A,A)=|A\+---+(H1)N LN-1Tr4 +(-1)

N 1.245)
= Zpk }\-k =0 ‘ (
Je=0

in which po = 14l py-1 = (DY 1Tx4, and py = (—1)V. (ALl the pgs are
n = . -

S ¥ i h T ——
. (1 4] 9 e

i i here in
haracteristic equation always has N roots of solutilons Ae 1ymfg s?til:&vf ;m
ih: Icomplex plane. Thus the characteristic polynomial has the facto

P(h, A) = (A = M2 — 2. O — Ay (1.246)
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For every root Ag, there is a nonzero eigenvector V&) whose components V(f)
are the coefficients that make the N vectors Ay — A 8 that are the columns
of the matrix 4 — A¢l sum to zero in (1.243), Thus every N x N matrix has N
eigenvalues A, and N eigenvectors ¥

The N x N diagonal matrix Dyg = 84 A¢ is the canonical form of the miatrix

A; the matrix Vi = VE’) whose columns are the eigenvectors ) of 4 is the
modal matrix; and AV = VD,

Example 1.33 (The canonical form of a 3 x 3 matrix) If in Matlab we set 4 =
[012;345;678]and enter |V, D] = eig(4), then we get

0.1648  0.7997 0.4082 13,3485 0 0
Vo=105058 0.1042 08165 and D= 0 —13485 O
0.8468 --0.5913  0.4082

0 0 0
and one may check that AV = VD,

O

Setting A = 0 in the factored form (1.246) of P(A, 4) and in the characteristic

equation (1.245), we see that the determinant of every N x N matrix is the product
of its N eigenvalues

PO, A) = |Al =po = A2 .. AN (1.247

These N roots usually are all different, and when they are, the eigenvectors
V® are linearly independent. The first eigenvector is trivially linearly indepen-
dent. Let’s assume that the first K < N eigenvectors are linearly independent;
we’ll show that the first K 4 1 eigenvectors are linearly independent. If they were

linearly dependent, then there would be K + 1 numbers cp, not all zero, such
that

K+1
> eV =0, (1.248)
£=1

First we multiply this equation from the left by the linear operator 4 and use
the eigenvalue equation (1.242)

K+1 K41 £+1

AN @ vO=3 car® =3 ¢ PO —q. (1.249)
£=] £=1 ) £=1 C

Now we multiply the same equation (1.248) by A1

K41

S crn VO =0 1.250)
=1
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and subtract the product (1.250) from (1 249). The terms with £ = K +1 cancel
leaving

K
S g (e = A O =0 (1.251)
£=1 :
in which all the factors (b =~ Agy1) are different from zero since by assump-
tion all the eigenvalues are different. But this last equation says that the first
K eigenvectors are linearly dependent, which contradicts our assumption that
they were lincarly independent. This contradiction telis us that if all NV eigenvec-
tors of an N x N square matrix have different eigenvalues, then they are linearly
independent.

An eigenvalue A that is a single root of the characteristic equation (1.245) is
associated with a single eigenvector, it is called a simple eigenvalue. An eigen-
value A that is an nth root of the characleristic equation is associated with #
cigenvectors; it is said to be an n-fold degenerate eigenvalue or to have algebraic
multiplicity 7. s geometric multiplicity is the number #¢ < n of linearly inde-
pendent eigenvectors with cigenvalue A, A matrix with 7’ < n for any eigenvalue
5, is defective. Thus an N X N matrix with fewer than N lincarly independent

cigenvectors is defective.

Example 1.34 (A defective 2 x 2 matrix) Each of the 2 x 2 matrices

o=y o
: O

has only one linearly independent eigenvector and so is defective.

Suppose A isan N % N matrix that is not defective. We may use its N 1'mear1y
independent eigenvectors 7@ = |¢) to define the columns of an N x N matrix

Sas Ske = V,(f). Tn terms of S, the eigenvalue equation (1.242) takes the form
' N

ZAikSkﬂ = AgSip. . (1.253) o

k=1 .
s of § are lineazly imdependent, the determinant of S does not

Since the column
is well defined by

vanish — the matrix S'is nonsingular - and so its inverse S~
(1.197). So we may multiply this equation by 5-1 and get

ni
ik=1

or in matrix notation
§As = 49 (125
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N N
T (S—l) AeSee = 2 he (S—l)m_ Sie = hubng = M (1.254)

1_26 A MATRIX OBEYS ITS CHARACTERISTIC EQUATION

in . (d) . .

" zﬁgﬁ:ﬂi N ;S tlltl: d1a.g0crll'al form of the matrix A in which its eigenvalues A, are
a similarity tragnsfoinrjalt?iosa%[?gfs :::;l}'lyzlf:;ofl e; Se:‘_fhel‘e- e e i
: . nde i i
cf)rr:;gzi?si ;)y a similarity transff)rmation Sw]A;“:;‘ig;‘a;;gl igtlaxb(;agel;eeg:l?egc;
from it Bl;.%lc;};;l i&rm by the inverse 4 = SADS—! of that similarity transfor-
nondefé ; g the pro.du-ct rule (1.207), we sce that the determinant of an
G ctive square matrix is the product of its eigenvalues g

54D g

4] = 1SAD ST = S| 4D |57 = 15574 14D = 149 =ﬁxe (1.256)
o | =1

which is a special case of (1.247).

1.26 A matrix obeys its characteristic equation

y <, . ’

N
POLAY =14 =M =) perf =0 (1.257)
k=0

remains true when the matrix 4 replaces the variable A

N

P4, A) = k.
(4, A) ]ZOPkAC—O. | (1.258)

. .
0 see why, we use the formula (1.197) for the inverse of the matrix 4 — AT
O, AY

|4 — M|

in which C(x, AY is the trans i
! s pose of the matrix of cofacters of tl i
AL Since [4A — M| = P(), A), we have, rearranging, o matrhe 4=

(4-1n7! (1.259)

(A=ADCOL A = |4 -\ =P AT (1.260)

The transpose of the matri
' _ atrix of cofactors of i i i
in A with matrix coefficients the matrlx 4 = s & polynomial

CO A = Co+ Cih+ -+ Cy_ AL, (1.261)
The left-hand side of equation (1.260) is then

A— I T
( YCOL AT = ACy -+ (AC) — Co) +(AC, — A2 4 -
+(ACy_ 1 — Cy AV — Gy d. (1262)
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ing (1.257) and
Equating equal powers of & on both sides of (1.260), we have, using { )
qua
(1.262),
ACy = pol,
AC, — Co = pil,
ACy — Cy =pad,

— Cy-2=pN1l,
ACHt e (1.263)

X ions by f, the second by A,
i £t the first of these equations ‘ .
e Thin n;)u}tjtlgly froﬂ;getife last by AY and then add the resulting zizzt;?;l;
e et 0;1 't‘h.e; left-hand sides cancel, while the sum of those ?mtion ent
A'n th;‘(EeAm;g Thus a square matrix A obeys its characteristic €q
gives , A). .

P(A, A) or

S p N-—t TrA)AN LI (R R | , {
5_ kA T+prA+-+ (-1 {
:1 Okn n b - 8211895,
i Arthur Cayley, 1
Cayley-Hamilton theorem .( ; ]
anrgstll' r?r H;Ziitcil ?%,053,«1865). his derivation is due¢ to Tsrael Gelfand
a UEAES , T

and, 1961, pp. 89-90). o o )

8 3)20092\1(;3; 1;;1 :N matrix 4 obeys its characteristic cquation, its Nth powe
e - - - .
AJ‘]’3 zziuge expressed as a linear combination of its lesser powers

—pMt AN} (1.265)
AV = (- (lA\I+p1A+pzA2+--v+( DY H(TeA) )

2 v 2 x 2 matrix is given by
For instance, the square A* of every 2

6
A2 = AT + (TrA)A4. {1.266)

2 matrix
the 3-vector of Pauli matrices (1.32), then the square of the traceless 2 x
e -
A= -0 is

5 \ & & — i I= 621 (1267)
007 =10-01= g

+ify b3

s i ity to show (exercise (1.28)) that
in which 6% = @ - #. One may use this identity to i . e
exp (—if - 0 /2) = cos(@/2)—if -0 sin(@/2) .

“ . p - - t T SentS a
.o

i
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1.27 Functions of matrices

What sense can we make of a function S ofan ¥ x N matrix 4 and how

would we compute it? One way is to use the characteristic equation (1.265)
to express every power of 4 in terms of I, 4, ..., A% and the coeffi-

clents pg = |4, p1,p2,...,pn-2, and py_| = (=¥ 1Ted. Then if f(x) is a
polynomial or a function with a convergent power series

~

SO =3 gt (1.269)

k=0

in principle we may express /(4) in terms of N functions Ji(p) of the coefficients
P=(po,....px-1)as
N—1
SA) =" filp) 4. (1.270)

k=0

The identity (1.268) for exp (—if - o /2) isan N = 2 example of this technique,
which can become challenging when & = 3.

Example 1.36 (The 3 x 3 rotation matrix) In exercise (1.29), one finds the char-
acteristic equation (1.264) for the 3x3 matrix —if -.J in which (Vidi

€k 1s totally antisymmetric with €503 = 1. The generators Jy satisfy the com-
mutation relations [J;, S = iey i in which sums over repeated indices from
I to 3 are understood. In exercise (1.31), one uses this characteristic equation
for —i# + J to show that the 3x3 real orthogonal matrix exp(—if - J), which
represents a right-handed rotation by ¢ radians about the axis § , s

= fegy, and

exp(—if - Jy = cosO T — ifl + J sin 0 + (1 ~ cos8) B(G)T (1.271)

exp(—i + J)j = 85 c088 — sin @ e,-jkék + (1 — cos 6} @;éj

(1.272)
in terms of indices,

O

Direct use of the characteristic equation can become unwieldy for larger val-
ues of N. Fortunately, another trick is available if 4 is a nondefective square

matrix, and if the power series (1.269) for Jf(x) converges. For then A is related
to its diagonal form A by a similarity transformation (1.255), and we may
define f(4) as

f(A) = Sf(4D)s-! (1.273)

in which f(4®) is the diagonal matrix with entries (ag)
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0 Since p is hermitian, the matrix that represents it is never defective (section 1.28),

fla) O A and so it can be diagonalized by a similarity transformation p = § p@ S~!. By
@ 0 fla) O .- (1.274) (1.24), TtABC = TrBCA, 50 we can write S as

f(A = : . .

- : : ‘ S = —kTr (S p D518 (e S 1} = —kTr (@ n(p'D)) . 1.281

o o . flaw) r( o n(p"Y) ) r(p {(p )) { )

. . Hon
in which m, @2 ay are the eigenvalues of the matrix 4. This definitio
m ] PRI

A Vanishing eigeﬂvalue ,O(d) —
makes sense if f(4) is @ series in powers of A because then

k 0 contributes nothing to this trace since

fimy_oxlnx = 0. If the system has three states, populated with probabilities
o4, the elements of oD then the sum
|

o0 n '
()= i cp AT = Z Cn (SA(d)S‘l) . (1.275) _' S = —k(p1lnpy + pzln oy + p3ln p3)

0 n=0 =lklp1In(1/p1) + p2In(1/p2) + p3In (1/p3)] (1.282)

" et - .
So since §-18 = I, we have (SA(d)SJl)n =S (A (d)) S and thus 19 15 entropy

O

7)) =S [i on (A(d})”] g1 = SHADS, (1.276)

1.28 Hermitian matrices
n=0

: Hermitian matrices have very nice properties. By definition (1.30), a hermitian
which is (1.273). matrix 4 is square and unchanged by hermitian conjugation AT = 4. Since it is

square, the results of section 1.25 ensure that an N x N hermitian mairix 4 has

Example 1.37 (The ime-evolution operator) In quantum mechanics, the tune- N eigenvectors |n) with eigenvalues ay

i i - HY is a hermitian
i X i nential exp(—iHt/H) where H=H .
Tvolutlﬂgecl)-gtccl)?t(;lfléskfl;fn?ﬁgzjan (William Rowan Hamiiton, 18}(25;%225)1,92%1 Ay — . s
'y ’ B i ¢ (Max Planck, - . L f o .
o 1.1?54 th OG;SOJS \:125;13;3 (;C;]ggirs( are nover defective, 50 f1 In fact, all its eigenvalues are real. To see why, we take the adjoint
As we'll see in the next s .

can be diagonalized by a similarity transformation 1277 : |4t = a*(n| (1.284)
oot . '
H = SHOS™ ' : and use the property 4T = 4 to find

\Lm_

. . f
The diagonal elements of the diagonal matrix g are the energies by ©

the states of the system described by the hamiltonian H. The time-cvolution (HEAT e | . s
operator U(1) then is

1 (1.278) We niow form the inner product of both sides of this equation with the ket |n}
UGty = S exp(—if @yry s~ ’ and use the eigenvalue equation (1.283) to get

For a three-state system with angular frequencies @; = E;/h,1t18 (n|A|ny = ay(nln) = al{n|n}, (1.286)
it 0 : . B )
v e Sﬂl e—?wzf = (1.279) which (since {n]n) > 0) tells us that the eigenvalues are real
L)y = , .
0 0 e*l(t)?,f .

*

' = n = tn: (1.287)
in which the angular frequencies are w3¥g /.

d ..b d b a densit Since AT = A, the matrix elements of 4 between two of its eigenvectors satisfy

¥ [he entropy Sofa SySth SSCIr100 Y Y = h

et 1'?’8 e | § = Te(plnp 280 zi(mijl) - (am(]ﬂﬁ'l))* = (”lA|”’l)* - (J”IﬂA”i’l) = {m|A|n) = an{mn}, (1288)

operator p 18 the trace ,r : ) (1 ) |
hich k = b4 0 K h - d Lud B which lmphes that

i i k 1.38 x 1 23 iy is the ¢ nstant n ed after ng itz

10 WG . onstanti nam u oltzmanm

: . ; : ' ay, — ay} {min) = 0. 1.289
(1844-1906). The density operator p is hermitian, nonnegative, and Of\“mt trace (a3, — an) trim) _ ( )
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But by (1.287), the eigenvalues apm arc real, and so we have

(am - an) (”’iln) = 0, (1.290)
are different, the eigenvectors are

which tells us that when the eigenvalues
11 n eigenvalues usvally are different,

orthogonal. In the absence of a symmetry, &
and so the eigenvectors usually are mutually orthogonal.

When two OT more eigenvectors |ng) of a hermitian matrix have the same
their eigenvalues are said to be degenerate. In this case, any linear

f the degenerate eigenvectors also will be an eigenvector with the

4 (2 calnna) = (Z calm) (1290

aeD aeD

eigenvalue au,
combination o
same eigenvalue dn

whete D is the set of labels « of the eigenvectors with the same eigenvalue. It
the degenerate eigenvectors |ny) are linearly independent, then we may use the
Gramm-Schmidt procedure (1 108-1.118) to choose the coefficients cq 0 a8 to
construct degenerate eigenvectors that are orthogonal to each other and to the
nondegenerate elgenvectors. We then may normalize these mutaally ortho gonal

eigenvectors.
But two related questions arise. Are the degenerate eigenvectors |1a) linearly

7 And if 80, what-erthonormal linear combinations of them should

independen
we choose for a given. physical problem? Let’s consider the second question first:

We know (section 1.16) that unitary transformations preserve the orthono1-
mality of a basis. Any unitary transformation that commutes with the matrix 4

i4,U]=0 (1.292)

thonormal degenerale eigenvectors of 4 into another set of
the same eigenvajue because -

- (1.293)

maps each set of or
orthonormal degenerate cigenvectors of A with

AUlng) = Udlng) = an Ulte)-

mal degenerate eigenvec-

So there’s a huge spectrum of choices for the orthonor
hysical

tors of A with the same eigenvalue. What is the Aﬁht set for a given p

problem?
A sensible way to proceed is to add to the matrix

B multiplied by a tiy, real scale factor €

A(¢) = A +€B. (1.294)

a second hermitian matrix

The matrix B must completely break whatever symmetry led to the degeneracy
in the eigenvatues of 4. Ydeally, the matrix B should be one that represents 2
modification of 4 that is physically plausible and relevant to \he problem at
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hand. The hermitian matrix A( i
¢) then will have N diff; i
and N orthonormal nondegenerate eigenvectors crent elgemalucs a9

A(e)ng, ) = any(€)ing, €). {1.295)

These eigenvectors {ng, €) of A(¢) are orthogonal to each other

{ng,€ing, €) = 8g g o (1.296)

¢ g

|n)8) :.;ll—ffl{)ln‘ﬂ,f). (1.297)

We ma )
alwaysy nf;lo;)ise; them as the orthggonal degenerate eigenvectors of 4. Since one
aways T foyu n ah crooked hermitian matrix B that breaks any particular sym-
eigen{;ector ow}sl t ;Lt c?very N x N hermitian matrix 4 possesses N orthonormal
e Z;l\ge 12 a1: complete in the vector space in which A acts. (Any N lin
- nt vectors span their NV-di j ; ined
a0 D eir N-dimensional vector space, as explained
N 3, " :
matr(i)rf liei s]\l;etatnn to the ﬁFst question and again show that an N x N hermitian
matrix as 1(;)1thog0nal elgepvectors. To do this, we’ll first show that the space
ors orthogonal to an eigenvector |n) of a hermitian operator 4 ’

Afn) = An) (1.298)

1Ssu 1;2:81;1-311;: urilder the Iaf:tion of 4 —thatis, {njy) = 0implies (n}4|y} = 0. Weuse
ively the definition of A1, the hermiticity of A, the eigenvector e.quation

(1.298), the definition of the in i
(1298), the definit ner product, and the reality of the eigenvalues of

(nlAly) = (dTnly) = (dnly) = Qurly} = Manly) = Maulp) =0. - (1.299)

Thus the space of vector i
A imarian nds e oo e et o O e 0P
ow o ) .
represen?ede;?;ia]r\; :p]\?r}?iS;nii:gﬁlaif N ancfv “d_iﬂllleﬂ‘c"if)nal e eton
{1). The subspace of S consisting of all \t::sf;s So(;tllto a{ir?atﬁliaﬁ vis iy
. : olli1 —1)-
(Si;)r;lf;mggnal :f;:gtgr space SN‘_1 that is invariant undegr the actioil Z? i ( gn tlﬁs
space AI; Ls Thisliirit?r A is represented by an (N — 1) x (N — 1) hermitian
ConSistmg, 01f o ? rix has at least one eigenvector |2). The subspace of Sy—1:
e it vectors orthogonal to |2) is an (N — 2)-dimensional vector
represent;(zi s ;s(glivir;ant under the acti.o'n of A. On Sy_3, the operator 4 is
e et 1. B ) x (N —.2) hermitian matrix 4.2, which has at least
G, contjn'u By c‘;onst-ructlon, the vectors 13, |2}, and |3) are mutually
e .1 < ing in this way, we see that A has N orthogonal eigenvectors
.2, ..., N. Thus no hermitian matrix is defective.
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i tized
The N orthogonal eigenvectors lky of an N x N malrix A can be normaliz
and used to write the N x N identity operator I as

N
J = Z{k}(fﬁ. (1.300)

k=1
On multiplying from the left by the matrix A, we find

N N, : '
A=Al =AY ikl = > k) (1, (1.301)
k=1 k=1
iti trix 4. This expansion of 4
ich i - diagonal form of the hermitian matrix 4 pan
Whlc};ul; t;l\?er ofter products of its ¢igenstates mulltiphed by the1‘r3 Eltien;ei;?i
a)Sd?ibifts the possible values ax of the physical quantity represe}lllted 3; tite natr
Z when selective, nondestructive measurements |k) (k| of the quantity

do’?"ie hermitian matrix 4 is diagonal in the basis of its eigenstates H‘c}. |
302
Agj = el A} = adig- (1.302)

But in any other basis |ak), the matrix A appears as
N
' 303
Axe = (oxldlon) = Y _taxlman o). (1.303)
n=\ .
h itary matrix Upn = (aklm) relates the matrix Age in an arbltr‘ary 82)131_5
. " uc?'a oynal form A = UADUT in which AD is the diagonal matrix A,,‘,? =
';0 :‘}ts lAi arbitrary N x N hermitian matrix A can be diagonalized by a unitary
n Ynme.

-ansformation. o L . N
! ajlk matrix that is real and symmetric 13 hermitian; so is one that 1s 1mag

. . . ed b
ary and antisymmetric. A real, symmetric matrix R can be diagonalized by

n -

an orthogonal transformation

R=0ORWOT - (1.304)

. i i i | afrix
in which the matrix O is a real unitary matrix, that is, an orthogonal m .

(1.168).

\
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solutions ps = (M +VM?+ 4m2) /2. The larger mass p+ ~ M + m?/M is

approximately the huge mass A and the smaller mass u_ ~ —m?/M is very
tiny. The physical mass of a fermion is the absolute value of its mass parameter,
here m* /M.

The product of the two eigenvalues is the constant pyjpu_ = det M = ~m?
s0 as u— goes down, wy must go up. In 1975, Gell-Mann, Ramond, Slansky,
and Jerry Stephenson invented this “seesaw” mechanism as an explanation of
why neutrinos have such small masses, less than 1 eV/e2 If me? = 10 MeV, and
p—c? 2 0.01 eV, which is a plausible light-neutrino mass, then the rest energy of
the huge mass would be Mc? = 107 GeV, This huge mass would point at new
physics, beyond the standard model. Yet the small masses of the neutrinos may
be related to the weakness of their interactions. O

- If we return to the orthogonal transformation (1.304) and multiply column

¢ of the matrix O and row £ of the matrix 0" by 4/ |Rffd) [, then we arrive at the
congruency transformation of Sylvester’s theorem

R=CROC (1.306)

in which the diagonal entries Rgd) ate either &1 or 0 because the matrices C and
C™ have absorbed the modulj |Rgd)|.

. . S
Example 1.39 (The seesaw mechanism) Suppose we wish to find the eigenvalue
of the real, symmetric mass matrix

0 m C O (1.305)
M:(m M) _ (

— M) — m* = 0 with
this hermitian mass matrix satisfy det (M — ul) = ulp — MYy —m

48 \

Example 1.40 (Equivalence principle) If G is a real, symmetric 4 x 4 matrix
-1
then there’s a real 4 x 4 matrix D = €' such that

gt 0 0 0

0 g 0 0
— T _
Ga=DGD=14 4 4 o 307

0 0 0 g

in which the diagonal entries g; are 1 or 0. Thus there’s a real 4 x 4 matrix D
that casts the real nonsingular symmetric metric gy of space-time at any given
point into the diagonal metric 7;, of flat space-time by the congruence

-1 0 0 0

0 1 0 0
— 1 . .
ga=Digh=14 o 4 | g|=n (1.308)

0 0 0 1

Usually one needs different Ds at different points. Since one can implement the
congruence by changing coordinates, it follows that in any gravitational field,
one may choose free-fall coordinates in which all physical laws take the same
form as in special relativity without acceleration or gravitation at least over

i i es o of I
in which m is an ordinary mass and M is a huge mass. The eigenvalues /&

suitably small volumes of space-time (section 11,39). ll
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1.29 Normal maftrices

The largest set of matrices that can be diagonalized by a unitary transfor'matlo‘n
is the set of normal matrices. These are square matrices that commute with their

adjoints
(4,41 = A4l — 414 =0. (1.309)
This broad class of matrices includes not only hermitian matrices but also
unitary matrices since
w, vt =vul - vtu=1-1=0. (1.310)
To see why a normal matrix can be diagonalized by a unitary transformation,

let us consider an N x N normal matrix ¥ which (since it is square (section 1.25))
has NV eigenvectors |#) with eigenvalues v, N

(V — vy ) = 0. (1.311)

The square of the norm (1.80) of this vector must vanish
| (V= vl 10y 1P== il (F = DT (V = wal} i) = 0. (1.312)
But since ¥ is normal, we also have _

) (¥ = vV = val) Im) = | (V — v} (V = v DY ). (1.313)
S0 the square of the norm of the vector (vt - i) iny = (V — v, n) also

vanishes || (V1 — i) in) 2= 0, which tells us that |} also is an eigenvector of
pt with eigenvalue vy

Yimy = v¥ln) andso (n]V = valnl. (1.314)

If now |m) is an eigenvector of V with eigenvalue v

Vim) = vmlm) =0 (1.315)
then we have | o

mVim = vinlm) _ _ (1.316).
and from (1.314)

n|Vim) = wnim). - (1.317)
Subtracting (1.316) from (1.317), we get _

(v — tm) (m|n) = 0, . : (1318)

which shoﬁs that any two eigenvectors of a normal matrix V with different

cigenvalues are orthogonal. N ' .
gUsually, all N cigenvalues of an NV x N normal matrix are different. In. this
case, all the eigenvectors are orthogonal and may be individually normalized.
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But even when a set D of eigenvectors has the same (degenerate) eigenvalue,
one may use the argument (1.291-1.297) to find a suitable set of orthonor-
mal eigenvectors with that eigenvalue. Thus every N x N normal matrix has
N orthonormal eigenvectors. It follows then from the argument of equations
{1.300~1.303) that every N x N normal matrix ¥ can be diagonalized by an

N x N unitary matrix U
V= Uuydyt (1.319)
whose nth column Uy, = (0|} is the eigenvector |#) in the arbitrary basis |o}

of the matrix Vip = {op| Vo) as in (1.303).
Since the eigenstates |n) of a normal matrix A

Alny = az|n) (1.320)

are complete and orthonormal, we can write the identity operator I as

N
=) |min. (1.321)
n=1

The product A7 is A4 itself, so

N N
A=Al =AY Innl =Y anlmtnl. (1.322)
n=1 n=1

It follows therefore that if / is a function, then f(A4) is

N
S(d)y =3 () ninl, 3y

n=1

which is simpler than the expression (1.273) for an arbitrary nondefective
matrix. This is a good way to think about functions of normal matrices.

Example 141 How do we handle the operator exp(—iHi/h) that translates
states in time by ¢? The hamiltonian H is hermitian and so is normal. Its
orthonormal eigenstates |n) are the energy levels £,

Hin) = Eyln). . (1.324)
So we apply (1.323) with 4 — H and get

N
e iHI _ Z e~TE N |y (), (1.325)

n=1
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which lets us compuie the time evolution of any state [ as

N
e HIMy = Z ¢~ gy (4 (1.320)

n=1

if we know the eigenstates |) and cigenvalues E, of the hamiltonian H. [

The determinant | V] of a normal matsix ¥ satisfies the identities

V| = exp[Tr(in V)], In| V=T ), and 8 In|V]="Tr (V—‘SV) .
(1.327)

1.30 Compatible normal matrices
Two normal matrices A and B that commute
[A,B]EAB_BA =0 (1.328)

are said to be compatible. Since these operafors are normal, they have complete
sets of orthonormal eigenvectors. If |u) is an eigenvector of A with eigenvalue

z, then so is Blu) since —_—
AB\w)y = BAw) = Bzlu) = z Blu}. (1.329)

We have seen that any normal matrix 4 can be written as a sum (1.322) of outer
products

N
A=) an)anian) (1.330)

n=1

of its orthonormal eigenvectors la,), which are complete in the N -dimensional
vector space S on which A acts. Suppose now that the eigenvalues dy of A are
nondegenerate, and that B is another normal matrix acting on S and that the
matrices 4 and B are compatible. Then in the basis provided by the eigenvectors
{or eigenstates) \an) of the matrix 4, the matrix £ must satisfy

0= (an‘AB - BAlay) = (an — k) (anlek}a (1-331).

which says that {ay\ Blag) is zero unless ¢, = ax. Thus if the eigenvalues dn of
the operator A4 are nondegenerate, then the operator B is diagonal

N

n=}

N N
BRI =Y  lawian B _laiail = S lan ot Blan)laal - (1.332)
n=1 k=1

52

1.30 COMPATIBLE NORMAL MATRICES

in the |a,) basis. Moreover B maps each eigenket |ay) of A into

N N
Blay) = 21 ) @l Blanhianlax) = lan) (@nl Blan)suc = (x| Blar}lae).
A= n=1 -,

.?;}11_10}} :iys that. each c?igenyector lax) of the matrix A also is an eiéir'ii?
mat:ices Ea;nﬁterls)i(milxzzoﬁﬁei;alue (‘fk|B|f”¢)' Thus two compatible normal
T valoes y diagonalized if one of them has nondegenerate
If A"s eigenvalues a, are degenerate, cach eigenvalue a, may have d,, orthonor-
mal eigenvectors lay, k) for k = 1,...,d,. In this case the matri;g elements
(a,,,lela_m,k’) of B are zero unless the eigenvalues are, the same, @, = am.
The matrix representing the operator B in this basis consists of squa;rend_x c? .
normrfll submatrices {an, k| B|an, k'y arranged along its main diagonal"itnis safci
to bein block?diagonal form. Since cach submatrix is a dy % dy norm;d matrix
we may find lihear combinations |a,, bx) of the degenerate eigenvectors |a,, & )’
that are orthonormal eigenvectors of both compatible operators "

Alay, by = ay|an, bfc} and  Blay, by) = bklan,bk}‘ (1334)

Th;; one can simultal_leously diagonalize any two compatible operators.
The cgnverse.also is true: if the operators 4 and B can be simultaneously
diagonalized as in (1.334), then they commute ’

ABIdm bk) = Abklﬂn, bk) == anbklan, bk) = aﬂB‘ambk) —_ BAlan, bk}

and so are compatible, Normal matrices can be simultancously diagonatized if
an(Ii only if they are compatible, that is, if and only if they commute. -
Obsgrquslntur;ll mechanics, compatibI.e hermitian operators represent physical
servables that can be measured simultaneously to arbitrary precision (in
};gﬂzzllil?.t A.fss:t of compatible hermitian operators {4, B,C,...} is said to
ete if to i i
eigemel:;tor o b:\;?_/ S(;t of eigenvalues {ay, bk, ¢z, . ..} there is only a single

Example 1.42 (Cgmpatible photon observables) The state of a photon is co
g%etelj.y characterl_zed by its momentum and its angular momentum about i11;{13
;r;ccl‘,ticln.]of motion. For a photon, the momentum operator P and the dot-
Isaet o}ué Om- I;tgg'lthg ang'ullar momentum J with the momentum form a complete
= angula;; T;O IZ etrrmttan observables. Incidentally, because its mass is zero,.
the an ! entum J of a photon abou-t its direction of motion can have |
y two values £/, which correspond to its two possible states of circular

polarization.
O
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Example 1.43 (Thermal density operator) A density operator o is the most gen-
eral description of a quantum—mechanical system, It is hermitian, positive, and
of unit trace. Since it is hermitian, it can be diagonalized (section 1.28)

p=y_ ol (1.335)

and its eigenvalues pp = (n|pln) are real. Each py is the probability that the

system is int the state |n) and so is nonnegative, The unit-trace rule

Y on=1 (1.336)

ensures that these probabilities add up to one —the system is in some state.

The mean value of an operator F is the trace, (F) = Tr(pF). So the aver-
age energy E is the trace, E = (H) = Tr(pH). The entropy operator S is the
negative logarithm of the density operator multiplied by Boltzmanm’s constant
§ = —kIn p, and the mean entropy Sis & = {8} = —kTr(p1n p).

A density operator that describes a system in thermal equilibrium at a con-
stant temperature T is time independent and so commutes with the hamiltonian,
[p, H] = 0. Since p and H commute, they are compatible operators (1.328),
and so they can be simultaneously diagonalized. Hach eigenstate ln) of p is an
eigenstate of H; its energy E, is its eigeavalue, Hin) = Eqm).

If we have no information about the state of the system other than its mean
energy F, then we take p to be the density operator that maximizes the mean

entropy S while respecting the constraints —

o= pa—1=0 and & =Tr(pH)— E = 0. (1.337)
I

We introduce two Lagrange multipliers (section 1.23) and maximize the uncon-
strained function

L{p, M,A2) = 8 — A1 — 2262
= = kZ pnlnpn — M {Z Pn — l} — A2 [Z onEn — E] (1.338)
n n n

by setting its derivatives with respect to pg, A, and iy equal to zeto

L
e —k(npg+1) — A —rEn =0, (1.339)
]

aL
o E N 340
P d Oon 0, (1.340)

L

rrvl 3 puEn— E=0. (1.341)

n
The first (1.339) of these conditions implies that .
on = exp[—(A + 2By + k)/k). (1.342)

1.31 THE SINGULAR-VALUE DECOMPOSITION

We satisfy the second condition (1.340) by choosing A1 so that

_ _exp(=raEn/k)
¥, expl—A2Ey k) (1.343)

Fn

Setting A.g. = 1/T, we define
18 , the temperature T i i
condition (1.341). Its eigenvalue p, ‘{herilj is 0 that p satsfes the third

_ exp(—En/kT)

Zn exp("En/kT) ‘ (1 344)
. In terms of the inverse temperature § = 1/(kT), the density operator is
e |
=% iy’ {1.345)

n

P

which is the Boltzmann distribution. -

1.31 The singular-value decomposition

Zgril Z:;]ilxplgx M ;f N ﬁctangular matrix A is the product of an M x M uni
,an M x N rectangular matrix % that i i in
diagonal, which consists of it ive si  atacs S nd a0 N N
, $ nonn
iy mattin P egative singular values Si, and an N x N
- t
A=UZWT, . (1.346)

Théi ;E(%séa‘;—yalu? decomposition (SVD) is a kéy theorem of matrix algebra
1s a limear operator that maps vectors in an N-di i ‘
tor space My into vectors in an Ad-dimensi et P T s
: -dimensional vector space V. Th
Vy and Vs will have infinitet . S & Pl and
y many orthonormal ba
{lm,b) € Vi) labeled b i U
;| \ v continuous parameters ¢ and ». Each pair
provides a resolution of the identity operator Iy for ¥y and Iy foﬁagﬁ; f bases

N
M
Iy = Z In,a)(n,ai and Iy = Z m, b)(m, b]. (1.347)

A=l

‘ . . m=}
These identity operators give us many ways of writing the linear operator 4
M N
A= . ]

Iy Al =Y 3" |m, by(m, bl Aln, a(n,al, (1.348)
' l m=1 n=|1
;rlln\gvlllllletlzlh tk;e (rz,blAin, @) are the elements of a complex M x N matrix. The

-value decomposition of the linear operator 4 is i . -

these expressions for Iy and I that expressespA as ' @ choiee among &

min(A,N)

4= ,{Z: [UR) Sk (Vi ' | '(1.549)
=1
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in which the min(M, N) singular values Sy are nonnegative
Sk = 0. (1.350)

' = for the image of a vector |n) in an
s use the notation idn} = Ain) :
ortliirformal basis {1n)} of Vv under the map A. We seilii E;, spematl sor;l;zgf{rrz?i
he vectors |An) are or .
i of Vy that has the property that t :
Egzzzsiillnlzz}lsis (1)} of V is the set of N orthonormal eigenstates of the N x N

(nonnegative) hermitian operator At A
Al Aln) = eqln). (1.351)
For since 4|} = |4n’y and AT Aln) = eq|m), it follows that |
(Ar | An) = (/141 Aln) = enin|n) = enbuns (1.352)
which shows that the vectors |An) are orthogonal and that their eigenval-

ues e, = {(Anjdn} are nonnegative. This is the essence of the singular-value
0 = .

osition, ' .
def;?I;P: M. so that matrices {m, b|Aln, a} representing the lincar operator 4

i -roots
are square, then the N = M singular values S, are the nonnegative square roo

of the eigenvalues ey _
8y = Jen = / (Anldn) = 0. . {1.353)

i y e Sy is
We therefore may normalize cach vector |An) whose singular value Sy
positive as

|pg) = 3‘1— |An) for Sp>0 (1.354)

n

so that the vectors {|m)} with positive singular values are orthonormal |
(my g} = O e (1.355)

If only P < N of the singular values are positive, then ‘we 1rpa§(/1 i:g:?;?tl ;hfi
set of P vectors {|my,)} with N — P = M — P new norma 151 e (wﬁh
that are orthogonal to each other and to the P vectors define : y {l.m D
positive singular values Sy > 0} so that the s;t of N = M vectors {|my), [Py
* C{ifnpletﬁni&ihzn;igfEﬁetkﬁ-?hai:nsiﬂggg space Fu int.o the smaller
Mft(qiime;sionafl space Var, and so 4 must annihilate N — M basis vectors

Ay =0 for M <n <N o (13560)

In this case, there are only M singular values S, of which Z fml‘ay Tt);i ;jg:

: = i ishing S,s are vectors ol leng ;

The 7 vectors |An) = Alm) with vanis . e
i the vector |n) to the zero vecior.

these values of s, the matrix 4 maps the 7 )

iﬁgre are more than N — M zero-length vectors |An) = Ajnythen we mus
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replace the extra ones by new normalized vectors |m,y) that are orthogonal to
each other and to the vectors defined by (1.354) so that we have M orthonor-
mal vectors in the augmented set {|m,), Im,y)}. These vectors then form a basis
for V.

When N < M, there are only N singular values S, of which Z may be zero,
If Z of the $,s vanish, then one must add 0 = Z + M — N new normalized

vectors jmy) that are orthogonal to each other and to the vectors defined by
(1.354)

) = TS!“(m”’an) =0 for />N—-2Z and S,>0 (1.357)

t

so that we have M orthonormal vectors in the augmented set {|m,), [m,)]
These vectors then form a basis for V.

In both cases, N > M and M > N, there are min(M, N} singular values, Z of
which may be zero. We may choose the new vectors {}m,)) arbitrarily — as long
as the augmented set {|my}, |m,y)} includes all the vectors defined by (1.354) and
forms an orthonormal basis for V.

We now have two special orthonormal bases: the N' N-dimensional eigenvec-
tors |n} € ¥y that satisfy (1.351) and the M M-dimensional vectors |my,) € Vas.
To make the singular-value decomposition of the linear operator A4, we choose

as the identity operators /y for the N-dimensional space ¥y and Iy for the
M-dimensional space Vs the sums

N M .
Iv=|npnl and Iy = > )t (1.358)
n=l1

n'=l

The singular-value decomposition of 4 then is

M N
A=Dydly =Y lmydmylA Y In)inl. (1.359)

n'=1 =l
There are min(M, N) singular valies Sy, all nonnegative. For the positive sin-

gular values, equations (1.352 & 1.354) show that the matrix element {m,,|4|n)
vanishes unless n’ = n

1
<m"’!A|n) = S (AnflAn) = Sn’ Sy (1360)
nl

For the 7 vanishing singular values, equation (1.353) shows that A|n) = 0
and so '

(| Aln) = 0. (1.361)

Thus only the min(M, N) — Z singular values that are positive contribute to the
singular-value decomposition (1.359. If N > M, then there can be at most A
nonzero eigenvalues e,. It N < M, there can be at most N nonzero e,s. The final
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form of the singular-value decomposition then is a sum of dyadics weighted by

the positive singular values
min(M N} min{M.N)—-Z
A= Y imaSalel= Y ImdSainh (1.362)
n=1 n=1 . .
The vectors ) and (1) respectively are the left and right smgular veotors. The
i X i lues.
tive numbers S, are the singular va . . .

ﬂo"{;izgl;ear operator /:;., maps the min(3, N) right s%ngl.llar vectors |n) into the
min(M, N) left singular vectors S,lmmy,) scaled by their singutar values

Al = Sulma} (1-363)

and its adjoint At maps the min(M , V) left singular vectors |my) into the
min(M, N) right singular vectors jn) scaled by their singular valyes

Al ymg)y = Saln). (1.364)

The N-dimensional vector space Vy is the domain of tgle }ineartope?'a;mfr ﬁe
ihi N — M of the basis vectors |n;.
N > M, then 4 annihilates (at least) :

Eﬂl s;ace or kernel of A is the space spanned by the bafls vecttors \ln) 2h§it/111
ihi by the left singular veclors 17,
hilates. The vector space spanned : .

iz?llzero singular values Sy > 0 is the range or image of A.]\Ift f(;liﬁwscl irli)lr;l n’ihles

iti hat the dimension N of e
inpular-value decomposition (1.362) t :
ilctffal.ll to the dimension of the kernel N — M plus that of the range M, aresult
led the rank-nullity theorem. . N .

Callicidentally the vectors lmy) are the cigenstates of the hgmntlan6 zmatT;cl

A AT as one rr;ay see from the explicit product of the expansionr (1.3 ) W.l

its adjeint

min(M,N) min(M,N) )
Adt= Y immSatal D 1)Sw (mel
n=1 n'=1
min{ M N} mini M.N)
Z Z 111} S Bt Sy (P |
n=1 =1 .
min(A,N)

S i Siimals (1.365)

n=1
which shows that |m,} is an eigenvector of A AT with eigenvalue e, = Ss.
A Ay = S, (1.366)

The SVD expansion (1.362) usually is written as a product of th‘ree f?x}};lglé
matrices, 4 = Ux pt The middle matrix T is an M x N maftrix wit o
min{M }V) singular values S, = /e onits main diagonal and zeros glsewhere.
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By convention, one writes the S, in decreasing order with the biggest S, as entry
%11. The first matrix U and the third matrix ¥ depend upon the bases one uses
to represent the linear operator 4. If these basis vectors are lay) and |Be), then
min(M,N)
Age = (gl dIBey = D" {ondmn) Sy (nlBe) (1.367)
n=1

so that the k, nth entry in the matrix U is Uy, = {(ag|my). The columns of the
matrix U/ are the left singular vectors of the matrix 4:

U {og |2)
Unn (e | )
=1 (1.368)

U {aprinmy)

Similarly, the m, £th entry of the matrix V! is (V1) , = (nlBs). Thus Veu =

(VT)n,E = {n|Be)* = {Bg|n). The columns of the matrix V are the right singular
vectors of the matrix A

Vin {Bilm)
Van {B2lm)

(1.369)

Vivn (BnIn)
Since the columns of U and of ¥ respectively are M and N orthonormal vec-
tors, both of these matrices are unitary, that is UtU = Iy and ¥V = Iy are
the M x M and ¥ x N identity mairices. The matrix form of the singular-value
decompaosition of 4 then is

M N min{ M ,N) -
Ake = Z Z Ul Zian Vr:rt‘f = Z UtnSn VJ@ (1.370)
=\

m=1 n=1

or in matrix notation

A=Uxnvt (1.371)

The usual statement of the SVD theorem is: Every M x N complex matrix 4
can be written as the matrix product of an M x M unitary matrix I/, an M x N

matrix X that is zero except for its min{M, N} nonnegative diagonal elements,
and an N x N unitary matrix ¥

A=vz it - (1.372)

The first min(M, ) diagonal elements of S are the singular values Sy. They
are real and nonnegative. The first min{M, N) columns of U/ and V are the left
and right singular vectors of 4. The last max(N ~ M, 0) + Z columns (1.369)
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of the matrix ¥ span the null space or kernel of 4, and the first min(M, N) — Z

Example 1,45 (Matlab’s SVD) Matlab’s command [U,5,V] = svd{X) performs
1 (1.368) of the matrix U span the range of 4. the singular-value decomposition of the matrix X. For instance
columns (1.

>> X = rand(3,3) + i*rand(3r3)
Example 1.44 {Singular-value decomposition of 2 2 % 3 matrix) A1

o 0.6551 + 0.2551i 0.4984 + 0.89091
A:(? (1) 1) (1.373) X = 0.1626 + 0.50601 0.9597 + 0.95931

0.1190 0.69314 0.3404 + 0.54721
then the positive hermitian matrix AtAis 7> (U8, V] = svd(x)

1 0 1 .
At = ? é (}} . (1374 = -0.3766 - 0.5002i -0.5792

-0.2178 - 0.4626i 0.,1142
The normalized eigenvectors and eigenvalues of At 4 are

o 2.2335 0 0

| 0 0 1. e3=0. 0 0.7172 0

m:% 0, a=2 =\l e=1 B=5 L) 0 0 0.3742
2\ 0 '

o - =0.4577 0.5749
i i 2 matrix, _c. .
o 1 had to vanish because 4 is a 3 X _ . s v
T%l?lf: 1526‘:;852‘;511)12? (as a row vector) |41} = A1) = (0,+/2), and its norm is : . . )

. -0.3229 - 0.252741 0.3881 + 0.37691
lized vector |my) is lmy) = 141)/V2 = (O;
1]AT A1) = +/2, so the norma £ A B The singular values are 2.2335, 07172, and 0.3742,
é/i;jl_;r;t—he vector |my) is (ma) = Ai2)/ 214t 412y = (1,0). The SVD o . ¢ sIngliar values arc 07172, and 0.3742
then is '

2
A=Y my)Sulnl = UZVT (1.376)
=1 : o A I.X,') = | ) (1381)
where Sy = +/én. The unitary matrices U » = (o |m) and Vign = {Br|n) are | ,
n (I VI AU for the N-dimensional vector |x} in terms of the A/-dimensional vector |y} and
v (O 1) wd V= % 0 V20 (377 the M x N matrix 4. Using the SVD expansion (1.362), we have
TAL 0 10 -

We may use the SVD to solve, when possible, the matrix equation

min{M,N)

and the diagonal matrix 3 is B S S (nlx) = Iy (1.382)
V2 .0 0 (1.378) n=l
;;:( C 1 o) f

The orthonormality (1.355) of the vectors ) then tells us that
-I- .
So finally the SVD of 4 = UE VT is

oo o Sy ) = (). (1.383)
AN 1.379 : , . . .
A= ((1) é) (\? [1) 0) T/—E 0 { “{f 2 ' ( ) P If the singular value is positive S), > 0 whenever {myly} 5 0, then we may divide
- e by the singular value to get {n|x) = (m,] »}/Sy and so find the solution
The null space or kernel of 4 is the set of vectors that are real multiples ¢ ' o " *
e null sp

1 S min( 4/, ¥)

¢ (1.380) : : : )= > %’lﬂm). (1.384)
N,/ - _ﬁ (; ) A ) H

n=1

of tﬁ third column of the matrix ¥ displayed in (1.377). a ' * Buf this solution is not always available or unique.
of the tmr
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# 0 while the singular

. ; ; duct {my |
For instance, if for some 7 the inner product {my 1y blem often

value Sy = 0, then there is no solution 1o equation (1.38 1). This pro
WY

occurs when M > N.

1.46 Suppose 4 is the 3 x 2 matrix
rnon

A=1mr2 N

ry P

Example

(1.385)

=L = Then no solution |x}
is the cross-product yy = L =1rxp. .
anitzh:ovtegzrql‘;:tion Alx) = 0 (unless r and p are pa.rallel) bezai\;llffaﬂ;c}bit;
o i = L is perpen
linear combination of the vectors  and p while ¥} is perp "

rand p.

i i tion (1.381) somectimes has no
Even when the mairix A is square, the equa ( e 38

solutions. For Instance, if A isasquare matrix t‘?\?t Vﬁlszl:si;l ,»ibr 0 then
has no solutions whenever 1) # 0. And when N = M,

a b\ = (J“) (1.386)
d e X3 Y2
. N 0] - . n
the sotution (1 .384) is never unique, for we may add to it any linear combinatio

of the vectors |#) that A annihilates for M <«n<N
(M N
mmg:m W)y 4 3 aln) (1.387)
=1 Sn =M1
These are the vectors ) for M < = N which A' maps ;}0 zjr;\)j since they
not occur in the sum (1.362), which stops atn = min(M, N) .

do

ix of
Example 1.47 (The CKM matrix) In the standard modcl,tt}‘le znjas; ;nnjsnﬁ); c;s
, i tric matrix M.
d b quarks is a 3 x 3 complex, symmetf Mo o
o d,ef:;rizn(M —j M™), its adjoint is its complex conjugate, Mi = M*.So
R ors |n) are the eigenstates of M * M as in (1.351)

right singular vec (1.388)

M M) = Sain
are the eigenstates of MM* as in (1.366)

and the left singular vectors ) (1389)

MM*\my) = (M*M)* ) = Sl

i j lex conjugates of the right sing-
ft singular vectors are just the complex € . : -
r]n?ifsegtlzj: 1 )g-— iny*. But this means that the unitary malrix 14 131 ;}TZ )comp

] if - "
cat)njugate of the unitary imatrix U, so the SYD of M is (Autonng,
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M= USU. (1.390)

The masses of the quarks then are the nonnegative singular values S, along
the diagonal of the matrix . By redefining the quark fields, one may make the
(CKM) matrix U real -- except for a single complex phase, which causes a viola-

tion of charge-conjugation-parity (CP) symmetry. A similar matrix determines
the neutrino masses. O

1.32 The Moore—Penrose pseudoinverse

Although a matrix 4 has an inverse A~! if and only if it is square and has a
nonzero determinant, one may use the singular-value decomposition to make
a pseudoinverse AT for an arbitrary M x N matrix 4. If the singular-value
decomposition of the matrix 4 is

A=UsV! (1.391)

then the Moore-Penrose pseudoinverse (Eliakim H. Moore, 1862--1932, Roger
Penrose, 1931-)is '

At =vetul (1,392)
in which ©1 is the transpose of the matrix ¥ with every nonzero entry

replaced by its inverse (and the zeros left as they are). One may show that the
pseudoinverse 47 satisfies the four relations

AAt A=A and ATAAT =4T, . :

(UA =44t and (At =ata  (1393)

and that it is the only matrix that does so. _
Suppose that all the singular values of the M x N matrix A are positive. In

this case, if 4 has more rows than columns, so that M > N, then the product
AAT is the N x N identity matrix Iy

ATA=Vietsy =VtiyV =1y (1.394)

and AAT is an M x M matrix that is not the identity matrix Ips. If instead 4

has more columns than rows, so that N > M, then AA™ is the M x M identity

matrix Ly _
AT = USSH Ut = Uy U = I (1.395)
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) . . : hich is an instance of (1.395). Moreover, the rows of A are linearly independent,
: i trix Ty. If the matrix A w ! )

+a N matrix that is not the identity matr K TR/ h fe (1,398 Ks:

B l:viii go;.tive singular values, then it has a true inverse A~! which is and so the simple rule (1.398) works

is square ’

equal to its pseudoinverse

A+ = AT (AA'I')‘]
Al =4%. : (1.396) | |
! 01
i i the matrix A4 has an 1 (1o ( )
If the columns of 4 -are hngarly independent, then the . ! !
inverse, and the pseudoinverse 1

1/2
-1
1.397) / s
A" = (AT A) At ( | .
172
The solution (1.220) to the complex least-squares method used this pseudoin-

which is (1.401}.
verse.

| | o .has o iverse Th.e columns of the mf'itrix A are not line:;u'l)ﬁr independent, however, and so
If the Tows of 4 are linearly independent, then the matrix the simple rule (1.397) fails. Thus the product A+ 4

0 12y 4o 1 o 1/ 01
i ATa={1 o0 =10 2 0 (1.404)
1.398) ( )
AT = At (AAT) . ( 0 12) \1 01 Lo

is not the 3 x 3 identity matrix which it would be if {1.397) held. 0

and the pseudoinverse is

If both the rows and the columns of A are linearly independent, then the matrix
A has an inverse 4~1 which is its pseudoinverse

PR (1.399)

1.33 The rank of a matrix

Four equivalent definitions of the rank R(4) of an M x N matrix A4 are:
: ; +
Example 1,48 (The pseudoinverse of a 2 X 3 matrix) The pseudomverse AT of

1 the number of its linearly independent rows,
the matrix A

By 2 the number of its linearly independent columns,
01 0 (1.400) il 3 the number of its nonzero singular values, and .
A= (1 0 1 £y 4 the number of rows in its biggest square nonsingular submatrix. -

with singular-value decomposition (1.379) is

A matrix of rank zero has no nonzero singular values and so is zero.
A+ — VE"’ UJf i ]
o (7 (0 1) L 1 Example 1.49 (Rank) The 3 x 4 matrix

— 10 v2 0 0 1)1 o 101 -2
Y2\ 0 0 0

- p A=12 2 0 2 (1.405)
B - ' 4 T
? 162 (1.401) :t B 3

. has three rows, so its rank can be at most 3. But twice the first row added to
o he 2 x 2 : . thrice the second row equals twice the third row or
iti + gives the 2 _
i i 1.393). The product 4 AT gives
which satisfies the four conditions {

' E 2 + 31y = 23 = 0 (1.406)
identity matrix ;

$0 R(A) < 2. The first two rows obviously are not parallel, so they are linearly

0 1/2 1 0 (1.402) independent. Thus the number of linearly independent rows of A4 is 2, and so 4
1) (1) 132 =lg 1)’ has rank 2. b
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1.34 Sofiware

Free, high-quality software for virtually all numerical problems in linear alge-
bra are available in LAPACK — the Linear Algehra pPACKage. The FORTRAN
version is available at the web-site www.nettib.org/lapack/ and the C++ version
at math.nist.gov/tnt/.

Matlab is a superb commercial program for numerical problems. A free
GNU version of it is available at www.gnu.org/software/octave/. Maple and
Mathematica are good commercial programs for symbolic problems.

1.35 The tensor/direct product

The tensor product (also called the direct product) is simple, but it can confuse
students if they see it for the first time in a course on guanium mechanics.
The tensor product is used to describe composite systems, such as an angular
momentum composed of orbital and spin angular momenta.

If Ais an M x N matrix with elements Ajjand Alsa K x L matrix with
elements Agg, then their direct product C = A& Aisan MK x NLmatrix with
elements Ciajp = Aif Aapg. This direct-product matrix 4 ® A maps the vector
Vg into the vector

N L N L

Wie=9_ 2 CiajsVis= SO Ay bap Vi (1.407)
j=1 p=l1 j=\ p=1

In this sum, the second indices of 4 and A match those of the vector V. The
most important case is when both A4 and A are square matrices, as will be their
product C = 4 @ A. We'll focus on this case in the rest of this section. '
The key idea here is that the direct product is a product of two operators that
act on two different spaces. The operator A acts on the space S spanned by the
N kets 1/}, and the operator A acts on the space T spanned by the K kets o).
Let us assume that both operators map into these spaces, so that we may write

them as
N

A=IsAls = Y WA (1.408)

ij=1

X o
A=Ighls = ) la)@lAAL (1409

o,f==1

Then the direct product C = 4 ® A
N K

cedon=3 Y el Al ne® (1410

ij=1o,p=1
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acts on the direct product of the
: two vector ich i
the direct-product kets |i, @) = [i) jo) = 1) 68? Ii;;:es 2@ % wiich s spanned by

I .
n general, the direct-product space $ ® X is much bigger than the spaces §

and ¥. For although S® ¥ is
] spanned by the direct- /
vectors in the space S ® ¥ are of the for?n e dectproduct kets 1 o), most

N K
W)= " y(i.a)li) ® |a) (L411)

i=1 a=1

and ir
not the direct product |s) ® o) of a pair of vectors |sy € Sand |[o) e B

sioall) ® |a). (1.412)

Using the simpler notation |;
. atlon |, a) for |i i i
direct-product operator 4 @ A on the s!t;t(? ) e may wle the action of the

. | |
Wy =" lha)i,aly) - (1413)

i=1 a=1

(A® M)y =

=

N K ’
21;1 @) (LAY AIB) . B1y). (1.414)

Example 1. [ 7
eigem};ctorg(z)g;a;isaci itlltlsn};ydr}){gegl atom) Sl;ppose the states |n, £, m) are the
an H, the square £= of th it ul
cigen . e orbital angul -
, and the third component of the orbital angular momen%ilir Eo?gfﬂa

hydrogen atom without spin:
fi’lna tmy = Eyln, €, my,
Lo, €, m) = h2£(£ + Dn, £, m),

Lafn, €, m) = hm|n, £, m). | (1415

Suppose the states |} £
oI ¢ = £ are the eigenstates of i
of the operator § that represents the spin of the eieotronthe Hhind component 53

h
S = —_
3|0} azlo). (1.416)

Then the direct- or tensor-product states

ln, &,m, o) =n€,m ® o) = |n, £, m}|o) (1.417)
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represent a hydrogen atom including the spin of its electron. They are eigenvec- f 1 )
36 Density operators

tors of all four operators H, L%, Ly, and Sy A |
ener: ; . .
L2, €,m, @) = I E(E+ Dins L), thagt is hzrrai?;;u;? meCha?lcal. system is represented by a density operator p
Lsln, €,m,0) = hmin, £,m, 0}, Saln, £, m o) = ohln, £,m, o). (415 all ets [¢). = p, of unit trace Trp = 1, and positive (¥lplyy = O for
' If the state [y} is normali
v ized, then (¥|p|¢} is the n i o
Suitable linear combinations of these states are eigenvectors of the square J2 of that the systom is in that state. This probability is real becZﬁneg? tlsc probability
tum J = L + 8 as well as of /3, 13, and 5s. u is hermitian. If {{n)} is any complete set of orthonormal staf:es ¢ demsity matrix

the composite angular momen
Example 1.51 {Adding two spins) The smallest positive value of angular g ; ‘
momentum is A/2. The spin-one-half angular momentum operators § are : = Zln)(m, (1.425)
represented by three 2 x 2 matrices : X 3y "
then the probability that the system is in the state n) is

;
Sy = %aa (1.419)

-H]nsfa n, G) = EJ?\”: Ey m‘sg):

Pn = {nlpln) =Tr (pln){n]). - (1.426)

in which the o, are the Pauli matrices : _
.. Since Trp = 1, the sum of these probabilities is unity

R P e A
: = Z(”mlﬂ) =Tt (,o Z )] (nl) =Tr(pl) = Trp = 1. (1.427)

pin operators s and §@ acting on two spin-one-half systems. :
: : L n

Consider two 8 !
{;), and the states |4)2 are eigenstates of Sg

The states |2 are eigenstates of § R
. system that is measured to be i
. I a state j#) cannot si
1421 . simultancoust a-
( ) . illqléesi/ St; r‘tr)le n;n atnbmlthogona} state [m). The probabilities sum to unitB; ?)ZCI:;S:E
|31 d) = )1 @ ) are eigenstates L Since the dus De in some state.
o ensity operator p, is hermitian, it has a complete, orthonormal set

of eigenvectors |k}, all of which have nonnegative eigenvalues p;
c

i h
SOy = + o5l and SP14) = & 5 1.

Then the direct-product states [+, &} =
of both 85 and S§”

h h NN
SOk, 59) = £5 4, 52) and $P 51, +) = 2 L1, ). (1.422) L
2 ‘ 2 plk) = pilk). | (1.428)

onent of the spin operator of They afford for it the expansion

These states also are eigenstates of the third comp
the combined system

(1.423) 0 p= prl) (il (1.429)
. i k=1

. B
5y = SO 4 5P, thatis Salsi,s2) = 5 (1 4 82 Ist, )

Thus Sa|+, +} = Al+,+), and S3|—, —) = —Al— ), while S3]+, —) = 0 and S  which the o
S ich the eigenvalue py is the probability that the system is in the state |k)

Now let’s cons

2
1, ) Ry, o)
S+ = (s +57) |+4) = (o +oi Vi
# M@ o )
=2 (14 Vit =3 (1 R+ e +)

2
AN (L.424) __ o 7.8 = (flplg) (1.430)

2

' i i ' forg =f1isn i

The rest of this example will be left to exercise 1.36. O _ e onnegative, (f,/) = (flplf) > 0, and satishi o
: (1.73, 1.74, & 1.76) for a Schwarz inner p;oduct. shes the offer conditions
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{der the effect of the operator S7 on the state | -+ +)
1.37 Correlation functions

We can define two Schwarz i .
z Inner products for a i i
are two states, then the inner product density matrx p- 111/} and e

n
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i : B and is
The second Schwarz inner product applies to operators A and

defined (Titulaer and Glauber, 1963) as | o
(4, B)=Tr (pATB) ~ Tt (BpA*) =Tt (At Bp) . a.

- rules (1.73,
This inner product is ponnegative when 4 = B and obeys the other rules (

. 3 ]

. = (o0

Applied to the first, vector, Schwarz inner pro
inequality gives

(1.432)
duct (1.430), the Schwarz

1.433
Flolfiiglole) = 1ol (1.433)

density matrices. Appfication of the Schwarz

which is & uselll propery o Schwarz inner product (1.431) gives

inequality to the second, operator,
(Titulaer and Glauber, 1965)

Tr (pAT A) Tr (pBTB) > ]Tr (pATB) )2 ‘ (1.434)

' ent of the electric field at
The operator Ei{x) that represents the ith compon (+)(x) ‘o

the point x is the hermitian sum of the “positive-frequency” part E;
e
- (+)
its adjoint Ef )(x) = (B, ()
(+) ES (0. (1.435)
Ei(x) = E; " (x) + E

i ' () ber,
Glauber has defined the firsi-order correlation function Gy {x,3) as (Glau
au

1963b)

or in terms of the operator inner product (1.431) as |
+) {(+) (1 437
0 = (B0 £70)).

ows then from the Schwarz inequality (1.434)

ing 4 = EXD(x), ete., it foll .
B i {x,y) is bounded by (Titulaer and Glauber,

; (1)
that the correlation function Gij
" 438

6PN < GG ) (1438)

.. e e g
Interference fringes are sharpest when this inequality is saturaie

n 1.439)
60, PP = G50 (
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- 36)
60z, 9) = T (pEWE ) (1.436)

EXERCISES

which can occur only if the correlation function G’g_l)

(x, ) factorizes (Titulaer
and Glauber, 1965)

I : ;
Gl =gwew) (1.440)
as it does when the density operator is an outer product of coherent states

| o = [{eeh) e H, : (1.441)
which are eigenstates of EE“L)(x) with eigenvalue &(x) (GlauBer, 1963b, a)

EP ey = E9) (o). (1.442)
The higher-order correlation functions

G- o320) = T (B ) BB (5 B )

Int+1
(1.443)
satisfy similar inequalities (Glauber, 1963b), which also follow from the
Schwarz inequality (1.434).

Exercises

‘Why is the most complicated function of two Grassmann numbers a poiyno-
mial with at most four terms as in (1.12)?

Derive the cyclicity (1.24) of the trace from (1.23).

Show that (4B)T = BT A", which is (1.26). 4

Show that a real hermitian matrix is symmetric,

Show that (48)" = BY AT, which is (1.29).

Show that the matrix (1.40) is positive on the space of all real 2-vectors but
not on the space of all complex 2-vectors.

Show that the two 4 x 4 matrices (1.45) satisly Grassmann’s algebra (1.11) for
N=2
Show that the operators @; = 6; defined in terms of the Grassmann matrices

(1.45) and their adjoints a:.r = 0; satisfy the anticommutation relations (1.46)

of the creation and annihilation operators for a system with two fermionic
states.

Derive (1.64) from (1.61-1.63).

Fill in the steps leading to the formulas (1.69) for the vectors b’i- and &, and
the formula (1.70) for the matrix o

Show that the antilinearity (1.76) of the inner product follows from its first
two properties (1.73 & 1.74).

Show that the Minkowski produet (x, ) = 5% — x. » of two 4-vectors x and
¥ is an inner product that obeys the rules (1.73, 1,74, and 1.79).

Show that if f = 0, then the linearity (1.74) of the inner product implies that
{7,/ and (g,/) vanish,
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1.14 Show that the condition (1.75) of being positive definite implies nondegenetr-
acy (1.79). . e
1vi he Schwarz inner product 1mplies
15 Show that the nonnegativity (1.77} of t
e cor?dition (1.78). Hint: the inequality (f — Ag,S — Ag) = 0 must hold for every
tex A and for all vectors f and g. . '
1.16 (ézr:\,z that-the inequality (1.97) follows from the Schwarz inequah.ty (1.92).
1‘ 17 Show that the inequality (1.99) follows from the Sohwa.rz mequaht'y (1:9 ). .
1.18 Use the Gram—Schmidt method to find orthonormal linear combinations o
) the three vectors
1 1
si=1 0 s2=1 1 : {1.444)

3

0 0

1.19 Now use the Gram-Schmidt method to find orthonormal linear combina-
. tions of the same three vectors but in a different order
1
1
=10 1. (1.445)
S{l = 1 » S3 O

i ot the same orthonormal vectors as n the pr-evious e-x_ermse‘?

1.20 gﬁ“ii?ihge linearity (1.120) of the outer product from its d‘ef‘imtlon (j.t . 1(}91)55)
1l21 Show that a linear operator 4 that is represented by a hermitian matrix (1.

. in an orthonormal basis satisfies (g, A1) = (4 &./)- o o
122 Show that a unitary operator maps one orthonormai basis into ano the. i
1.23 Show that the integral (1.170) defines a unitary operator that maps _

ix'} to the state X -+ a).

124 For the 2 x 2 matrices

A:G _2) ond B:(i :;) (1.446).

1.25 ‘I];:;g?\(f: ctl;al:tli:;i-(slcﬁgfgsl fo?ilion (1.220) for complex A, x, and y when the
1.26 ?ﬁéﬁ;ﬁiﬁ;ﬁf (::isgs:l:l:alues » of a unitary matrix are unimodular, that is,
1.27 l\;tjh:at lare the eigenvalues and eigenvectors of the two defective matrices
1.28 %;;25:52?267) to derive expression (1.268) for the 2 x 2 rotation matrix

exp(—i8 - o/2).

1.29 Compute the characteristic equation for the matrix —i8 -J in which the |

generators are (i) = i€ikj and e 18 totally antisyrnmetric; with €123 = l.mx
130 Show that the sum of the eigenvalues of a normal antisymmetric ma

anishes. . o y
1.31 vUse the characteristic equation of exercise 1.29 to derive identities (1.271) and

(1.272) for the 3% 3 real orthogonal matrix exp(—if + J).
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1.32 Consider the 2 x 3 matrix 4

1 2 3
Az(_3 o 1). - (1.447)

Petform the singular value decomposition 4 = USVT, where ¥ is the trans-
pose of . Find the singular values and the real orthogonal matrices U and

V. Students may use Lapack, Octave, Matlab, Maple or any other program to
do this exercise.

1.33 Consider the 6 x 9 matrix 4 with elements

Ajje=x+ ¥ +i(y - P! (1.448)

in which x = 1.1 and y = 1.02. Find the singular values, and the first left and
right singular vectors. Students may use Lapack, Octave, Matlab, Maple or
any other program to do this exercise,

1.34 Show that the totally antisymmetric Levi-Civita symbol €, satisfies the usefal
relation

3

> €k i = 8w Skm — Sjn B (1.449)
i=1

1.35 Consider the hamiitonian

H = 1hoos {1.450)
where o3 is defined in (1.420). The entropy § of this system at temperature T'is

S = —kTr[p In(p)] (1.451)
in which the density operator p is

o~ H 1T .
= T AT (1.452)

Find expressions for the density operator p and its entropy S.

2
1.36 Find the action of the operator $2 = (S(l) + S(Z)) defined by (1.419) on the

four states | & &) and then find the eigenstates and eigenvalues of $2 in the
space spanned by these four states.

1.37 A system that has three fermionic states has three creation operators a;r and

three annihilation operators a; which satisfy the anticommutation relations
{a;, al} = 8z and {a,ar} = {aj,a,t} = 0for i,k = 1,2, 3. The eight states
of the system are |v,u, t} = (ag)’ (a;)“(ab“[(), 0, 0). We can represent them by
eight 8-vectors, each of which has seven 0s with a 1 in position Sv+3u+1. How
big should the matrices that represent the creation and annthilation operators
be? Write down the three matrices thaf represent the three creation operators.

1.38 Show that the Schwarz inner product (1.430) is degenerate because it can
violate (1.79) for certain density operators and certain pairs of states.
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Show that the Schwarz inner product (1.431) 18 de;gene_rate because it can
violate (1.79) for certain density operators and certain pz;:i}is tqf operatr(sé(s).'f u
l i i f the annihilation ope

aherent state |{og}) 15 an eigenstaie o . %
F\rvl:t% Zigenvalue ay, for each mode k of the electromagnetic field, C{kl{af})
ap o)y, The positive-frequency part E?Jr)(x) of the electric field is a lincar
combination of the annihilation operators

B = T a0k 0. (1.453)
k

Show that [{oy}) is an eigenstate of E,&) {(x)asin (1.442) and find its eigenvalue

Sj(x).

2

Fourier series

2.1 Complex Fourier series

The phases exp(inx)/+/2m, one for each integer n, are orthonormal on an
interval of length 27

2w g gl * S 2% ei(n—m}x
—} = dx = — dx = 8y 2.1
| ( ,__h) — = [ @

where 8, = 1 if n = m, and 8, , = 01if'n +# m. So if a function /' (x)'is a sum of
these p@ases

S &) (2.2

then their orthonormality (2.1) gives the nth coeflicient f,, as the integral

. ; oo .
2 e mx 2n e nx e.'mx

E (x)dx = A ‘\/‘z—in;jn F dx =m;m3n,m Sm=f 23

{Joseph Fourier, 1768-1830). :

The Fourier series (2.2) is periodic with period 27 because the phases are
periodic with period 2m, exp(in(x + 2m)) == exp(inx). Thus even if the function
J{x) which we use in (2.3) to make the Fourier coefficients £, is not periodic,

its Fourier series (2.2) will nevertheless be strictly periodic, as illustrated by
Figs. 2.2 & 2.4.




