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S5 INFINITE SERIES

5.1 FUNDAMENTAL CONCEPTS

Infinite series, literally summations of an infinite number of terms, occur
frequently in both pure and applied ‘mathematics. They may be used by the
pure mathematician to define functions s a fundamental approach to the theory
of functions, as well as for calculating accurate values of transcendental constants
and transcendental functions. In the Em,ﬁ_,rmEm:om of science and engineering
infinite series are ubiquitous, for they appear in the evaluation of integrals
(Section 5.6 and 5.7), in the solution of differential equations (Sections 8.5 and
8.6), and as Fourier series (Chapter 14) and compete with integral representa-
tions for the description of a host of special functions (Chapters 11, 12, and 13).
In Section 16.3 the Neumann series solution for integral equations provides one
more example of the occurrence and use of infinite series.

Right at the start we face the problem of attaching meaning to the sum of an
infinite number of terms. The usual approach is by partial sums. If we have a

sequence of infinite terms u,, u,, us, uy) us, . . . , we define the i th partial sum as
i
§= 3 W, {5.1)
n=1

Thisis a finite summation and offers no difficulties. If the partial sums s, converge
to a (finite) limit as { — oo,
lim 5, = §, (5.2)
ol
the infinite series » =.; u, is said to be convergent and to have the value S. Note
carefully that we reasonably, plausibly, but still arbitrarily define the infinite
series as equal to S. The reader should also note that a necessary condition for
this convergence to a limit is that lim,_.,, 4, = 0. This condition, however, is not
sufficient to guarantee convergence. Equation 5.2 is usually written in formal
mathematical notation:

The condition for the existence of a limit S is that for each e > 0,
there 1s a fixed N such that

IS —s5|<e fori>N.

This condition is often derived from the Cauchy criterion applied to the partial
sums s;. The Cauchy criterion is:

A necessary and sufficient condition that a mmacﬂ.ﬂom (s;) converge
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is that for each & > 0 there is a fixed number N such that
|si— | <e ' forallij>N.

This means that the individual partial sums must cluster together as
we move far out in the sequence.

The Cauchy criterion may easily be extended to sequences of functions. We see
it in this form in Section 3.5 in the definition of uniform convergence and in
Section 9.4 in the development of Hilbert space.

QOur partial sums 5 may not converge to a single limit but may oscillate,
as in the case

I8

dy=1—141—1F14 - —(=1F+ - (5.3)

U

1

"

Clearly, 5, = 1 for i odd but O for i even. There is no convergence to a limit,
and series such as this one are labeled oscillatory.
For the series

14+2+3+---F+n4+--- (5.4)
we have
n(n + 1)
R 5.5
S, 3 (5.5
Asn— 0,
FB#HB. {5.6)

Whenever the sequence of partial sums diverges (approaches + <o), the infinite
series is said to diverge. Often the term divergent is extended to include oscil-
latory series as well.

Because we evaluate the partial sums by ordinary arithmetic, the convergent
series, defined in terms of a limit of the partial sums, assume a position of
supreme importance. Two examples may clarify the nature of convergence or
divergence of a series and will also serve as a basis for a further detailed investiga-
tion in the next section.

EXAMPLE 5.1.1 The Geometric Series
The geometrical sequence, starting with & and with a ratio r (r = 0), is given
by
a,ar, ar, ard, ..., ar"t, L
~ The nth partial sum is given by!

a_.lm.a
1—7

(5.7

Sy =

! Multiply and divide 5, = Y " ar” by | —r. |
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Taking the limit as 1 — o0,

. a
lim s, = ,
[ ad-] H —F

for r < 1. (5.8)

Hence, by definition, the infinite geometric series converges for r < 1 and is
given by

m%,lu a__ | (5.9)

On the other hand, if » = 1, the necessary condition u, — 0 is not satisfied and
the infinite series diverges. ,

EXAMPLE 5.1.2 The Harmonic Series

As a second and more involved example, we consider the harmonic series

o PRI S S SRS S
:M_m !M+N+u+g+ ot (5.10)

We have the im, ., 1, = lim, ., 1/n = 0, but this is not sufficient to guarantee
convergence. If we group the terms (no change in order) as

I+3+G+D+E+E+3+9+G+ - +8)+ -, (51D
it will be seen that each pair of parentheses encloses p terms of the form
1 1 1 p 1
—_— -+ > = 512
r+1 p+2 r+p 2p 2 (512
Forming partial sums by adding the parenthetical groups one by one, we obtain
Se s
— 9 —_—
.wH - H.u M.RV. Nu
3 m:u 6
2= %> 5. (5.13)
4 n+1
whﬁ. 3> Mu Sy > 2

The harmonic series considered in this way is certainly divergent.®* An
alternate and independent demonstration of its divergence appears in Section
5.2

Using the binomial theorem?® (Section 5.6), we may expand the function
1+ x)™:

*The {finite) harmonic series appears in an interesting note on the maximum
stable displacement of a stack of coins, Johnson, P. R., “The Leaning Tower
of Lire.” Am. J. Phys. 23, 240 (1955).

! Actually Eq. 5.14 may be taken as an identity and verified by multipiying
both sides by 1 + x.
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1
14+x

=l—x+x2—x3+ (=P + (5.14)

If we let x — 1, this series becomes
1=1+1=-141-14" -, (5.15)

a series that we labeled oscillatory earlier in this section. Although it does not
converge in the usual sense, meaning can be attached to this series. Euler, for
example, assigned a value of 4 to this oscillatory sequence on the basis of the
correspondence between this series and the weli-defined function (1 + xy
Unfortunately, such correspondence between series and function is not unique
and this approach must be refined. Other methods of assigning a meaning toa
divergent or oscillatory series, methods of defining a sum, have been developed.
In general, however, this aspect of infinite series is of relatively little interest to
the scientist or the engineer. An exception to this statement, the very important
asymptotic or semiconvergent series, is considered in Section 3.10.

EXERCISES

5.1.1 Show that

e 1 1
Ml_ Gn—D@En+1) 2
Hint. Show (by mathematical induction) that s,, = m/(2m + 1).

5.1.2 Show that
< i
X n(n+ 1) h

n=i
Find the partial surn s,, and verify its correctness by mathematical induction.
Note. The method of expansion in partial fractions, Section 15.8, offers an alterna-
tive way of solving Exercises 5.1.1 and 5.1.2.

L

5.2 CONVERGENCE TESTS

Although nonconvergent series may be useful in certain special cases,
(compare Section 5.10), we usually insist, as a matter of convenience if not
necessity, that our series be convergent. It therefore becomes a matter of extrere
importance to be able to tell whether a given series is convergeat. We shall
develop a number of possible tests, starting with the simple and relatively insen-
sitive tests and working up to the more complicated but quite sensitive tests.

For the present let us consider a series of positive terms, a, > 0, postponing
negative terms until the next section.

Comparison Test
If term by term a series of terms «, < a,, in which the a, form a convergent
geries, the series Y. u, is also convergent. Symbolically, we have
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Ma: =a;+a;+as+ -, convergent,

M::“ 1251

"

Uy + Uz 4+

Ifu, < a, for all n, then Y, u, X ) ,a, and ¥ 4, therefore is corivergent.

If term by term a series of terms v, = b, in which the b, form a divergent
series, the series Y, v, is also divergent. Note that comparisons of u, with b, or
y, with @, yield no information. Here we have

S b, =by+by+by+ -,  divergent,

MQ:HG»lTQNlTGu:T....

n
o, > b, for ail n, then ¥ v, = Y, b, and Y, v, therefore is divergent.

For the convergent series a, we already have the geometric series, whereas
the harmonic series will serve as the divergent series b,. As other series are
identified as either convergent or divergent, they may be used for the known
series in this comparison test.

All tests developed in this section are essentially comparison tests. Figare 5.1
exhibits these tests and the interrelationships.

Fuler-Maclaurin

Cauchy

o0t Kuramer, @

integral

(Comparison

(Comparison with !
a, = n with integral)

geometric series) =1

D’Alembert,
Cauchy ratio

(Also by comparison
with geometric series)

FIG. 5.1 Comparison tests
EXAMPLE 5.2.1 The p Series

Test Y, n7, p = 0.999, for convergence. Since 7099 =y~ and b, = n"*
forms the divergent harmonic series, the comparison test shows that 3, n=0-999
is divergent. Generalizing, ) 72~ ” is seen to be divergent for allp < 1.

Cauchy Root Test
If (@)* <7 < 1 for a]l sufficiently large », with » independent of n, then

. Y, a,is convergent. If EL&: > 1 for all sufficiently large n, then Y, a, is divergent.
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The first part of this test is verified easily by raising (a)M" <r to the nth
power. We get
a, =<1l

Since " is just the nth term in a convergent geometric series, » , a, is convergent
by the comparisor: test. Conversely, if {¢,)'" = 1, then a, = 1 and the series
must diverge. This root test is particularly useful in establishing the properties

of power series (Section 5.7).

D'Alembert or Cauchy Ratio Test

If a,4;/a, < r < 1 for all sufficiently large n, and r is independent of , then
Y .a, is convergent. If a,,/a, =1 for all sufficiently large n, then > ety 1
divergent.

Convergence is proved by direct comparison with the geometric series
(1+7+7*+ --+). In the second part @,.; = dy and divergence should be
reasonably obvious. Although not quite s0 sensitive as the Cauchy root test,
this D'Alembert ratio test is one of the easiest to apply and is widely used. An
alternate statement of the ratio test is in the form of a limit:

If
H oty
lim <1, convergence,
noo Oy
> 1, divergence, (5.16)
=1, indeterminant.

Because of this final indeterminant possibility, the ratio test is likely to fail
at crucial points, and more delicate, more sensitive tests are necessary.

The alert reader may wonder how this indeterminacy arose. Actually it was
concealed in the first statement a,,,/a, < r < 1. We might encounter a,., fa, <1
for all finite n but be unable to choose an r < 1 and independent of n such that
a,.1/a, < v for all sufficiently Jarge n. An example is provided by the harmonic

series

Qpiy n
= . 517
a, n+1 <1 G147
Since
' s Gyt
:ma L= 1. (5.18)

no fixed ratio r < 1 exists and the ratio test fails.
EXAMPLE 5.2.2 D’Alembert Ratio Test

Test ¥, /2" for convergence.
n+1
apyy _ (0t 1)y/2 1n+1 (5.19)

a, n/2" 2 n
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Since
Gyyy 3
= <3 forn =2, (5.20)
we have convergence. Aliernatively,
H Q=+H _ EW
e T2 20

and again—convergence.

.annww or Maclaurin Integral Test
. This is another sort of comparison test in which we compare a series with an
S.ﬁmnm_. Geometrically, we compare the area of a series of unit-width rectangles
with the area under a curve. .

S fh=a J&) Sy =a
.\.Amy”hu
—— ~—
1 2 3 4 x i= 1 2 3 4 x
(2) ]

.ﬁO. 5.2 (a) Comparison of integral and sum-blocks leading. (b) Comparison of
integral and sum-blocks lagging

letf(x)bea oosnm.socmu monotonic decreasing function in which f(n) = a,.
Then Y, a, converges if [T f(x)dx is finite and diverges if the integral is infinite.
For the ith partial sum

5= Y o= M ). 5.22)

But
i+t
5 > flx)ydx {5.23)

1
by Fig. 5.2a, f(x) being monotonic decreasing. On the other hand, from Fig. 5.2b,

§— a5 < % Flx)dx, (5.24)
1

in A.«wmov the series is represented by the inscribed rectangles. Taking the limit
as i — oo, we have
4] 23] o
fydx < Y a, < | fx)dx +a . (5.25)
1 n=1 1
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Hence the infinite series converges or diverges as the corresponding integral
converges or diverges.

This integral test is particularly useful in setting upper and lower bounds on
the remainder of a series after some number of initial terms have been summed.
That is,

o N ©
M Da = Q: + M Dau
n=1 n=] n=N+1
where .
o D o i
fXdx< Y a,< fx)ydx + ayyy.
N+1 n=N+1 N+1

EXAMPLE 5.2.3 Riemann Zeta Function

The Riemann zeta lunction is defined by

Upy= ) n°® (5.26)
n=1
We may take f(x) = x~7 and then
a .xnlh+“_. o0
X Pdx = o1l p¥1
1 p 1 {5.27)
=lnx|}, p=

The integral and therefore the series are divergent for p < 1, convergent-for
p > 1. Hence Eq. 5.26 should carry the condition p > 1. This, incidentally,
is an independent proof that the harmonic series (p = 1) diverges and diverges
logarithmically. The sum of the first million terms Y 09909571 5 only
14.392726. ...

This integral comparison may also be used to set an upper limit to the
Euler—Mascheroni constant® defined by

y=lim{ Y m™* —Inn}). (5.28)
TR\ m=1
Returning to partial sums,
L " dx
- -1 _ ax _
5, = le,.,_H m Inn< i lon-+ 1. (5.29)

Evaluating the integral on the right, s, < 1 for all n and therefore y < 1. Exercise
5.2.12 leads to more restrictive bounds. Actually the Fuler—Mascheroni constant
is 0.57721566. ...

! This is the notation of National Bureau of Standards, Handbook of Mathe-
matical Functions. Applied Mathematics Series-55 {AMS-35).
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Kummer's Test

This is the first of three tests that are somewhat more difficult to apply than
the preceding tests. Their importance lies in their power and senmsitivity. Fre-
quently, at least one of the three will work when the simpler easier tests are
indecisive. It must be remembered, however, that these tests, like those pre-
viously discussed, are ultimately based on comparisons. It can be shown that
there is no most slowly converging convergent series and no most slowly
diverging divergent serfes. This means that all convergence tests given here,
including Kummer’s, may fail sometime.

We consider a series of positive terms »; and a sequence of finite positive
constants a,. If

Uy

73

— 8 2C>0 (5.30)

n
ey

for all n = N, some fixed number,? then 32, u, converges. If
f=1 Y W

U

.. (5.31)

fd
Hh:.Tm.

and )2, a7 ' diverges, then ¥ =, u, diverges.
The proof of this powerful test is remarkably simple. From Eq. 5.30, with
C some positive constant,

Q:2+~ = anliy — Ay Upygg

Cupyz < Gyaqlyer — Aupaliysg

(5.32)
GH\.u: = Quoy Uy — apl,
Adding and dividing by C, (C # 0), we obtain
- Q.z«u_z Q:Q:
u; < — . 5.33)
H,MSTC e (
Hence for the partial sum, s,
N
D_Zﬂz Q:S:
< ) —
SSQuTTE TC
N (5.34;
< XY u+ n_Mw n a constant, independent of n.
i=1

The partial sums therefore have an upper bound. With zere as an obvious
lower bound, the series _ iu; must converge.
Divergence is shown as follows. From Eq. 5.31

*With u,, finite, the partial sum sy will always be finite for N finite. The
convergence or divergence of z series depends on the behavior of the last
infinity of terms, ner on the first N terms.
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Apldy = Gy Uy 2 700 2 dyldy, n> N. (5.35)
Thus
u, = SN (5.36)
-uw»
and
ey o
Souzayuy p, a4t (5.37)
i=N+1 i=N+1

If Y=, a;t diverges, then by the comparison test 3 ;u; diverges.
Equations 5.30 and 5.31 are often given in a limit form:

lim T; n_ p_:v =C. (5.38)

n—oy Uper

Thus for C > ¢ we have convergence, whereas for C < 0 (and 3 art divergent)
we have divergence. It is perhaps useful to show the anm?m_mb.om of Eq. 5.38 mbm
Egs. 5.30 and 5.31 and to show why indeterminacy creeps in when the limit
C = 0. From the definition of limit

Uy, — g — Cl<eg ﬁmmmu

Up+1

for all n > N and all ¢ > 0, no matter how small ¢ may be. When the absolute
value signs are removed,

ay

Uy

—a.,<C+e (5.40)

C—-g<a,
Upt1
Now if C > 0, Eq. 5.30 follows from ¢ sufficiently small. On the other hand,
if C < 0, Bq. 5.31 follows. However, if C = 0, the center term aL:;.\:iL — Gy
may be either positive or negative and the proof fails. The primary use .om
Kummer’s test is to prove other tests such as Raabe’s (compare also Exercise
5.2.3).
If the positive constants a, of Kummer’s test are chosen a, = n, we have
Raabe's test.

Raabe's Test
Ifu, > 0 and if

A “n |_vwwv~ (5.41)

Hntg

for alln > N, where N is a positive integer independent of i, then > u; converges.
If

Upsy

:m U _ <1, (5.42)

then Y, u, diverges (3 n™" diverges).
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The limit form of Raabe’s test is

. u
mn n
-t ﬁ:+w

~1}=P. (5.43)

We have convergence for P > 1, divergence for P < 1, and no test for P =1
exactly as with the Kummer test. This indeterminacy is pointed up by Exercise
3.2.4, which presents a convergent series and a divergent series with both series
yielding P = 1 in Eq. 5.43.

Raabe’s test is more sensitive than the d’Alembert ratio test because =, n™*
diverges more slowly than Mwﬁ 1. We obtain a still more sensitive test (and one
that is relatively easy to apply) by choosing @, = nlIn n. This is Gauss’s test.

Gaugs’s Test
If u, > O for all finite » and

, . h B
=1+ nt T (5.44a)

Upy
in which Bin) is a bounded function of n for r — oo, then > :u; converges for
h>1and divergesfor h < 1.

Theratio u,/u,; of Eq. 5.44a often comes as the ratio of two quadratic forms:

L
u, n4an+a

Upiy B2+ bn+ by (5.44b)

It may be shown (Exercise 5.2.5) that we have convergence for a, > b+ land
divergence for a; < b, + 1.

The Gauss test is an extremely sensitive test of series convergence. It will
work for all series the physicist is likely to encounter. For h> 1 or i < 1 the
proof follows directly from Raabe’s test

:E:T+:+ﬂ%i@ﬁ:§?+m@

n—*co il n—=co n

(5.45)
= h.

If h = 1, Raabe’s test fails. However, if we return to Kummer’s test and use
a,=nlnn, Bq. 5.38 leads to

o m{ninn 1422 B0 6y s 1
=tim | ninn- 2D 4 pyinga 4 ) (5.46)

—lm(+ 1) ETETEAH +1
Borrowing a resuit from Section 5.6 (which is not dependent on Gauss’s test),
we have .
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. 1 LIRS
=—-1<0

Hence we have divergence for b = 1. This is an example of a successful applica-
tion of Kummer’s test in which Raabe’s test had failed.

I
g
<
=
+
a
4
+
3

EXAMPLE 5.2.4 Legendre Series

The recurrence relation for the series solution of Legendre’s equation
(Section 8.5) may be put in the form

o542 M:MH +1 - E + C. (5.48)

This is equivalent to uy;,,/u,; for x = + 1. Forj > 1?

l@.+ DEi+2 _2/+2
Upjrz 22+ 1) %
ciel
]

By Eq. 5.44b the series is divergent. Later we shall demand that the Legendre

series be finite at x = 1. We shall eliminate the divergence by setting the para-

meter n = 2j,, an even integer. This will truncate the series, converting the
infinite series into a polynomial.

(5.49)

Improvement of Convergence

This section so far has been concerned with establishing convergence as an
abstract mathematical property. In practice, the rate of convergence may be
of considerable importance. Here we present one method of improving the rate
of convergence of a convergent series. Other techniques are given in Sections
54 and 5.9.

The basic principle of this method, due to Kummer, is to form a linear
combination of our slowly converging series and one or more series whose
sum is known. For the known series the collection

&

1
“= LoD !
11
&uMi:+:§+3|R_
o 1 1
RUHM ;+:§+N§+s Hlm

guw 1 _ 1
amn+1)---{n+p) p-p!

*The » dependence enters B(x} but does not affect k.
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is particularly useful.* The series are combined term by term and the coefficients
in the linear combination chosen to cancel the most slowly converging terms.

EXAMPLE 5.2.5 Riemann Zeta Function, {(3)

Let the series to be summed be Y 2., n™>. In Section 5.9 this is identified as a
Riemann zeta function, £(3). We form a linear combination

o e i
Yrn P tayy =Y+ 22,
n=1 n=1 4

o; is not included since it converges more slowly than {(3). Combining terms,
we obtain on the left-hand side

{1 a, IB:nQ+mmv+wx+N
M W nn + D+ 2)( amw e+ Din+2)
If we choose a, = — 1, the ﬁ_.moo&SW equations yield

- - 3n+2
W=y =gt L ey
the resulting series may not be beautiful but it does converge as n~%, appreciably
faster than n™°. A more convenient form comes from Exercise 5.2.21. There,
the symmetry leads to convergence as n™*.

The method can be extended including a;o; té get convergence as n™°,
a,, to get convergence as n~°, and so on. Eventually, you have to reach a
compromise between how much algebra you do and how much arithmetic the
computing machine does. As computing machines get larger and faster, the

balance is steadily shifting to less algebra for you and more arithmetic for the
machine,

EXERCISES

521 (&) Provethatif

lim #Pu, = A < oo; p>1,
h=+00
the series ) =, u_converges.
{b} Prove that if
lim nu, = A > 0,
n=o
the series diverges. (The test fails for 4 = 0.)
These two tests, known as limit tests, are often convenient for’ mmﬁz_m?nm the

convergence or divergence of a series. They may be treated as comparison tests,
comparing with

*These series sums may be verified by expanding the forms by partial fractions,
s.::sm out the initial terms and inspecting the pattern of cancellation of
positive and negative terms.
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YnTe, Il<g<p
522 K
b

lim £ = K,
L

a constant with 0 < K < oo, show that b, converges or diverges with Y a,
Hint. If ¥ a, aﬂumﬁwnmwm use

N
/ K"
If 3 a, diverges, use

5.2.3 Show that the complete d’Alembert ratio test follows directly from Kummer's
test with a; = 1.

5.2.4 Show that Raabe’s test is indecisive for P = 1 by establishing that P = 1 for the

series
(a) wu,= ! and that this series diverges.
nlnn
1 . .
(b) u,= TS and that this series converges.

Note. By direct addition Y 1°9%%°[n(lnn}*]™! = 2.02288. The remainder of the
series n > 10° yields 0.08636 by the integral comparison test. The total, then, 2
to oo, is 2.1097.

5.2.5 Gauss's test is often given in the form of a test of the ratio

u, W 4anta
Upiy M AHbin+ by

For what values of the parameters a, and b, is there convergence? Divergence?
ANS. Convergentfora, — b, > 1,
divergent fora, — b, < 1.
b.2.6 Test for convergence

(@ 3 (nn @ 3 [nln+ 1]
n=Q r=1
® nl _ © 1

®) ,M_ O © o7
O

© M Inien < 1)

5.2,7 Test for convergence

@ am n(n + 1) {d) am Inf1+ -
(®) ._Wn nlnn {e) W_ —

5.2.8

5.2.9

5.2.10

5211

5.212

5.2.13

5.2.14

5.2.15
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For what values of p and g wilt the following series converge?
= 1

)3

n=2 zhcb 31“

p>1, all g,
ANS. Convergent for
p=1  g¢>1
<1, ail q,
divergent for F q
p=1, g=1

Determine the range of convergence for Gauss's hypergeometric series

F(w, B e.kaH+l.|mlx +.||£R+ DA+ 1) 2t

Iy 2ly(y + 1)
Hint. Gauss developed Gauss’s test for the specific purpose of establishing the
convergence of this series.
ANS. Convergentfor —l<x<landx= tilify>a+f

A simple machine caleulation yields
100
¥ n7% == 1.202007.

Show that

0

1202056 < Y n~

3 < 1.202057.

Hint. Use integrals to set upper and lower bounds on M_. o
Comment. A more exact value for summation ¥ T n™3 15 1.202056903. .

Set upper and lower bounds on 3 +5%%%% 173, assuming that (a) the Euler—
Mascheroni constant is known.
ANS, 14392726 < Mum..l.ouco.ccc nt < 14.392727.

(b) The Euler—Mascheroni constant is unknown.

Given } :25°%%~! = 7.485470. .
meo:ﬂoﬂ: oonmﬁwur

, et upper and lower bounds on the Euler—
ANS, 05767 <y < 0.5778.

(From Olbers’s paradox.) Assume a static universe in which the stars are uniformly
distributed. Divide all space into shells of constant thickness; the stars in any
one shell by themselves subtend a solid angle of wy. Allowing for the blocking out
of distant stars by nearer stars, show that the total net solid angle subtended by
all stars, shells extending to infinity, is exactly 4n. (Fherefore the night sky
should be ablaze with light.)

Test for convergence
< [1-3-5-

2

2l 246 (n)

cCnoyF L 9 25
A+mh+wmm+

The Legendre series, Y ;... #,{x), satisfies the recurrence relations

G+DG+2)-ll+ 1) 2,
X A
g g(x) = A0 +3) x*u(x),
in which the index j is even and ! is some constant (but, in this problem, not a
nonnegative odd integer). Find the range of values of x for which this Legendre
series is convergent. Test the end points carefully. ANS. —l<x<l
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5.2.16 A series solution (Section 8.5) of the Chebyshev equation leads to successive
terms having the ratio

Upiz{x) _ {k+j) —n? ¥2
ufx) e+ iDk+j+2)
" with k = Oand k = 1. Test for convergenceat x = +1.  ANS. Convergent.

5.2.17 A series solution for the nitraspherical (Gegenbauer) function CZ(x) leads to the
recurrence ’
- (k+ )k + 7+ 20)— nln + 20)
app = G - — .
. ?+.~+CQA+\+V

Investigate the nogﬁmnmon of each of these series at x = +1 as a function of :wm
parameter ¢. Y ANS. Convergent for a < 4;
| divergent for o = 4.

|

5.2.18 A series expansion of the incomplete beta function {Section 10.4) yields

1l i—g  (G-q@Q-9q ,
mHQ,&uon+u+Hx+ 22 "
+:|%;a.._s;a&+._.w
allp+n

Given that 0 < x <1, p> 0, and g > 0, test this series for convergence. What
happens at x = 17

5.2.19 Show that the mo:os&._m series is convergent.
2 (2s—=ni
m.uMc @2s+ 1)
Note.(2s — 1) = (25 — (25 — 3)---3 - 1with (— 1)1 = 1. (25}t = (25)(2s — 2)

42 with 0!! = 1. The series appears as a series expansion of sin™ (1) and
equals /2. ‘
5.2.20 Show how tocombine{(2) = Y2, n~2 with a, and & to obtain a series converging
—4
asn *,

Note, {(2) is actually available in closed form: {(2) = z2/6 (see Section 5.9).

5.2.21 The convergence improvement of Example 5.2.5 may be carried out more
expediently (in this special case) by putting «, into a more symmetric form:
Replacing n by n — 1, we have

;e 1 1
My = } —— e -,
wma(m—Un(n+1) 4
(a) Combine {(3)and o to obtain convergence as n~>. )
(b) Leteay bec, withn—n — 2. Combine { (3), a3, and &) to obtain convergence
-7
asn”’.
{c) I {(3)is to be calculated to 6 decimal accuracy {error 5 x 1077, ros many
terms are required for {(3) alone? combined as in part (a)? combined as in
part {b}? o
Note. The error may be estimated using the corresponding integral.

ANS. (@) ﬁgumr )

n=2 30A§N - Hv

5.2,22 Catalan’s constant (#(2) of AMS-35, Chapter 23) is defined by
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1
1

1
=+

993
Bl

BQ = T (~ 1Pk + 1) =
k=0

Calculate f(2) to six-digit accuracy.
Hing, The rate of convergence is enhanced by pairing the terms:;

N S 1
(k= 1P (4 -+ 12 (16k2 — 1)F
If you have carried enough digits in your series summation, Y\, 16k/(16k% — 1)?,
additional significant figures may be obtained by setting upper and lower bounds

on the tail of the series, Y2, ,. These bounds may be set by comparison with
integrals as in the Maclaurin integral test.

ANS. B(2) = 0915965594177, ...

£3 ALTERNATING SERIES

entrast, we consider infinite series in which the signs alternate. The partial
cancellation due to alternating signs makes convergence more rapid and much
easier to identify. We shall prove the Leibnitz criterion, a general condition
for the convergence of an alternating series.

/m In Section 5.2 we limited ourselves to series of positive terms. Now, in

Leibnitz Criterion
Consider the series Y =, (—1)"*! g, with a, > 0. If a, is monotonic decreasing
{for sufficiently large n) and lim,. . a, =0, then the series converges.
To prove this, we examine the even partial sums

S2n =@~y d3— 0 —ay,
" " (5.51)
San+2 = Sz F (Bzpey — Gpppz).
SiNCe @y,4y > dgp ., We have
MN:.TN > MH..... AM.MMV
On the other hand,
Szarz = @y — {dy — az) — (a, — ds} =+ — dgpyy. (5.53)
Hence, with each pair of terms Gy — Ggpey > 0,
Sonta < QH. AM.MA.V

With the even partial sums bounded San < Sap42 < @y and the terms a, decreasing
monotenically and approaching zero, this alternating series converges.

One further important result can be extracted from the partial sums. From
the difference between the series limit § and the partial sum s,

S§—8,=4a,,,—a, +m=.lna + .-
+1 +2 +3 +4 (5.55)
= ypy mn=+u - Q:._.wv - AD:+A. - D_:erv -

or
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S— 5 < dy. (5.56)

Equation 5.56 says that the error in cutting off an alternating moEoM%MHmM
terms is less than a, 1, the first term dropped. A knowledge of the error o
this way may be of great practical importance.

Absolute Convergence . o erses
Given a series of terms u, in which u, may vary in sign, if ). [u,| converges,

then ¥ u, is said to be absolutely convergent. If Y u, converges but Y |u]

diverges, the convergence is called oo..H&momHm_. | m. i conditionl
The alternating harmouic series is a simple example o

convergence. We have ————

5 1,11 L. (5.57)
n=l,=1l L D e m e e = e ,
e R A A
convergent by the Leibnitz criterion; but //
& i 1.1 | (5.58)
-1 B0 e T R s Y
Mn: =1+ 5 + 3 +L+ -\

i i tions 5.1 and 5.2.
s been shown to be divergent in Sec . .
e The reader will note that all the tests developed in Section 5.2 mmwﬁwmh
series of positive terms. Therefore all the tests in that section guarantee abso

convergence. ——

EXERCISES

5.3.1 {a) From the electrostatic two hemisphere problem c,JuxaHQmo 12.3.20) we obtaic
the series

WT:SA&.TE Th

=0

Test for convergence. o
(o) The corresponding series for the surface charge density is

(2s — !
) 251!

Test for convergence. The ! | notation is explained in Section 10.1.

W (—1F(d4s + 3
s=0

5.3.2 Show by direct numerical computation that the sum of the first 10 terms of

limln(l +x)=In2 = M (—1y=in

*=1 n=1

- differs from 1n 2 by less than the eleventh term: In 2 = 0.69314 71806. . ..

i i ies is shown convergent for x = £1,1f
ise 3.2.9 the Eﬁwnmmoﬁanzm series is § rgen
>33 %uv_mMMom. Show that there is conditional convergence for x = —1 for y downle

— L - - x . ST .
Wﬂw ﬂ.rm asymptotic behavior of the factorial function is given by Stirling’s seres

Section 10.3.
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3.4 BALGEBRA OF SERIES

The establishment of absolute convergence is important because it can be

proved that absolutely convergent series may be handled according to the
ordinary familiar rules of algebra or arithmetic.
1. Ifaninfinite series is absolutely convergent, the series
sum is independent of the order in which the terms
are added.
2. The series may be multiplied with another absolutely
convergent series. The limit of the product will be the
product of the individual series limits. The product
series, a double series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series. Again
consider the alternating harmonic series, If we write

I=dtd—t+ o =1-G-9-d-yh--, ()

it is clear that the sum

W (-1 n™t < 1 (5.60)
=1

However, if we rearrange the terms slightly, we may make the alternating
harmonic series converge to 3. We regroup the terms of Eq. 5.59, taking
T+3+d-D+G+ 4+ +45+ &)~ @)
S R b B R Cr PR SN NI

Treating the terms grouped in parenthesis as single terms for convenience,
we obtain the partial sums

(5.61)

s = 1.5333 55 = 1.0333
s3 = 1.5218 5. = 12718
55 2= 1.5143 86 = 1.3476
57 = 1.5103 sg = 1.3853
o= 15078 5,4 = 1.4078

From this tabulation of 5, and the plot of 5, versus nin Fig. 5.3 the convergence
to 3 is fairly clear. We have rearranged the terms, taking positive terms unti] the
partial sum was equal to or greater than #, then adding in negative terms until
the partial sum just fell below %, and 50 on. As the series extends to infinity,
all original terms will eventually appear, but the partial sums of this rearranged
alternating harmonic series converge to 2.

By a suitable rearrangement of terms a conditionally convergent series may
be made to converge to any desired value or even to diverge. This statement is

moaamﬁomm?mummEaEmnu_mEmoHoE. Ociosm? conditionally convergent
series must be treated with caution, A
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T ————

1.500

Sn
1.400

1.300f

Partial sum

_.,S_NMAmmqmas

Number of terms in sum, n

FIG. 5.3 Alternating harmonic series—terms rearranged to give convergence to
1.5

Improvement of Convergence, Rational Approximations
The series

In(t +x)= Y (— 1) x"/n, —1l<x<1, (5.61a)
n=1

converges very slowly as x approaches + 1. The rate of convergence may .,cm

improved substantially by multiplying both sides of Eq. 5.61a by a wo_uﬁoﬁmm

and adjusting the polynomial coefficients to cancel the more slowly converging

portions of the series. Consider the simplest possibility: Multiply In(1 + x) by

14 a;x.

(1 + a;x)ln(l + x) = W_ (=1r 'x"/n+a, W (— 1" 1x"/n,
n=] n=]

Combining the two series on the right term by term, we obtain

x e H a
(1 + ax)In(t +é"x+=M_~AI5 ! ml:IHH

@ - — -1
=x+ MMAIHV.“J%:S&:“WV: x".

n=

a

X

Clearly, if we take a; = 1, the n in the numerator disappears and our combined
series converges as n™ 2.

Continuing this process, we find that (1 + 2x + x?)In(1 + x) vanishes as n,
(1 + 3x + 3x* + x*)In(1 + x) vanishes as n~* In effect we are shifting froma
simple series expansion of Eq. 5.61a to a rational fraction representation in which

the function In(I' + x) is represented by the ratio of a series and a polynomial:
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(1 4+ »'s X 2 Ut =~ ]

/ 1+x

Such rational approximations may be both compact and accurate, The SSP
computer subroutines make extensive use of such approximations.

Rearrangement of Double Series

ESEQ.. aspect of the rearrangement of series appears in the treatment of
double series (Fig. 5.4): ’

Let us substitute

n=g=>9{,
m=p-~gq=0,
(g <p)

This resuits in the identity

8
8

w P
Lrm = M M G.p—g

p=0g=0

(5.62)

m=0 a=0

The summation over p and g of Eq. 5.62 is illustrated in Fig. 5.5. The substitution

m=10 1 2 3
n= O QQ
3
1
1
1 a;
{ x 1
] T
2| af " af T ai
2§ Q3 __ 423 23
P 2N
\\\ ! i
3 ass as; as, au_u FIG. 5.4 Double series—sum-
v \ ! ! " mation’ over # indicated by ver-
- ' i i i aow_\ammwna lines
-
p=0 1 2 3
g=0 Qoo doy 4oz Qo3
i i !
1 1 I i
d10 a4 d52
1 T
5 n_, ] FIG. 55 Double series—again,
20 a 21 the first summation is represented
, “ by «”E.aomm dashed lines but these
3 a3,  vertical lines correspond to diago-

nals in Fig. 5.4,
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Qg2 do3 doa

1 Gy dy1 42 FIG. 5.6 Double series. The sum-
mation over scorresponds toa sum-
2 20 mation along the almost horizontal
slanted lines in Fig. 5.4.
n=g5z0, -

w
5= 5 )
leads to .
© o w [r2]
Y N = 2, 2 Gapea (5.63)
m=0n=0 r=05=0

with [/2] = #/2 for r even, (r — 1)/2 for r odd. The summation over r and s of
Eq. 5.63 is shown in Fig. 5.6. Equations 5.62 and 5.63 are clearly rearrangements
of the array of coefficients a,,,, rearrangements that are valid as long as we have
absolute convergence. ‘

The combination of Egs. 5.62 and 5.63,

@x r w (P21
MU M hm.hln = M M Eu.wIMm Ammm@
p=0g=0 r=0s=0

is used in Section 12.1 in the determination of the series form of the Legendre
polynomials.

EXERCISES
65.4.1 Given the series (derived in Section 5.6) .
m = |X|M |..\.ﬁ|m.]un|h i—lwx<l,
In(i +x)=x N+m 3 ; ) =
show that oI e
x2 x? x* l<x<l
— S e X e e e s s s -] <Xx .
(@) In(l —x) x T3 T
—-l<x<l

L+x\_ LU
(b) EA_zvaAx+w+u+ v

The original series, In(1 + x), appears in an analysis of binding energy in crystals.

It is & the Madelung constant (21n 2) for a chain of atoms. The second series (b} is
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useful in normalizing the Legendre polynomials (Section 12.3)and in developing a
second solution for Legendre’s differential equation (Section 12.10).

Determine the values of the

5.4.2 icients a,, a,, and a, that will make (1 + a,x +
a,x* + a;x*)In{1 + x) converge as n~*. Find the resulting series.
54.3 Show that

@) M [t~ 1] = 1.

©) 3 (~1yLm-1]=1

| n=2

where {(») is the Riemann zeta function.

5.4.4 Write a program that will rearrange the terms of the aliernating harmonic series
to make the series converge to 1.5. Gronp your terms as indicated in Bq. 5.61. List
the first 100 successive partial sums that just climb above 1.5 or just drop below
1.5, and list the new terms included in each such partial sum.

ANS. n s,
1 15333
2 10333
3 15218
4 12718
5 1.5143

55 SERIES OF FUNCTIONS

We extend our concept of infinite series to include the possibility that each
term u, may be a function of some variable, u, = u,(x). Numerous illustrations
of such series of functions appear in Chapters 11 to 14. The partial sums become
functions of the variable x

Su(x) = 1y () + () 4 -+ - + u{x), (5.65)
1 does the series sum, defined as the limit of the partial sums
a0
Y u,(x) = S{x) = lim s, (x). (5.66)
n=] oo

So farWe have concerned ourselves with the behavior of the partia] sums as
& function of n. Now we consider how the foregoing quantities depend on x.
The key concept here is that of uniform convergence.

Uniform Convergence
Iffor any small & > 0 there exists a number N, independent of x in the interval

(2.] {a < x < b) such that
[S(x) — s,0)f < &, (5.67)

the series is said to be uniformly convergent in the interval [a,b]. This says
that for our series to be uniformly convergent, it must be possible to find a

N

for ail n > N,




300 INFINITE SERIES

AN
e e

XxX=a x

FIG. 5.7 Uniform convergence

finite N so that the tail of the infinite series, _M_,mus vy 4i(x)|, will be less than an
itrari all x in the given interva .

w&%ﬁﬂﬂ%hﬂﬂﬁ%ﬁ“. 5.67, éEnM defines E,&.oa.p convergence, is EE,MB”&

in Fig. 5.7. The point is that no matter how mBm&.m is taken to .Go we omﬂ__u mﬁsm%

choose 1 anm enough so that the absolute magnitude @m the &Eﬂ.man e «Hg

Six) and s,{x) is less than ¢ for all X, a<x< b. If this cannot be done,

¥ u,(x) is not uniformly convergent in [a,b].

EXAMPLE 5.5.1

=5 X . (569
; ) = __MH [~ Dx + 1]fnx + 1]
The partial sum s,{x} = nx(nx + 1)~* as may be verified by mathematical
induction. By inspection this expression for s,(x) holds for n = 1, 2. We assume
it holds for n terms and then prove it holds for n + 1 terms.

i

X
Sl =50+ e T Dx + 1

nx X
HM=H+HH_+_”=H+5E:+SH+HH_

_ (a4 1)x
T Dx 41

completing the proof. . .
Letting n approach infinity, we obtain

S(0) = lim 5,{0) =0,

H—=@m

S(x # 0) = lim s,(x # 0) = 1.

n—too

We have a discontinuity in our series limit at x = 0. However, s,(x) is a contin-
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uous function of x, 0'< x < 1, for ali finite »n. Equation 5.67 with & sufficiently
small, will be violated é:ﬂ 7. Qur series does not converge uniformly.

Weierstrass M Test :

The most commonly encountered test for uniform convergence is the
Weierstrass M test. If we can construct a series of numbers Y ¥ M, in which
M; = |u(x)| for ail x in the interval [« b] and Y2 M, is convergent, our series

T 4(x) will be uniformly convergent in [a, b].

The proof of this Weierstrass M test is direct and simple. Since ) ; M; con-

veérges, some number N exists such that for n + 1 >N,

Y M.<s | (5.69)

i=n+1

This follows from our definition of convergence. Then, with |u(x)| < M, for all
xin the interval ¢ < x < b,

3w <z (5.70)

i=n+1
Hence

@D

M ux)
i=n+1
and by definition > ulx) is uniformly convergent in [a.5]. Since we have
specified absolute values in the statement of the Weierstrass M test, the series

iz1 1;(x) is also seen to be absolutely convergent.

The reader should note carefully that uniform convergence and absolute

‘onvergence are independent properties. Neither implies the other. For specific
examples,

IS(x) — 5,(x)| = <é, (5.71)

thwe ~0<x <o (572)
=3
and
A DTS smilrx),  0s<xs<t (5.73)
- n=1

converge uniformly in the indicated intervals but do not converge absolutely.
On the other hand,

F—xxr= 1,

n=0

0=<x<1
(5.74)
=, x=1
converges absolutely but does not converge uniformly in [0, 1].
From the definition of unifézm convergence we may show that any series

oo

Fx) =} u,(x) (5.75)

n=1
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cannot converge uniformly in any interval that includes a discontinuity of f(x).

Since the Weierstrass M test establishes both uniform and absclute con-
vergence, it wiil necessarily fail for series that are uniformly but conditionally
convergent.

Abel's Test
A somewhat more delicate test for uniform convergence has been given by
Abel. If

Uy(x) = a, folx),
Ya,=A,  convergent.,

and the functions f,(x} are monotonic | f,,,(x) < f,(x)] and bounded, 0 < £,(x)
< M, for all x in [a,b], then ) u,(x) converges uniformly in [a, b].

This test is especially useful in analyzing power series (compare Section 5.7).
Details of the proof of Abel’s test and other tests for uniform convergence aze
given in the references listed at the end of this chapter.

Uniformly convergent series have three particularly useful properties.

1. H the individual terms u,(x) are continuous, the series sum

oo

) =) u(x) (5.76)

n=]
is also continuous.

2. If the individual terms u (x} are continuous, the series may be integrated
term by term. The sum of the integrals is equal to the integral of the sum.

b

.ﬁ Fdx =3 | udx 5.77)
a n=1

3. The derivative of the series sum f(x) equals the sum of the individual
term derivatives,

d 2 d

m\. )=

% &ﬂ::@a_ (5.78)

provided the following conditions are satisfied.

u,(x} and mmm._wmmw are continuous in [a, b].

o duy(x)
M dx

Term-by-term integration of a uniformly convergent series' requires only
continuity of the individual terms. This condition is almost always satisfied in
physical applications. Term-by-term differentiation of a series if often not valid

is uniformly convergent in [a, b].

n=]

because more restrictive conditions must be satisfied. Indeed, we shall en-

! Term-by-term integration may also be valid in the absence of umiform
convergence.
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o.oE:mn cases in Chapter 14, Fourier Series, in which term-by-term differentia-
tion of a uniformly Wgwmﬁmmmn series leads to a divergent series.

EXERCISES

5.5.1 Find the range of uniform convergence of

] H|Hv:iu
(a) W ——

= 1
® 2= ANS. (@ 1<x<oo.
. =1
b} 1<s<x<om.

5.6.2 For what range of x is the geometric series Mﬂuoxr uniformly convergent?
ANS. —l1<—-s<x<s<]

6.5.3 For what range of positive values of x is Yo 1AL+ x7)
(a) Convergent?
(b) Uniformly convergent?

5.5.4 Ifthe mmj.nm of the coefficients 3 a, and ¥ b, are absolutely convergent, show that
the Fourier series ,

2.(a,cosnx + b, sinnx)
is uniformly convergent for — oo < x < o0,

5.6 TAYLOR'S EXPANSION

This is an expansion of a function into an infinite series or into a finjte series
m_cw.m remainder term. The coefficients of the successive terms of the series
Eé_é. the successive derivatives of the function. We have already used Taylor’s
¢xpansion in the establishment of a physical interpretation of divergence

{Section 1.7) and in other sections of Chapters 1 and 2. Now we derive the
Tayior expansion. .

. We assume that our m.anoqu J(x) has a continuous nth derivative® in the
mtervala < x < b, Then, integrating this nth derivative » tirnes,
x X
FOdx = )| = fiet — e
a a

X

S ) dx = % L) - @] ax (579)
= £ = 1) - (x — a)f ),

Continuing, we obtain

! Taylor’s expansion may ﬁ.. derived under slightly less restrictive conditions,

Mﬂnwwﬁm Jeffreys and Jeffreys, Methods of Mathematical Physics, Section
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[[[ oo = 520 = 1070 = = a2

(5.30)
0 i)
Finally, on integrating for the nth time,
T [ ey = £ - 1@ = e = A @
b %\@xa ) — fla@ | -
2 _ — _
T e AR O

Note that this expression is exact. No terms have been dropped, no approxima-
tions made. Now, solving for f{x), we have

fx) = fl@+ (x —af @

(5.82)
T e A
The remainder, R, is given by the n-fold integral”
R,= ‘ﬁ e ‘_> ™) (dx)". (5.83)
This remainder, Eq. 5.83, may Wm put into perhaps more intelligible form by
using the mean value theorem of integral calculus
ﬁ g(x)dx = (x — a)g(£), {5.84)
with a < { < x. By Eﬁnmammnm R times we get the Lagrangian form? of the
remainder:
R, == o) (559

With Taylor's expansion in this form we are not omnoogma with any questions
of infinite series convergence. This series is finite, and the only questions
concern the magnitude of the remainder.

When the function f{(x) is such that

lim R, =0, (349

n-+o0

Eq. 5.82 becomes Taylor’s series

2 Aq alternate form derived by Cauchy is

(x=0""x— nvg«é;ﬂu

R

witha<{<x
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:&+@;gqéffklac;a+
/ (5.87)
= 3 o rog3

n=0

fix)

Our Taylor series specifies the value of a function at one point, x, in terms of
the value of the function and its derivatives at a reference point, a. It is an
expansion inn powers of the change in the variable, Ax = x — ¢ in this case.
The notation may be varied at the user’s convenience. With the substitution
x—x+ hand @ - x we have an alternate form

o0 ]

fe+hm=1%

n= cE_ﬂ

/7).

When we use the operator D = d/dx the Taylor expansion becomes

fx+h= Mo hxvtm fx).
{The transition to the exponential H,OnB anticipates Eq. 5.90 that follows.) An
equivalent operator form of this Taylor expansion appears in Exercise 4.11.1:
A derivation of the Taylor expansion in the context of complex variable theory

appears in Section 6.5. :

L
[

Maclaurin Theorem 4

If we expand about the origin (a = 0), Eq. ,m 87 is known as Maclaurin’s
series ~

Jx) = f(0) + x£'(0) + ;3@ T
(5.88)

o)

-3x

Son! 3@

An immediate application of the Maclaurin series (or the Taylor series) is in
the expansion of various transcendental functions into infinite series.

EXAMPLE 5.6.1

Let f(x) = ¢*. Differentiating, we have

F™0) =1 (5.89)
forallm,n=1,23,.... Then, by Eq. 5.88, we have
- T
eF=1+x+2 +m_+.:
! (5.90)

=2 |

o

Note that 01 = H\Anoavm.na Section E.c.
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This is the series expansion of the exponential function. Some authors use this
series to define the exponential function.
Although this series is clearly convergent for all x, we should check the

remainder term, R,. By Eq. 5.85 we have

X" o
R, = ﬂ\: (&)

{5.91)
= mmﬂu O < ﬁ <X
n!
Therefore -
R <X (5.92)
" nt
and
mR, =0 (593

for all finite values of x, which indicates that this Maclaurin expansion of ¥ is
valid over the range —oo < x < oc.

EXAMPLE 5.6.2

Let f(x) = In(1 + x). By differentiating, we obtain
fl=04+x7

(5.94)
fO) = (=17 — DI+ x)™
The Maclaurin expansion (Eg. 5.88) yields
2 3 4
In(1 +xwux|xM+Ww||w:+ - +R,
(5.95)
=¥ (g,
p=1 p
In this case our remainder is given by
R,=X o), 0<t<x
v (596

ka
<o 0<é<x<1

Now the remainder approaches zero as n is increased indefinitely, provided
0 < x < 1.* As an infinite series
. o "
a4 x) =Y (s, (597
,.., n=1i L
i P
“This range can casily be extenfled to.—1 <% <1 ‘a;w..mm_.. tox== —1.
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which converges-for —1 < x < 1. The range —1 < x < 1 is easily established
by the d’Alembert ratio testi(Section 5.2). Convergence at x = 1 follows by the
Leibnitz criterion (Section 53). In particular, at x = 1, we have

In2

o

M A| :,,_IHXIH_

n=1

the conditionally convergent alternating harmonic series.

Binomial Theorem
A second, extremely important application of the Taylor and Maclaurin
expansions is the derivation of the binomial theorem for negative and/or
nonintegral powers, ’
Let f{x} = (1 + x)™, in which m may be negative and is not limited to integral
values. Direct application of Eq. 5.88 gives

:+%nu+§+s§mwcm+ Sy (5.99)
For this function the remainder is
R, = W: H T xmm—1) - m—n+1) (5100)

and { lies between Q and x, ¢ < ¢ < x. Now, forn >m, (1 + &Y™ " is a maximum
for £ = 0. Therefore

m,mmeﬂva:.?li; (5.101)

Note that the m dependent factors do not yield a zero unless m is a nonnegative
mteger; R, tends to zero as n — oo if x is restricted to the range 0 < x < 1,
The binomial expansion therefore is shown to be

(L4 X" = 1 4 mox + s@w,l Dy | mim = %As e NS (5.102)
In other, equivalent notation )
o m! " .
(14" = Wwi@& i
(5.103)

i
P18

]

"

suna
0\R

m
v, which equals m!/nl(m ~ n)! is called a binomial coefficient.

n
Although we have only shown that the remainder vanishes,

oo
“lim R, =0,

n—+oo

The quantity

for 0 < x < 1, the series in Eq. 5.102 actually may be shown to be convergent
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+ooifn>m

for the extended range —1 < x < 1, For m an integer, (m — n}! =
{Section 10.1) and the series automatically terminates at n = m.
EXAMPLE 5.6.3 Relativistic Energy
The total relativistic energy of a particle is
- P2\ 12
E=mc*|1— p . (5.104)
Compare this equation with the classical WEmﬂn energy, ymuv.
By Eq. 5.102 with x = —v*/c* and m = — 4 we have -
2 252
Eome1 - 1(0) s G0
2V ¢ ¢t
I Gt 72 o 3/2(—5/2) Icl,,_ m ..
3! c*
or
e+ ime? 23 c 3 c|~ : . 05
E=mc +5m +m§e +E=§ p + o (5.109)
The first term, mc?, is identified as the rest mass energy. Then
1 32 5{v*Y?
E e = N§e 1 +NO||T s\Z + -0 ] {5.106)

For particle velocity v << ¢, the velocity of light, the expression in the brackets
reduces to unity and we see that the kinetic portion of the total relativistic
energy agrees with the classical result,

For polynomials we can generalize the binomial oxﬁmammon te

¥ nl

g mmﬂN _ e 3.:._._
where the summation includes all different combinations of ny, 715, .. ., B with
3y n; = n. Here nyand nare all integral. This generalization finds considerable
use in statistical mechanics, .

Maclaurin series may sometimes appear indirectly rather than by direct use
of Eq. 5.88. For instance, the most convenient way to obtain the series expansion

(@, +a,+ - +a)= ajpag - - apm,

PN e V1 VO G x? 3
sinTlx = .Wo TS x4+ +|ho + - (5.1064)
is to make use of the relation
PR
sin " X= C.|I.||nm.v|_.._.u

We expand (1 — t?)"V2 (binomial theorem) and then ‘integrate term by term.
This term-by-term integration is discussed in Section 5.7. The result is Eq. 5.106a
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Finally, we may take the limit as x — 1. The series converges by Gauss’s test,

Exercise 5.2.5.
Taylor Expansion—More than One Variable

If the function f has more than one independent variable, say, f = f(x, ),
the Taylor expansion becomes

fix,9) = flab) + (x — L ﬁr@ nZ &

R - NE R mmw_u o-trZL
_ %x o (5.107)
g7l = nvm S+ 3(x — @y — Smxp &

3 3
iaécu%m@lc O L

with all derivatives evaluated at the point {g,b). Using o;t = x; — X;0, Wwe may
wite the Hmﬁoﬁ expansion for m Eammgama variables in the symbolic form

oy

flx)= M o & (i) (5.108)
n=o™ _ mx X2 Ehy
Aconvenient vector form is
Y& +a)= M m;.? Vujr(r). (5.109)
=0
EXERCISES
56,1 Show that o
i " Na‘tH . r..w. ] \, . - . !
{a) sinx= Moﬁ e — CPEETE ey .
@ 2n W
b =Y (-1 ce
(6) cosx= 2 (~ IG5 H T

In Section 6.1 €= is defined by a series expansion such that
e = cosx + isinx.

This is the basis for the polar representation of complex quantities. As a special
case we find, withx =,

et = —1.
56.2 Derive a series expansion of cotx 5 Eﬁ.ommﬁm ‘powers of x by dividing cos x by
sinx.
Note. The resultant series that starts with 1/x is actually a Laurent series (Section
6.5). Although the two series for sin x and cos x were valid for all x, the convergence
of the series for cot x is limited by the zeros of the denominator, sin x.
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5.6.3 (a}) Expand (1 +x)In(l+x)ina Maclaurin series. Find the limits on x for 5.6.11 3 .
.B. Expand (1 — 2tz + ¢ uén. in powers of . Assume that ¢ is small. Collect the

convergence. . . A
(b) From the resuits for part (a) show that ” coefficients of t%, ¢ and £
© (_ (P W. / ANS. ag = Po(z) =1,
ma—lyls =070 m ay = Pi{z} =z,
2 25nm+ 1) . a; = P{z) =4(32* - 1),
= x where a, = F,(z), the nth Legendre polynomial.
ANS. () (1+x)h(l+x)=x+ ._MN ﬁlqiu —l<x<1 5.6.12 Using the double factorial notation of Section 10.1, show that
5.6.4 The Raabe test for ¥ (nlnn)* leads to (4xme 3 pmt =2
+ Do + 1) : . =0 2"nlm — 211 7
53_“? it |@. “ form=123,.... :
w0 ninn i :

Show that this limit is unity (which means that the Raabe test here is indeter- 5.6.13 Using binomial expansions, compare the three Doppler shift formulas:

minant}. : , ot
. @ v A_ ¥ mv moving source;

5.6.5 Show by series expansion that

Lot l_ comtng, o> 1.

27— 1 v Ty "R
- ) v = eﬁm + mv T — |Nv s relativistic.

This identity may be used to obtain a second solution for Legendre’s equation. z

) v

v
v T + mv“ moving observer;

Note. The relativistic formula agrees with the classical formulas if terms of order

5.6.6 Show that f(x) = x"? (2) has no Maclaurin oxﬁmum.mos but (b) has a Taylor v
v?/e* can be neglected,

expansion about any point x, # 0. Find the range of convergence of the Taylor

expansion about x = xg. . i
! 56.14 In the theory of general relativity there are various ways of relating (defining) a
5.6.7 Let x be an approximation for a zere of f(x} and Ax, the correction. velocity of recession of a galaxy to its red shift, 4. Milne’s mode] (kinematic
Show that by neglecting terms of order {Ax)* ; relativity) gives
\ A fix) i (@) v =ca(l +39),
X = ——, :
[x) - (b) v =cd(1 + 18)(1 + 5)2
This is Newton’s formula for finding a root. Newton's method has the virtues of “”. © 145 1+ pyfe]te
illustrating series expansions and elementary calculus but is very treacherous. c tao= T—oyjc|
See Appendix Al for details and an alternative. : I, Show that for & 2
_ : - ow that for ¢ <« 1 {and v,/c << 1) all three fo =
5.6.8 Expand a function ®(x, y, z) by Taylor’s expansion. Evaluate {, the average valie | 2. Compare the three <nﬂo&amm Hrmaﬁmv_u terms of oﬂ,ﬂ% ww_.mm:nn tov=cd.
of @, averaged over a small cube of side a centered on the origin and show that the ; Note. In special relativity (with & replaced by z), the ratio o?cmnacoa I
Laplacian of ® is 2 measure of deviation of ® from ©(0,0,0). g 4 to emitted wave length A, is given by ’ wavelength
5.6.9 ‘I'he ratio of two differentiable functions f{x) and g(x) takes on the indeterminate . A . 12
form 0/0 at x == x,. Using Taylor expansions prove L'Hospital's rule 3 Ao € — ’
lim S _ im F0q 3 : 5.6.15 The relativistic sum w of two velocities # and v is given by

ag(x)  wwg(x)

W ufe+vfe

¢ 1+unc®

5.6.10 With n > 1, show that
@ mxgm " vAp

n n—1

(b) miaﬁi vao.

- - where 0 < & < 1, find w/c in powers of « through terms in «®.

Use these inequalities to show that the limit defining the Euler—Mascheron

constant is finite. 5616 The displacement x of a-article of rest mass o, resulting from a constant force

Mog along the x-axis, is
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2 t 27142
an|wT+Q|v -1,
g ¢
including relativistic effects. Find the displacement x as a power series in time 7.
Compare with the classical result
=gt
5.6.17 By use of Dirac’s relativistic theory the fine structure formula of atomic spectros-

copy is given by
[, P ~12
.m = 3
me H +a+TEL

where
s=(kP -y, k=x1 2,23, ...,

Expand in powers of 3 through order y*-(* = Ze?/he, with Z the atomic
number.) This expansion is usefuf in comparing the predictions of the Dirac
electron theory with those of a relativistic Schrédinger electron theory. Experi-

mental results support the Dirac theory.
5.6.18 In a head-on proton—proton collision, the ratio of the kinetic energy in the center
of mass system to the incident kinetic energy is
2mc(E, + 2mc?) — Jmc?
E, ’

Find the value of this ratio of kinetic energies for
(a) E,<<mc®  (nonrelativistic)

(b) E.>» mc*  (extreme-relativistic)
ANS. (@) %, (b)- 0. The latter an-

swer is a sort of faw of diminish-
ing returns for high energy
'particle accelerators (with sta-
tionary targets),

5.6.19 With binomial expansions

x 2 n x 1 &
Hlx!_mnxv HIHIHEKLI,.M._H.

Adding these two series yields o X =0
Hopefully, we can agree that this is nonsense but what has gone wrong?

5.6.20 (a) Planck’s theory of quantized oscillators led to an average energy
¥, neg exp(—neo/kT)

_n=i
{8y =""5
¥ exp(—negikT)
n=0
where &, was a fixed energy. Identify numerator and denominator as bino-
mizl expansions and show that the ratio is

&g

&= expleo/kT) — 1
(b) Show that the {z) of part (a) reduces to kT, the classical result, for kT > &,

5.6.21 (a) Expand by the binomial theorem and integrate term by term to obtain the
Gregory series for tan™' x:
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mn
”Au &la
o himf%ﬁ:mi»lf:.XH

o .._,._.HNn+p
= oy 12 -1
=0 n+ 1 HulHMH

(b) By comparing series expansions, show that

tan~x =L Amllhv

. 2\l +ix)
Hint. Compare Exercise 5.4.1,

5.6.22 In numerical analysis it is often convenient to approximate d 2y (x)/dx* by

d? 1
2V e+ ) ~ 29(x) + gix — ],

Find the error in this approximation.
4
ANS. Etror = W%x@ .

5.6. i :
6.23 You have a function y(x) tabulated at equally spaced values of the argument
M?. = y{x.)
X, =x + nh.
Show that the linear combination

H
Qm!ﬁ + 8y — 8y, 4y}

yields
B s
Yo 50 + .
Hence this linear combination vields v if (4% (5
. v i
higher derivatives of y(x) are nmuw:mmwmo. (/605 and higher powers of h and

m. .N H a nuin: Hm li 1 =
iy tion OH. i i i
6 h. yij 1 =) : cal integratio) a Hum.Hﬂmm.m &umﬂhﬂbzﬁ— mﬂ_hm.ﬂHOH.. ﬁ&.ﬂ ._”EHOW QMBO—HMHOHHNh

VA 3,2) = F2W(x + By y,2) + pix — ¥, 5)
FYERY+ R+ y ~ 2 + (x,p,z + B)
+ e, y,z — k) — 6if(x, v, 7)].

Uﬂﬁmﬁ.—uﬁhﬁﬂ the EITOr 1n m—u—nm m.ﬂmu___ OXimation. MHHHG h 13 ﬂ_Hm wﬂﬂmu SiZe, z—ﬂ Q_mﬂmﬂh—ﬂﬁ
. A

5.6.25 menm ,_mEzEn vnm&m.mo_r calculate e from its Maclaurin series
ote. This simple, direct approach is the best way of n&nammm.m eto high accuracy

mu,uﬂmmmﬂ terms give e to 16 s 3 P ¥
1, E.—.mﬁmhwn : Ures H—uﬁ iccl HOO&.— mN.OmC_ m.hm V& Ve
) W g 1 j:4 T

57 POWER SERIES

The power series is a speci
b ﬁmemﬂmnm extremely useful type of infinite series of
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fx)=ao+a;x + a;x® + a;x® + - - -
e {5.110)

= ..Hau
=Mon_i

where the coefficients g; are constants, independent of x.!

Convergence
Equation 5.110 may readily be tested for convergence by either the Cauchy
root test or the d’Alembert ratio test (Section 5.2). If

lim &2t o g-1 (5.111)

—
==

the series converges for —R < x < R. This is the interval or radius of conver-
gence. Since the root and ratio tests fail when w&m limit is unity, the end points
of the interval require special attention. ,

For instance, if @, = n™", then R = 1 and, from Sections 5.1,5.2, and 5.3, the
series converges for x = —1 but diverges for x = +1. If a, =nl, then R=10
and the series diverges for all x # 0.

Uniform and Absolute Convergence
Suppose our power series (Eq. 5.110) has been found convergent for —R <
X < R; then it will be uniformly and absolutely convergent in any interior
interval, ~-S < x < §, where 0 < § < R.
This may be proved directly by the Weierstrass M test (Section 5.5) by using
M; = a5

Continuity
Since each of the terms u,(x) = a,x" is a continuous function of x and
f(x) =3 a,x" converges uniformly for —S < x < §, f(x) must be a continuous
function in the interval of uniform convergence.
This behavior is to be contrasted with the strikingly different behavior of the
Fourier series (Chapter 14), in which the Fourier series is used frequently to
represent discontinuous functions such as sawtooth and square waves.

Differentiation and Integration,

With u,{(x) continuous and > a,x" uniformly convergent, we find that the
differentiated scries is a power series with continuous functions and the same
radius of convergence as the original series. The new factors introduced by
differentiation {or integration) do not affect either the root or the ratio test
Therefore our power series may be differentiated or integrated as often as
desired within the interval of uniform convergence (Exercise 5.7.13).

*Equation 5.110 may be rewritten with = x + iy, replaciag x. The following
sections will then yield uniform convergence, integrability, and differenti-
ability in a region of a complex plane in place of an interval on the x-axis.
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In view of the rather severe restrictions placed on differentiation (Section 5.5),
this is a remarkable and valuabie result.
/ll\
Uniqueness Theorem
In the preceding section, using the Maclaurin series, we expanded e* and
Il + x) into infinite series, In the succeeding chapters functions are frequently
represented or perhaps defined by infinite series. We now establish that the
power-series representation is unique.

If
fex)y=3 ax" ~R,<x <R,
"~ (5.112)
= 3 bx", —R, < x <R,
=0
¥ith overlapping intervals of convergence, including the origin, then
a,=bh, (5.113)

forall n; that is, we assume two (different) power-series representations and then
proceed to show that the two are actually identical.
From Eg. 5.112

—-R<x<R, (5.114)

o0 ac
2 ax"=Y bx"
a=0

=0

where R is the smaller of R, R,. By setting x = 0 to eliminate all but the constant
terms, we obtain

ay = by (5.115)

Now, exploiting the differentiability of our power series, we differentiate Eq.
5113, getting

oo o
2 na,x"t = Y nhx*1 (5.116)
n=1 n=1
We again set x = 0 to isolate the new constant terms and find
a; = b,. {(5.117)
By repeating this procees n times, we get
a,=b, (5.118)

which shows that the two series coincide. Therefore OUT DOWer-series representa-
tion is unique.

This will be a crucial point in Section 8.5, in which we use a power series to
develop solutions of &m.nwnahm_ equations. This uniqueness of power series
appears frequently in theoretical physics. The establishment of perturbation
theory in quantum mechanics is one example. The power-series representation
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of functions is often useful in evaluating BQQWHBHNS forms, particularly when
I'Hospital’s rule may be awkward to apply (Exercise 5.7.9).

EXAMPLE 5.7.1
Evaluate
fim L= 608X (5.119)
x—+0Q unN

Replacing cos x by its Maclaurin series expansion, we obtain )

1—~cosx 1 —(1—x?204x%41~-.)
2 2

X220 — x* 4 -

= —

Lox*

=2 amt

Letting x — 0, we have
. 1—cosx 1 (5.120)

The uniqueness of power series means that the coefficients a, may be identified
with the derivatives in a Maclaurin series. From

o

fx) = m ax" =y L roge
nr=0

n=0 n!
we have

a, = F_ EAOV.
R

Reversion Q.Haéﬂmwouv of Power Series
Suppose we are given a series
2
—_ a— + PPN
¥ — Yo = ay{x — Xg) + aa(x ~ Xo) 10

W D_\:AH - Howx.

n=1

This gives (y ~ yy) in terms of (x — x,). However, it may be %&EEM to M?MM
an explicit expression for (x — x,) in terms of {y — o). We may solve Eq. 5.

for x — x, by reversion {or inversion) of our series. Assume that

%= S (= o), .1

n=1

with the b, to be determined in terms of the assumed known a,. A brute-force

\l/,

o
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approach, which is perfectly adequate for the first few coefficients, is simply to
substitute Eq. 5.121 into Eq. 5122 By equating coefficients of (x ~ Xo)* on both
sides of Eq. 5.122, mmuog series is unique, we obtain

1
b, = M“
b= 22,

a;

. (5.123)
by = P (2af — aas),

1 2 NI ,
by = mimmhauau —aya, — 5a3), and so on.

1

Some of the higher coefficients are listed by Dwight.2 A more general and mnch
more elegant approach is developed by the use of complex variables in the first
and second editions of Mathemazical Methods for Physicists.

EXERCISES
5.7.1  The classical Langevin theory of paramagnetism leads to an expression for the

magnetic polarization
coshx |
Px)=C ~=1.
&) mmn.&x xv

Expand P(x)asa power series for small x (low fields, high temperature),

672 The depolarizing facior L for an objate ellipscid in a uniform electric ficid paralle]
to the axis of rotation is

L=-1(1 + () — Ly ot ),
(]

where {, defines an oblate ellipsoid in oblate spheroidal coordinates (.2 )

Show that
lim L= 1 (sphere),
y~veo 3,
lim L = 1 (thin sheet),
Lo—0 &g .

573 The corresponding depolarizing factor (Exercise 5.7.2) for a prolate ellipsoid is

1., 1 o+ 1
=—n5— D =n,1 -1
% (ng—1) Awad bao 1

Show that —

-
*Dwight, H. B., Tables of Integrals and Other Mathematical Data, 4th ed,
New York: Macmillan (1961). (Compare Formula No. 50.)
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5.7.56

5.7.6
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(sphere),

(long needle).

The analysis of the diffraction pattern of a circular opening involves

2n
.% cos{ccos ¢) de.

[
Expand the integrand in a series and integrate by using

2
" 2m!
OGmN: @ RS = oo Nq.mq
%.o 2 )? -

2r
.q, cos™tpde =0

Qd
The result is 27 times the Bessel function J,(c).

Neutrons are created {by a nuclear reaction) inside a hollow sphere of radius R.
The newly created neutrons are uniformly distributed over the spherical volusme.
Assurning that all directions are equally probable {isotropy), what is the average
distance a neutron will travel before striking the surface of the sphere? Assume

straight line motion, no collisions.
(a} Show that

i T
mnwz% .T\Tmaupmm%mam%.
0 Jo

(b) Expand the integrand as a series and integrate to obtain
F=R[1-3% ! .
o @n— D@+ D(2n + 3)
(c) Show that the sum of this infinite series is &, giving F = #R.

Hint. Show thats, = 35 — [4(2n + 1)2n + 3} by mathematical induction.
Then let n —+ oco.

Given that
1 dx 1
,*, — e =tantx| = i
o 1tx 0o 4
expand the integrand into a series and integrate term by term obtaining®

.2 1.1 1.1 1
L iR it Gl ) s UL
a 3757775 VT
which is Leibnitz’s formula for =. Compare the convergence (or lack of ity of the
integrand series and the integrated series at x = L.
Leibnitz's formula converges so slowly that it is quite useless for nurnerical
work; 7 has been computed to 100,000 decimals® by using expressions such as

3The series expansion of tan ™" x (upper limit I replaced by x} was discovered
by James Gregory in 1671, 3 years before Leibnitz. See Peter Beckmann's
entertaining and informative book, A History of Pi, 2nd ed. Boulder, Col.:
The Golem Press, (1971).

4Shanks, D., and J. W. Wrench, Jr,, “Computation of w to 100,000 decimals,”
Math Computation 16, 76 (1962).
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- -11 -
= 24tan g -+ 8tan .—%..TA.HN.H—I»erw.u

= ILH A
. m=48tan™ 5 + 32tan~" 3 — 20tan! oy,
[ i i
© EXpressions may be'verified by the use of Exercise 5.6.2.

5.7.7 Expand the incomplete factorial function

5.2.8

579

5.2.10

5711

.—, et dt
o

in a series of powers of x for small val i
f ues of x.
of the resulting series? Why was x specified M._MM”HMW w_un renge of convergence

X
AN, % s
0

Hk..i._u 1 x x% ’ (—1)Pxr
(n+1) §+5+m§+3f:.E?TWM:T;.

Derive the series expansion of the incomplete beta function

B.Ap.q) = .ﬁ aui: — 8 dr

o

for0<x< Lp>0andg>0{ifx= 1).
Evaluate

(a) LimSR(tanx) — tan(sin x)
X+ .Kq >

b} Emx7j(x)  forn=3,

where j,(x) is a spherical Bessel function (Section 11.7) defined by

Juf) = (= 1y @1@ ﬁﬁv
X
ANS. (2) |u|_o,

1
(b) L
135 (n+D) 105

forn=23.

Neutron transport theory

diffusion length of k; gives the following expression for the inverse neutron

a—b k
-1
i tanh Alv =1

By series inversion or otherwise, determine k2
the first two terms ofthe series,

as a series of powers of b/a. Give
ANS. ¥ =3ap(1-3b
) . 5a)
evelop a series expansion of sinh™! x in powers of x by
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5712

6.7.13

5.7.14

5.7.15

8.7.16

5.7.17

{a) teversion of the series for m.E_u ¥,
(b) a direct Maclaurin expansion.

) + .“w
A function f{(z) is represented by a descending power serl
[- <]
fiy= 3% az"", R=z<co.
. bz "RZ£z<w
. . —Y® b R< ,
Show that this series expansion is unique; that is, if f{z) o 0Dn
then a, = b, for all n.

A power series given by i
f= 3 ax

- Q. mﬂ ] nwm._n& SEr1Cs ar 1d ﬁmu@ —Huﬁﬂm_ mﬂma
CONVErges mcu R W t the differen 5
< X < MN Sho ﬁwwm.
have .nwu,m same inter val Om GOH_.(ﬂammmHOQ. QUQ not GOHH—GH N.—UO&:.. .ﬁw_.ﬁ mm—&
series ,
ﬁounw._“m X = |Tx.v

. igin, flx) =
i r series about the origin, St
i be expanded in a powel e .
Assuming that f(x) may o S e &
© o @, X", With some nonzero range of convi mEmn o e e sorios 08
H__no mﬁn, proving uniqueness of series to show
ployed 1t A
Maclaurin series:

{ "P-\.Q_UAOV.
" ol

= E ﬂ 3 Tw_ electrons contains a
HHHO NHOH.HH Zm.w::um. form E_m—. MOH ﬁu@ scatterin, Qm. hoton: —
term Qm the M.OHD.H

1 Niﬁsciﬁ.
.\@Hﬁ M&T+um £

3 t mass encrgy-
Here e _uc\~3n nmﬂﬂ ratio OH the ﬁU.OﬁOHH energy to ﬂ.un GH@OﬁH ON ICS 2k

lim f{e).

0 \
ANS. 5
idi i ith nuclei of
The behavior of a neutron losing energy by colliding elastically wi
mass A is described by a parameter ,, -

(41
G=l+——r"h=or

An approximation, good for large 4, is
2
A+ o
d &, and &, in powers of 4™%. Show ﬁrmﬁlmwmmp.mwm with £, through (A7)
mwﬂiﬂum mu.mn_.muwn in the coefficients of the (47')° term.

G2

i ’s constant
Show that each of these two integrals equals Catalan’s co

p dt
(a) v‘,a arctant :
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(b) iﬁaa dx
()

1+ x2

6.718 Calculate n (double precision) by each of the following arc tangent expressions:

7= 16tan"(1/5) — 4tan~(1/239)
7 =24tan"}{1/8) + g tan~I(1/57) + 4tan~}(1/239)

m = 48tan”"(1/18) + 32tan(1/57) -- 20 tan™'(1/239).

You should obtain 14 significant figures.
Note. These formulas h

ave been used in some of the more accurate calculations
of 7.3

5.7.19  Aun analysis of the Gibbs phenomenon of Section 14.5 leads to the expression

. R
2 [T siné dr.
nly &
(a) Expand the integrand in a ser
numerical value of this exXpress

ies and integrate term by term. Find the
{(b) Evaluate thijs expression by th

fon to four significant figures.
¢ Gaussian quadrature (Appendix A2),

ANS. 1.178930.

58 ELLIPTIC INTEGRALS

Elliptic integrals are included here partly as an illustration of the use of
bower series and partly for their own intrinsic i

the occurrence of elliptic integrals in physic
Exercise 5.8.4)

al problems (Example 5.8.1 and
and applications in mathematj

cal problems,
EXAMPLE 5.8.1 Period of a Simple Pendulum

Iy

FIG. 5.8 Simple pendulum

For small amplitude oscillations our pendulum (Figure 3.8) has simple har-
monic motion with a period T = 2n(l/g)"*. For a maximum amplitude 6,, large
_—

*Shanks, D., and J. W. Wrench, “Computation of to 100,000 decimals,”
Math, Computation 16, 76 (1962).




326 INFINITE SERIES

-~ (p, @, 2)

]

S
~ (o2, 0)

X
5.8.5 An analysis of the magnetic vector potential of a circular current loop leads to

the expression
S = k22 — KK (E?) — 2E(k7)],

where K me and E(k?) are the complete elliptic integrals of the first and second
kinds. Show that for k% << 1 {r > radius of loop)

2y o TR
Sk = T
5.8.6 Show that
mmeﬁuvlm _K
{a) %!kﬁw ),
dK(k* E K
o K& _E K

dk k(1 -K) k'

Hint. For part (b) show that
/2

E(kD) = (1 — E.— (1 — ksin20)"32 40
]

by comparing series expansions.

5.8.7 (a) Write a function subroutine that will compute E(m} from the series expan-
sion, Eq. 5.137. o

(b} Test your function subroutine by using it to calculate m?.c over the range

m = 0.0(0.1)0.9 and comparing the result with the values given by AMS-5.

i i i ise 5.8.7.
5.8.8 Repeat Exercise 5.8.7 for K{m). To be written out as in Exercise
N aH.Wm. These series for E(m), Eq. 5.137, and K AEVW Eq. 5.136, converge onc_ vers
slowly for m near 1. More rapidly converging series for E(m) and K(m) exist. &
Dwight’s Tables of Integrals:* No. 773.2 and ql_S..N Your computer wzwa_:__.m
for computing E and K probably uses polynomial approximations: AMS-J
Chapter 17.

2Dwight, 8. B., Tables of Integrals and Other Mathematical Data. New York:
Macmillan Co. (1947).
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. 6.8.9 A simple pendulum is swinging with a maximum amplitude of 8,,. In the kmit as

0y — 0, the period is 1 sec, Using the elliptic integral, K (k) k = sin(f,,/2) calculate
the period T for/t),, = 0 (10°) 90°.

Gmg:ch.ww_wﬁﬁmbmo _.Enmam_mnwno::snwEn:_.nm»HSEwmmE.uv:GmamBammr
not miitself.

Check values. 0 T (sec)
10° 1.00193
50° 1.05033
90° 118258

5.8.10 Calculate the magnetic vector potential A{p,¢,z) = @gA,(p, @, 2) of a circular
current loop {Exercise 5.8.4} for the ranges pla=23 4 andz/a=0,1,2, 3 4.
Note. This elliptic integral caleulation of the magnetic vector potential may be
checked by an associated Legendre function calculation, Example 12.5.1.
: Check value. For p/a =3 and z/fa = 0;
’ A, =0.029023u, 1.

5.9 BERNOULLI NUMBERS, EULER-MACLAURIN
FORMULZX

The Bernoulli numbers were introduced b y Jacques (James, Jacob) Bernoulli.
There are several equivalent definitions, but extreme care must be taken, for
some authors introduce variations in numbering or in algebraic signs. One
relatively simple approach is to define the Bernoulli numbers by the series!

= =2 B.x" (5.144)
- n=0

e~ n!

By differentiating this vosma series repeatedly and then setting x = 0, we obtain

d" x

B =
" dx"\e*— 1

(5.145)

x=0
Specifically,
B — d{ x 1 xe”
Tdx\e*—1 =0 € —1 (e5—17| _,
1
~3
asmay be seen by series expansion of the denominators.

Since these derivatives are awkward to evaluate, we may introduce instead
a series expansion into the defining expression (Eq. 5.144) to obtain

1 x2 X3 x?
W.uul_lNl.—e_l:ml__l_l. mc+‘mmvﬂ+mmm+. ”H AM.HAQV

{5.146)

Using the power-series uniqueness theorem (Section 5.7) with the coefficient of

"The function x/(e* — 1) may be considered a generating function since it
generates the Bernoulli numbers. Generating functions that generate the
special functions of mathematical physics appear in Chapters [1, 12, and 13,
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Some authors prefer to define the Bernoulli numbers with a modified version
“of Bq. 5.151 by using

TABLE 5.1 Bernoulli Numbers

n B B '
. . W0 e .,
0 1 1.0000 00000 !\ ~ B,= ﬁm%y. D3N A (5.153)
1 -1 —0.500000000 7l
9 L 0.1656 66667 the subscript being just half of our subscript and all signs are positive. Again,
4 —d 0033333333 when using other texts or references the reader must check carefully to see
g 1 0.0238 09524 exactly how the Bernoulli numbers are defined.
. o ’ The Bernoulli numbers occur frequently in number theory. The von Standt~
§  —g5  —0033333333 o
Clausen theorem states that
10 & 0.0757 57576
\ B —a_+_L1_1_ .. _1 (5.154)
x% equal to unity and the coefficient of x"(n # 0) equal to zero, we obtain Pr P2 P3 Pe
B =1 in which 4, is an integer and p,, pa, . . - » Py A€ prime numbers that exceed by 1,
0 2 divisor of 2n. It may readily be verified that this holds for
1
) ms_wo +B, =0, B = IW (5.148) Bid;=1, p=2737),
: \ Wlm.‘mo + mmp !Ni“_; = Ou ‘mm. = W. AMHAWV .WHOA.&M = Hu »U - Nu W» M.._.vu
OOEE&E“, we have Table 5.1. and other special cases.
Further values are given in National Bureau of Standards, Handbook of Mathe- The Bernoulli numbers appear in the summation of integral powers of the
matical Functions (AMS-55). - integers,
.WN3+H = n= Hv Nu wu L] . M .Muu P mﬂmﬂ@ﬂm“—u
If the variable x in Eq. 5.144 is replaced by 2ix (and B, set equal to —3), we m =1
. obtain an alternate {and equivalent) definition of B,, by the expression . and in numerous series expansion of the transcendental functions, including
. o0 . 2n
- xcotx = M (— C:WMaAMMHv -, —R <X <L (5.150) tanx,
. n=0 (2n)! cotx,
Using the method of residues (Section 7.2) or working from the infinite product m”. CSC X
representation of sin x (Section 5.10), we find that . '
- In {sin x|
(=R e, 3 u
B,, = G Ww@ , nr=1273.... (5.151} In |cos x|,
This representation of the Bernoulli numbers was discovered by Euler. It is In{tanx|,
readily seen from Eq. 5.151 that |B,,| increases without limit as n— 0. Nu- tanh x
merical values have been calculated by Glaisher.? Iilustrating the divergent ’
- behavior of the Bernoulli numbers, we have cothx,
Byo = —5.291 x 10% and
(5.152)
o Bao= —3.647 x 10712, csch x.
For example,
2Glaisher, J. W. L., “Table of the first 250 Bernoulli's numbers (to nine 3 ) 131220227 _ )B
figures) and their logarithms (to ten figures). Trans. Cambridge Phil. Soc. X11, fanx =x + o 4+ —=x5 + -+ + (=1 @7 —1) 2ny2n-l po. 0 (5.156)

390 (1871-1879). 3 15 (2n)!
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TABLE 5.2 Bernoulli Functions
By =1

By =x—14%
By=x*—~x+1

By =x*~3x® +ix

By=x*—2x 4 x* — &
Bo=x — x4 4~ dx
Be=xP—3x"+5x* —dx+ &

B (=8, Bernoulli number

The Bernoulli numbers are Likely to come in such series expansions because of
the defining equations (5.144) and (5.150) and because of their relation to the
Riemann zeta function

{(@2n) = m o (5.157)
=1

Bernoulli Functions
If Eq. 5.144 is generalized slightly, we have

XNHW 8 .Xu:
finmi 5.158
mklp ;Mo o) (5.158)
defining the Bernoulli functions, B,(s). The first seven Bernoulli functions are

given in Tabie 5.2.
From the generating function, Eq. 5.158,

B0 =B, n=0,12..., (5.159)

the Bernoulli function evaluated at zero equals the corresponding Bernoulli
number. Two particularly important properties of the Bernoulli functions
follow from the defining relation: a differentiation relation

Bi(s) = uB,_,(s), n=1273 ..., (5.160)
and a symmetry relation
w;:.v = Al ._.v:wzﬁoy n= Ou .,—.u Nu e ﬁm.mm:

These relations are used in the development of the Euler—Maclaurin integration
formula.

Euler—Maclaurin Integration Formula
One use of the Bernoulli functions is in the derivation of the Fuler—Mazclaurin
integration formula. This formula is used in Section 10.3 for the development
of an asymptotic expression for the factorial function—Stirling’s series.
The technique is repeated integration by parts using Eq. 5.160 to create new
derivatives. We start with .

% ' () dx = ﬁ Fx)By () dx. (5.162)
Q

0
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- From Eq. 5.160 and Exercise 5.9.2

Bi(x) = By(x) = 1. (5.163)
Substituting B;(x) into Eq. 5.162 and integrating by parts, we obtain

3 1
% () dx = FBL(L) ~ £(O0)By(0) — % (0B (x)dx
0 - 0

) (5.164)
=30 + O] - % F B dx.
0
Again, using Eq. 5.160, we have
By (x) = 1B;(x), (5.165)
and integrating by parts
1
[ =Lt + s01 - rwmm - ros0
0 . ) (5.166)
+L % 0B, (x)dx.
2,
Using the relations, we get
B,,(1) = B,,([0) = B,,, =0,1,2, ...
N=A v M:m v 2n n AM.\_.Q.J
B,t1{1) = B, (0) =0, n=1,273 ...
and continuing this process, we have
1 g
% F0)dx = LA + O] = 3. woi By, [£O(1) — f@-5(0)]
0 2 s=12p)!
- (5.168a)
2q
+ A!Mmivl_.—,o FP9(x)B,,(x)dx.

This is the Euler—Maclaurin integration formula. It assumes that the function
flx) has the required derivatives.

The range of integration in Eq. 5.168« may be shifted from [0.1] to [L,2]
by replacing f(x) by f(x + 1). Adding such results up to [n—1,n],

% f)dx =3f(0) + f(D) + fD+ - + fln— 1} + 1f(n)

¢ q
-z Sw Bap LS 47 m) — fEr(0)] (5.1685)
+ remainder term.

The terms 2f(0) + f(1) + -+ + 4f(n) appear exactly as in trapezoidal
integration or guadrature. The summation over p may be interpreted as a
correction to the trapezoidal approximation. Equation 5.168b is the form used
m Exercise 5.9.5 for summing positive powers of integers and in Section 10.3
for the derivation of Stirling’s formula.
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TABLE 5.3 Riemann Zeta Function

Ls)

1.64493 40668
1.20205 69032
1.08232 32337
1.0369277551
1.01734 30620
1.0083492774
1.00407 73562
1.00200 83928
1.00099 45751

s

MO 2 N L B W D

—
<

The Euler—Maclaurin formula is often useful in summing series by converting
them to integrals.®
Riemann Zeta Function
This series Mwoﬂ p~?" was used as a comparison series for testing convergence
(Section 5.2) and in Eq. 5.151 as one definition of the Bernoulli numbers, B;,.
It also serves to define the Riemann zeta function by

)= S, s> 1 (5.169)
n=1

Table 5.3 lists the values of {(s) for integral s, s = 2, 3, . .., 10. Closed forms for
even s appear in Exercise 5.9.6. Figure 5.10 is a plot of {(s} — 1. An integral
expression for this Riemann zeta function appears in Section 10.2 as part of
the development of the gamma function.

Another interesting expression for the Riemann zeta function may be derived
as follows:

1,1 1 . 1,1
— 27 = S T S N ST S T 170
)1 —279) H+Mh+uu+ Mh.w.%.._.mm+ , {5170

eliminating all the n™*, where n is a multiple of 2. Then
1 1 1 1
N — 375 = s e — —_ v
)1 —279(1 = 379) H+mm+ma+1_a+wn+
L ’ (.17
“\Frtet T o)

gliminating all the remaining terms in which #n is a mmitiple of 3. Continuing,
we have (51 —2"%(1-3"9(1 —57%--(1 — P™°), where P is a prime
number, and all terms »n™%, in which » is a muitiple of any integer up through
P, are canceled out. As P — o0,

*Compare Boas, R. P., and C. Stutz, “Estimating Sums with Integrals,”
Am. J. Phys. 39, 745 (1971) for a sumber of examples.

100

T TTrram

0.1

f{s) — 1

mTTrTesT

0.0t

T T TTITIT

0,001

TITTT

0.0001

1 1 ] 1 1
I 2 3 4 5 ¢ 8 10 12 14
FIG. 5.10 Riemann zeta function, {(s) — I versus 5

W =2790 =370 =P=¢) [] 1-P9=1 @17

Flprime) =2
Therefore

= 1

=] I a-p9| (5.173)

Plprime)=2

giving {(s) as an infinite product.*
‘ This omu.no:maon procedure has a clear application in numerical computa-
fion. Equation 5.170 will give {(s)(1 —~ 27°) to the same accuracy as Eq. 3,169
gives {(s), but with only half as many terms. (In either case, a correction would
be Bman for the neglected tail of the series by the Maclaurin integral test
technique—replacing the series by an integral, Section 5.2.)

Along with the Riemann zeta function, AMS-55 (Chapter 23) defines three
other functions of sums of reciprocal powers:

nis) = MT:?;-W =129, n=12,...

PN . . )

.:E. is the starting point for the extensive applications of the Riemann zeta
lunction to the number theory. See Edwards, H. M., Riemann’s Zeta Function.
New York: Academic Press (1974).
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A= @n+ D)= -2,  n=23... 142 = w2 (1 =2 4 g
n=0

and

Bls) = .M“oAI 1y(2n + 1)75, n=12.... Therefore

From the Bernoulli numbers (Exercise 5.9.6) or Fourier series (Examples 14.33 W 1 7 ={(2) — {(4) + {(6) — W 3 H|a.
and 14.3.13) special values are el IR Znf
D=1+ 1.1 = mw The { functions are tabulated and the remainder series convergesasn °. Clearly,
(@)= 22 ' 32 6 . the process can be continued as desired. You make a choice between how much
11 4 algebra you will do and how much arithmetic the computing machine will do.
@=1+g+g+--= r_ Other methods for improving computational effectiveness are given at the
23 20 end of Sections 5.2 and 5.4,
11 i
:AMVHHI.MM w.m|..."m
EXERCISES
gyt
M) =1-s2+m3 720 59.1 Show that
1 1 2 = (=02 — 1By, _r E
MY =ltgrtmt =T tanx =2 Y e Tyexsy
4 Hinr. tan x = cot x — 2 cot 2x.
&. — H H H + .. = ml. .
@=1+ L + 54 T 96 58.2 The Bernoulli numbers generated in Eq. 5.144 may be generalized to Bernoulli
polynomials,
ECIHIM;TMI... =F xe* > x"
3°5 4 e ,mo B,s)=-
1,1 7 Show that
Mv — —_—— _g v = o,
A 33753 32 By(s)=1
. Byls)=s—1%
Catalan’s constant; mMmW e +3
1,1 _ Note that B,(0) = B,, the Bernoulli number.
B(2) = -3 ﬂl...!obp%auw..; ote that B, (0) e Bernoulli number

593 Show that B)(s)=nB, ,(s), n=1,23, ....
Hint. Differentiate the equation in Exercise 5.9.2.

59.4 Show that

is the topic of Exercise 5.2.22.

Improvement of Convergence .
If we are required to sum a convergent series ¥ ., a, whose terms are Hmsoﬁ_
functions of », the convergence may be improved dramatically by introducing
the Riemann zeta function.

B,(1) = (~ 1y°B,(0).
Hint. Go back to the generating function, Eq. 5.158 or Exercise 5.9.2.
595 The Euler—Maclaurin integration formula may be used for the evaluation of

finite series:

EXAMPLE 5.9.1 Improvement of convergence . i : . .
M_ flm) = .ﬁ Jix)dx + S+ 7/ + %m =]+
m=, 1 -

The problem is to evaluate the series Y o, 1/(1 + n%). Expanding (1 + #*)™ = _
Skow that

41 + n~*)"! by direct division, we have
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5.9.6

5.9.7

5.8.8

5.9.9

(a) M m= i: + 1)

m? = dntn + 1)(2n + 1).

M=7

(b)

1

m

© 3 m =i+ 1p
m=s ]

(@ 3 m® = onln + DEn + 1)@ + 30— 1)
m=]

From )
C et
= (=1L (2n).
By = (=17~ )
Show that
®
‘.:n.
@ &= @ {8 =550
4 m.ﬂpo
®) (@) =5; @ =g
m
@ {6)=gis
Planck’s black-body radiation law involves the integral
“° x3dx
0 &~ 1
Show that this equals 6 {(4). From Exercise 5.9.6
4
(@=z

Hint. Make use of the gamma fupction, Chapter 10.

Prove that

.qa ﬁ ni?;
L}

Assuming # to be real, show that each side of the equation diverges if n=1
Hence the preceding equation carries the condition »n > 1. Integrals such as HMN
appear in the quantum theory of transport effects—thermal and electsi

conductivity.

The Bloch-Gruneissen approximation for the resistance in a monovalent metal
is
u.u T x5 dx
P=Ces ) Tona-e
where @ is the Debye temperature characteristic of the metal.
{a) For T— wo show that

~ &
PR

T

5.8.10

5.9.1

59.12

59.13

5914
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(b) For T—90, show that
m.n@ﬁ@?

Show that
1
@ % 2t =Li),

o X

a—+1 X

» lim .ﬁ E&ﬂ = (2.
€

From Exercise 5.9.6, {(2) = n*/6. Note that the integrand in part (b) diverges for
a = 1 but that the integrated series is convergent.

The integral

% "l — &
o X

appears in the fourth-order correction to the magnetic moment of the electron.
Show that it equals 2 £(3).
Hint. Jet] —x=¢e""

Show that

“ {nz)* H 1

—dz= —st o

, x2mwteEon
By contour integration (Exercise 7.2.17), this may be shown equal to n/8.

For “small” values of x

In(xf) = —yx + 3 Tshs

n=2

where y is the Euler—Mascheroni constant and {(n) the Riemann zeta function.
For what values of x does this series converge?

ANS, —l<x=<tL

Note that if x = 1, we obtain
y= 3 (-1t
n=2 n

a series for the Euler—Mascheroni constant. The convergence of this series is
mxnawn:mm_w slow. For actual computation of y, other, indirect approaches are
far superior (see Exercises 5.9.17, 5.10.11, and 10.5.16).

Show that the series expansion of In{x!) (Exercise 5.9.13) may be written as

(@) In(x!)= HEA vl % — M {(2n+1) X2

2 \sinmx =t mr1

1 X 1 ! +x
X! =~ - —
(b} mI(xh uim&muxv mEAHIkv+ﬁ Phx
N_a.,r_—
41

Determine the range of convergence of each of these expressions.

- M_H@x.rﬂ Iﬁ_
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5.9.16

5.9.16

5.9.17

5.9.18

5.9.19

5.9.20

59.21

Show that Catalan’s constant, §(2), may be written mw

=2 W=7~
k=1
Hint. n* = 6{(2).

Derive the following expansions of the Debye functions

:,&|x,w|x +w meﬁz g _x_Amazwr
@) o e —1 Tn 2An+1) S 2k + m2k)!

0 =[x nx*? :A:.!:.H._lu n!
(b) .ﬁ L uMm:Tﬁ% T T )

x>0nz=1
The complete integral {0, c0) equals n! {(r + 1), Exercise 10.2.15.

Derive the following Bernoulli number series for the Euler—Mascheroni constant.

Ll 1 B
=V stolnn— =4 § 2
i MM_ : lan 3 (2k)n*

Hint. Apply the Euler-Maclaurin integration formula to f{x) = x~1 over the
range [n,N].

{a) Show that the equation In2= Y=, (—1)1s7% (Exercise 5.4.1) may be
rewritten as

w0 ) i -1
In2 == HM.,.N 2705+ W‘H @p! _HH - N|nu— .

Hint. Take the terms in m_mma.
(0) Calculate In 2 to six significant figures.

(a) Show that the equation n/4 = 3 =, (—1)""'(2n — 1) (Exercise 5.7.6) may
be rewritien as

Eo1-23 40

s=1

@ .
-2 M Ahﬁvlmalu ﬁﬂ - ﬁ#ﬁvNH— .

pr=1
(b) Calculate #/4 to six significant figures.

‘Write a function subprogram ZETA(N) that will calculate the Riemann zea
function for integer argument. Tabulate {(s) for 5 =2, 3, 4, ..., 20. Check your
values against Table 5.3 and AMS-55, Chapter 23. ) -
Hint, If you simply supply the function mcgp_dmamﬂ. with the <m__=mw 0 {2, Q_uw
and £(4), you avoid the more slowly converging series. Calculation time may
further shortened by using Eq. 5.170.

Calculate the logarithm (base 10) of _W b n= Ho_uuwou e Hmw.mnﬂmo 5920
int. Program the zeta function as a function subprogram, 920.
Hins. Program Check values. log |Bygo| = 7845

log _wwoo_ =2155%
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5.10 ASYMPTOTIC OR SEMICONVERGENT SERIES

Asymptptic series frequently occur in physics. In numerical computations
they mﬂo\mmbﬁ_owna for the accurate computation of a variety of functions. We

consider here two types of integrals that lead to asymptotic series: first, an
integral of the form

ixvusm-%xs

where the variable x appears as the lower limit of an integral. Second, we consider
the form

o
cur M :
Lx)= 1] e % du,
0
with the function f to be expanded as a Taylor series {(binomial series). Asymp-

totic series often occur as solutions of differential equations. An example of
this appears in Section 11.6 as a solution of Bessel’s equation.

Incomplete Gamma Function

The nature of an asymptotic series is perhaps best illustrated by a specific
example. Suppose that we have the exponential integral function*
X u
Eifx) = mﬂ%_ (5.174)
- @

or

[-. o I
NE

U

—FEi(—x) =

du = E,(x), (5.175)

X

to be evaluated for large values of x. Better still, let us take a generalization of
the incomplete factorial function (incomplete gamma function),

L=

Iix,p)= | e Pdu=T(1 —p,x), (5.176)

x

inwhich x and p are positive. Again, we seek to evaluate it for large values of x.
Integrating by parts, we obtain

I{x,p} = LI e TPl dy
ol i (5.177)

e~* ﬁmla L] w s
=— +ﬁ@+:,§ e TP dy,
x?P x#tl .

“This function occurs frequently in astrophysical problems involving gas with
2 Maxwell-Boltzmann energy distribution.
*See also Section 10.5.
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Continuing to integrate by parts, we develop the series

xf 1 p , ppt+1)
I(x,p)=¢ wnlmlunm+~+ ) -
= {5.178)
:ﬁW+H|H. —t,,—p—n
4+ {—1 et P du.
(=1 - U

This is a remarkable series. Checking the convergence by the d’Alembert
ratio test, we find

Him ?ui_ =~ Hm (p+n)! W
) T,_‘:_ e (p+n— 1)1 X -
 _qim 2T (517
n—w X
=

for all finite values of x. Therefore our series as an infinite series diverges every-
where! Before discarding Eq. 5.178 as worthless, let us see how well a given
partial sum approximates the incomplete factorial function, I(x,p)

Mw M MW“ e du = R,(x,p).  (5180)

MCP _ﬂ_v - .m:ﬁunwﬁv = H|‘._,v=+u.

In absolute value

H(x,p) — sl S M.a ) (% R

p—0!),
When we substitute u = v + x the integral becomes
2
o0 ’ o0
ety P M du =7 | e Mo+ X7 o
x ¢
e x o0 v —p-n—1
= e qma H.TM dv.

For large x the final integral approaches 1 and

\(x,p) — sibe.p)| = Mw A w“ : xMH:. (5.181)

This means that if we take x large enough, our partial sum s, is an arbitrarily
good approximation to the desired function I{x,p). Our divergent series (Eq.
5.178) therefore is perfectly good for computations. For this reason it is some-
times called a semiconvergent serjes. Note that the power of xinthe denominator
of the remainder (p + n -+ 1) is higher than the power of x in the last term
included in s5,(x, p), (p + 7).

Since the remainder R, (x, p) alternates in sign, the successive partial sums give
alternately upper and lower bounds for I{x, p). The behavior of the series {with
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0.15 -

0.1664
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FIG.5.11  Partial sums of e*E, (¥)] =5

p=1)as a functi . . I
= } unction of the number of terms included is shown in Fig. 5.11. We

€'Ey(x} = ™

) (5.182)

X

(¥

- !
Tt

® |
ta

+
i
!
4

”nﬁnﬂa m.<mEm8Q atx = .m. For a given value of x the successive :ﬁﬁﬁ. and lower
: ”m s given by zwm Humms.mm sums first converge and then diverge. The optimum
etermination of e*E, (x) is then given by the closest approach of the upper and

lower bounds, that i o
Therefore 1s, between s, = 55 = 0.1664 and s; = 0.1741 for x = 5.

0.1664 < ¢*E;(x)|,=5 < 0.1741. (5.183)
Actually, from tables,
€*E, (x)]4=5 = 0.1704, {(5.184)

within the limits established by our asymptotic expansion. Note carefully that

-inchusion of additional terms in the series expansion beyond the optimum point

Eﬁm_:.mo.acomm the accuracy of the representation.
_o%w ﬂ is Hnoﬂommmn“.u :.5. spread between the lowest upper bound and the highest
er bound will diminish. By taking x large enough, one may compute e*E; (x)

to any desired degree of accurac i i
oy deired Cegree of y. Other properties of E,(x) are derived and
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Cosine and Sine Integrals o .

Asymptotic series may also be developed from ammn.zm Eﬁom._.mum.|_m :__n

integrand has the required behavior. As an example, the cosine and sine integrals
(Section 10.5) are defined by

Cit) = — m@wm i, (5.185)

x

® Gt

x

Combining these with regular trigonometric functions, we may define

f(x) = Ci(x)sinx — si(x)cosx = m_.H_H.W&\_
> (5.18)
i ; b cosy
g(x) = —Cix)cosx — si(x}sinx = ) iy x&\_

with the new variable y =t — x. Going to complex variables, Section 6.1,
we have

] m..v
, - d
glx) + if(x) Ly Ex y
I R iy (5.188)
o o 1+iu ’
in which u = —iy/x. The limits of integration, 0 to oo, rather than 0 to —ix,

may be justified by Cauchy’s theorem, Section m.u..Wmnosm:ﬁnm Em. %..
nominator and equating real part to real part and imaginary part to imagmary
part, we obtain

* ugm ™
g(x) = 7 du,
o 1+u (5.189)
o0 Nlunn
— & -
n\.ﬁunv o H 4 _AM U

i ire that &(x) > 0.2
For convergence of the integrals we must require
Now, to develop the asymptotic expansions, let v = xu and expand the factor
[1 + (v/x)*]™" by the binomial theorem.* We have

1 @ = amwa _ 1 & _ :aAMR&—
Nrt| e Y (~IrZgpdv == (-1 g
L el R e R * (5.190)
1> & o1& =AN:+CH.
g0~ 53 0 ,_M.oﬁlc = Woﬁ V=

ion 6.1).
2 @(x) = real part of (complex} x ﬁooﬂnﬁn.mnoson 6 ) .
Séwmu step is valid for v < x. The contributions m.o_.:.c = x will be un.mrm&ww
(for large x) because of the negative exponential, It is because the c.Eo:.wm
expansion does ot converge forv = x that our final series is asymptotic rather

than convergent.
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From Eqs. 5.187 and 5.190

2 (2n+ 1)
£y

(1p @

Zm ?
=0 X

(5.191)

the desired asymptotic expansions.

This technique of expanding the integrand of a definite integral and integrat-
ing term by term is applied in Section 11.6 to develop an asymptotic expansion
of the modified Bessel function K, and in Section 13.6 for expansions of the
two confluent hypergeometric functions M (g, ¢; x) and Ul(a, c; x).

Definition of Asymptotic Series .

The bebavior of these series (Eqs. 5.178 and 5.191) is consistent with the
defining properties of an asymptotic series.” Following Poincaré, we take®

X"R,(x) = x"[ f(x) — 5,{x)].

where
= b R SRS
5,(x) = ag + Pl + + et (5.193)
The asymptotic expansion of f(x) has the properties that
lim x"R,(x) = 0, for fixed n, (5.194)
and
:Luw X"R(x)= o0, for fixed x.” (5.195)

For power series, as assumed in the form of s,(x), R,(x) ~ x™"~!, With conditions
{(5.194) and (5.195) satisfied, we write

flx) ~ WU a,x" {5.196)
a=0Q

Note the use of ~ in place of =. The function f(x) is equal to the series only
in the [imit as x — co.

*It is not necessary that the asymptotic series be a power series. The required
property is that the remainder R,(x) be of higher order than the last term
kept—as in Eq. 5.194.

®Poincaré’s definition aliows (or neglects) exponentially decreasing functions.
The refinement of Poincaré’s definition is of considerable importance for the
advanced theory of asymptotic expansions, particularly for extensions into
the complex plane. However, for purposes of an introductory treatinent and
especially for numerical computation with x real and positive, Poincaré’s
approach is perfectly satisfactory.

"This excludes convergent series of inverse powers of x. Some writers feel that
this distribution, this exclusion, is artificial and Unnecessary.
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Asymptotic expansions of two functions may be multiplied together and the
result will be an asymptotic expansion of the product of the two functions.

The asymptotic expansion of a given function f (t)may be integrated term by
term {just as in a uniformly convergent series of continuous functions) from
x <t < oo and the result will be an asymptotic expansion of {2 f(r)dt. Term-by-
term differentiation, however, is valid only under very special conditions.

Some functions do not possess an asymptotic expansion; ¢” is an example
of such a function. However, if a function has an asymptotic expansion, it has
only one. The correspondence is not one to ONe; many functions may have
the same asymptotic expansion.

One of the most useful and powerful methods of generating asymptotic
expansions, the method of steepest descents, will be developed in Section 74
Applications include the derivation of Stirling’s formula for the (complete)
factorial function (Section 10.3) and the asymptotic forms of the various Bessel
functions (Section 11.6). Asymiptotic series occur fairly often in mathematical
physics. One of the earliest and still important approximation treatments of
quantum mechanics, the WK B expansion, is an asymptotic series.

Applications to Computing

Asymptotic series are frequently used in the computations of functions by
modern high-speed electronic computers. This is the case for the Neumamn
functions Ny(x) and Ny(x), and the modified Bessel functions I (x) and K,{x}
The relevant asymptotic geries are given as Egs. 11.127, 11.134, and 11136
A further discussion of these functions is included in Section 11.6. The asymp-
totic series for the exponential integral, Eq. 5.182, for the Fresnel integrak,
Exercise 5.10.2, and for the Gauss error function, Exercise 5.10.4, are used for
the evaluation of these integrals for large values of the argument. How larg
the argument should be depends on what accuracy is required. In actual practice,
a finite portion of the asymptotic series is telescoped by using Chebyshey
technigues to optimize the accuracy as discussed in Section 13.4.

EXERCISES
5.10.1 Stirling’s formula for the logarithm of the factorial function is
1 i B -
In{x!)==n2 N\nx—x-— 2n 1-2n
n{x) 5in2z + hx + mv X—X ._M‘k T Cx

The B,, are the Bernoulli numbers (Section 5.9). Show that Stirling's formuli
an asymptotic expansion. i

5.10.2

EGEuﬁ§ﬂU:

0

o
.a sin - du.
o 2

These integrals appear in the analysis of a knife-edge diffraction pattern.

i

{by S(x)

Integrating by parts, develop asymptotic expansions of the Fresnel integrals. -

i s
f 5103 Reder i i
. oy vnmﬂww the asymptotic expansions of Ci(x) and si(x) by repeated integration
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Hint. Ci(x) + isi(x) = — .‘8 m|,.n&ﬁ
t

x

Deérive the asymptotic expansion of the Gauss error function

erf(x) = 1m.. ,‘.a etdr

Vo

|.HM
n_lm_|u|.HWLwQ¢
z\mxﬁ P T v
Hint. erfix) =1 —erfe(x) =1 — % .—,a e~ dt.
T

Normalized so that erf{oo} = 1, this functi ir
! = 1,1 nction plays an important role i il-
ity theory. It may be expressed in terms of the Fresnel integrals Ammn“.wmm. mﬂﬂvm_v

the incomplete gamma functi i
e e, ons (Section 10.5), and the confluent hypergeomet-

510.4

x

5105 The asymptotic expressions for the various Bessel functions, Section 11.6

contain the series

mn._H _”Aem — {25 — CNH_

) (2n)1(8z)*" '

0.~ 5 (—pyreIE D — @5 = 1]
1 (2n — 118z

Show that these two series are indesd asymptotic series.
Forx>1 .

P@~1+ Y (~1F

A=l

n=

5106
1
1+x

Test this series to see if it is an asymptotic series.

=y -1

-~
n=0

5.10. i
0.7 InExercise 5.9.17 the Euler—Mascheroni constant y is expressed with a Bernoulli

number series:

m
M ﬁN kvnhm».

=1
Show that this is an asymptotic series.

§10.8 Develop an asymptotic series for

a
,_. ml.aﬁ+cJ|n&c.
0

Take x to be real and positive.

T 21 41

12, e e
X

x Uﬂm .KH:+~

ANS.

5.10. i ~,
8 Caleulate partial sums of ¢E, (x) for x = 5, 10, and 15 to exhibit the behavior

shown in Fig. 5.11. Determi i
e B ermine the width of the throat for x = 10 and 15 anal-
ANS. Throat width: n = 10, 0.000051
n =15 0.0000002,
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5.10.10 The knife-edge diffraction pattern is described by
I = 0.51,{[Cluo) + 0.5F7 + [S(uo) + 0.51%},

where C{u,) and S(u,) are the Fresnel integrals. Here I, is the incident intensity
and [ the diffracted intensity. u, is proportional to the distance away from the
knife edge (measured at right angles to the incident beam). Calculate I/I; for
u, varying from - 1.0 to +4.0 in steps of 0.1. Tabulate your results and, ifa

plotting routine is available, plot them.
Check value. uy =10, I/l, = 125922

5.10.11 The Euler—Maclaurin integration formula of Section 5.9 provides a way of
calculating the Fuler—Mascheroni constant y to high accuracy. Using f{x) = 1/x
in Eq. 5.168b (with interval [1,#]) and the definition of y, Eq. 5.28, we obtain

. i B
= -4+ Y 2
r=Ls " & 2
Using double precision arithmetic, calculate y.
Note. Knuth, D. E,, “Euler’s constant to 1271 places,” Math. Computation 16,

275 (1962). An even more precise calculation appears in Exercise 10.5.16.
ANS. Forn= 1000,
y = 0.57721566 4901

5.11 INFINITE PRODUCTS

Consider a succession of positive factors fy * fp* f3* fa + - - fos (fi > 0). Using
capital pi to indicate product, as capital sigma indicates a sum, we have

fefefofo= [ (519
We define p,, a partial product, in analogy with s, the partial sum,
P = ﬂ f; S (51%)
and then investigate the limit
W.Hw. p.=P. (5.199)

If P is finite {but not zero), we say the infinite product is convergent. If P is
infinite or zero, the infinite product is labeled divergent.
Since the product will diverge to infinity if

lim f, > 1 (5.200
or to zero for
mua fi<, (and =>0), (5.200)
it is convenient to write our infinite product as
[-u]
[1@G+a,)
n=1
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The condition a,— 0 is then a necessary (but not sufficient) condition for
convergence. |

The infinite/product may be related to an infinite series by the obvious method
of taking thedogarithm
o0 o0
In[[(1+a)= 3 Inl +a,) (5.202)
= n=i

r=1

A more useful relationship is stated by the following theorem.

Convergence of Infinite Product
If0 < a, < 1, the infinite products [, (1 + a,) and [ |2, (1 ~ a,) converge
if =, a, converges and diverge if Y2, a, diverges.
Considering the term 1 + a,, we see from Eq. 5.90

1+ a, < g%, ﬂm.wowu
Therefore for the partial product p,
Po < €', (5.204)
and, letting n — o0,
=] aQ
m (1+a,) <exp =M.~ s (5.205)

. thus establishing an upper bound for the infinite product.

To develop a lower bound, we note that

@:"HnTMQ_..._)M Mnm§m+...u > 8 AMNO@V
i=]

i=1 je=i
since ¢; > 0. Hence

o

M0 +a)= M a. (5.207)

n=1L
I the infinite sum remains finite, the infinite product will also. If the infinite
sum diverges, so will the infinite product.
The case of [ [ (1 — a,) is complicated by the negative signs, but a proof that

depends on the foregoing proof may be developed by noting that for a, <3
{emember a, — 0 for convergence)

HH - va = m._. + Qaul._.
and

(1-a)=(1+2a)"  (5.208)

Sine, Cosine, and Gammea Functions
The reader will recognize that an nth-order polynomial P, (x) with n real
roots may be written as a product of » factors:

B =(x—x)(x =) (x—x)=[[x—x) (5209
. i=1 :
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In much the same way we may expect that a function with an infinite number
of roots may be written as an infinite product, one factor for each root. This is
indeed the case for the trigonometric functions. We have two very useful infinite
product representations,

2

sinx =x [ {1~ Mi (5.210)
n=1
L 4 2
cosx =111~ = 7 | (5.211)

The most convenient and perhaps most elegant derivation of these two expres-
sions is by the use of complex variables.! By our theorem of convergence,
Eqs. 5.210 and 5.211 are convergent for all finite values of x. Specifically, for
the infinite product for sinx, a, = x*/n’n%,

n=1 (5.212)

by Exercise 5.9.6. The series corresponding to Eq. 5.211 behaves in a similar

manner.
Equation 5.210 leads to two interesting results. First, if we set x = n/2,

we obtain

5 1 & [(@nf —1
_n . = X 5213
=31 -G |72l ey (20
Solving for n/2, we have
T 2y
P mm (2n |m:§ +1)
(5.214)
_2-24-466
= 1-3 3557 °

which is Wallis’s famous formula for =/2.

“The second result involves the gamma or factorial function {Section 10.1)..

One definition of the gamma function is
o0 x =1
o) =1{xe™T][1 += e,
r=1
where y is the usual Euler—~Mascheroni constant (compare Section 5.2). If we
take the product of I'(x) and I'(—x), Eq. 5.215 leads to

(5.215)

1The derivation appears in Mathematical Methods for Physicists, 1st and
2nd eds. (Section 7.3). As an alternative Eq. 5.210 can be cbtained from the
Weietstrass factorization theorem.
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-1

I (—x) = ~| xe™ [] T +2 m,&gm-ﬁmT — X\

ok r r

MR (5.216)

- [en(-2T
r=l r
Using Eq. 5.210 with x replaced by nx, we obtain
Mol (—x) = ——
OT(=x) = = {5.217)

Anticipating a recurrence relation developed in Section 10. 1, we have —xT'(—x}
=TI'(1 — x). Eq. 5.217 may be written as

TEOT(L — ) = ——o—.
CIT(L = x) = = (5.218)
This g.m: be useful in treating the gamma function (Chapter 10).

Strictly speaking, we should check the range of x for which Eq. 5.215 is
convergent. Clearly, individual factors will vanish for x =0, —1, —2, .. .. The
proof that the infinite product converges for all other {finite) values of x is left
as Exercise 5.11.9.

These infinite products have a variety of uses in analytical mathematics.

moﬁm.,wah because of rather slow convergence, they are not suitable for precise
numerical work.

EXERCISES

5111  Using

o0 o0
il +a)=Y (i ta,)
n=1 n=I
mbm the Maclaurin expansion of In{l £ g,), show that the infinite product
2 (1 + a,) converges or diverges with the infinite series 3 =, a,.

511.2  An infinite product appears in the form
m 1+afn
i \L+b/n)’
érmﬂu a and b are constants. Show that this infinite product converges only if
a=bh.
5.11.3 Show that the infinite product representations of sin x and cos x are consistent
with the identity 2 sin x cos x == sin 2x.
5.11.4 Determine the limit to which

m AH + T:Q

r=2 n

COnverges.
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5.11.6  Show that
= 2 !
MT T aln + le
5.11.6  Prove that
o
(-2
n=2 8
5.11.7  Using the infinite product representations of sin x, show that
0 x 2m
=1=2 il N
xcotx =1 a.:Mww maﬂav -
hence that the Bernouili number
202!
By, =(—1y7" o £{(2n),
5.11.8  Verify the Euler identity
o o0
MMa+a=T1a-2z2" | <L
=1 g=1
5.11.9  Show that []2, (1 + x/¥)e™" converges for all finite x {except for the zeros of

1+ x/r).
Hint. Write the nth factor as 1 + a,.

5.11.10 Calculate cos x from its infinite product representation, Eq. 5.211, using (a) 10,
{(b) 100, and (c) 1000 factors in the product. Calcuiate Sn. m_n.mm._ﬁw ETror. zo.a
how slowly the partial products converge—making the infinite product quite
unsuitable for precise numerical work.

ANS. For 1000 factors cos = = — 1.0005L
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