Midterm

Phy 315 - Fall 2006 Assigned: Thursday, November 2, **Due: Tuesday, November 7, 5 pm**

TAKE HOME MIDTERM RULES:

• The exam is **open book**. You may consult the class textbooks, Gottfried and Yan, and Tinkham, and the course webpage. No other sources.

• You may consult your own past homeworks and your own class notes. You may not borrow homework or notes from your colleagues.

• You may not discuss **any aspect** of the midterm with anyone.

• Submit a signed pledge that you have abided by these rules as well as the Duke Community Standard (http://www.integrity.duke.edu/graduate/commstd.html).

Problem 1 (15 pts.)

Consider a particle moving in one dimension whose Lagrangian is

$$L = \frac{1}{2}\dot{x}^2 - \frac{g}{x^2} \,.$$

a) Show that the following infinitesmal coordinate transformations are symmetries:

time translation :
$$\delta x = \epsilon \dot{x}$$
 $\delta \dot{x} = \epsilon \ddot{x}$
dilatation : $\delta x = \epsilon \left(-\frac{1}{2}x + t \dot{x} \right)$ $\delta \dot{x} = \epsilon \left(\frac{1}{2} \dot{x} + t \ddot{x} \right)$
conformal transformation : $\delta x = \epsilon \left(-t x + t^2 \dot{x} \right)$ $\delta \dot{x} = \epsilon \left(-x + t \dot{x} + t^2 \ddot{x} \right)$

b) Use Noether's procedure to find the conserved quantity associated with each of these symmetries. Denote the conserved quantities associated with dilatations and conformal transformations by D and K, respectively. Use the classical equations of motion to confirm that H (the Hamiltonian), D, and K are constants of the motion.

c) Write down the quantum mechanical operators corresponding to H, D, and K in terms of the quantum mechanical operators \hat{x} and \hat{p} . Compute the commutators

$$[H, D] = ??$$
 $[H, K] = ??$ $[D, K] = ??$

(Hint: this calculation can be considerably simplified by exploiting the fact that H, D, and K are constants of the motion.) Are H, D, and K generators of a Lie group?

d) Using the commutators computed in part c), show that expectation values of H, D and K are time independent in the quantum theory.

Problem 2 (15 pts.)

Consider a scattering experiment in which an electron with helicity $+\frac{1}{2}$ moving in the $+\hat{z}$ direction annihilates with a positron with helicity $-\frac{1}{2}$ moving along the $-\hat{z}$ direction. The final state consists of a muon moving in the \hat{n} direction and an antimuon moving in the $-\hat{n}$ direction. The scattering angle, θ , is defined by $\cos \theta = \hat{n} \cdot \hat{z}$. Assuming the interactions are rotationally invariant, calculate the angular distribution when

a) the final state consists of a muon with helicity $+\frac{1}{2}$ and an antimuon with helicity $-\frac{1}{2}$,

b) the final state consists of a muon with helicity $-\frac{1}{2}$ and an antimuon with helicity $+\frac{1}{2}$,

c) the helicities of the final state particles are unobserved, and the interaction allows the final state in part a) with probability amplitude $\propto \sqrt{p}$ and the final state in part b) with probability amplitude $\propto \sqrt{1-p}$. For what value of p is the angular distribution forward-backward symmetric (i.e. invariant under $\theta \to \pi - \theta$). Explain why.

Problem 3 (10 pts.)

Consider electrons confined to a 2-dimensional surface, with coordinates x and y, in the presence of a uniform magnetic field in the z-direction with strength B.

a) Write down a Lagrangian for a single electron in this situation.

The energy gap between the lowest Landau level (LLL) and the first excited state is $\hbar\omega_c = \hbar eB/(mc)$, where *m* is the mass of the electron. By taking the limit $\hbar\omega_c \to \infty$, we can force all electrons into the LLL. Such a limit might be used to describe a situation in which there is insufficient energy to excite any electron into the excited Landau levels. The limit $\hbar\omega_c \to \infty$ can be obtained by either taking $B \to \infty$ or $m \to 0$. Apply this limit to the Lagrangian derived in part a) and show that it becomes

$$\mathcal{L}_{LLL} = \frac{e}{c} B \dot{x} y \,.$$

b) Using \mathcal{L}_{LLL} , find the momentum canonical to x, and determine the commutation relation:

$$[x, y] = ???$$
.

c) Derive an uncertainty principle for $\Delta x \Delta y$ using the commutator derived in part b). Interpret this uncertainty relation by applying semiclassical quantization to the classical orbits of a particle in a uniform *B* field.

Problem 4 (10 pts.)

Below is the character table of a discrete group called A_4 . The symmetry group has 4 classes. The identity is its own class, denoted by E. Other classes consist of rotations and are denoted NC_i , where each rotation in the class is a rotation about $2\pi/i$ and N is the number of rotations in the class. In the table below, $\omega = e^{2\pi i/3}$.

	Е	$3C_2$	$4C_3$	$4C'_3$
Γ_1	1	1	1	1
Γ_2	1	1	ω	ω^2
Γ_3	1	1	ω^2	ω
Γ_4				

a) Fill in the entries in the character table which have been left blank.

b) Suppose an atom with a single electron is placed in a crystal with A_4 symmetry. Let the electron have orbital angular momentum l, where l = 0, 1, 2, or 3. For each case, explain how the 2l + 1 states of split into the representations, Γ_i , and give the degeneracy of each representation.

c) Let $\vec{d} = \sum_{i} e\vec{x}_{i}$ be the electric dipole operator, determine the selection rules for the matrix element $\langle \Gamma_{a} | \vec{d} | \Gamma_{b} \rangle$.