Midterm 2
Phy 211 - Fall 2002
Thursday, November 14

NO GRADUATE PROBLEMS. Max. undergrad score: 30 pts., max. grad score: 40 pts.
THERE ARE 2 PAGES TO THIS EXAM.

Problem 1

Consider a particle in a box of length \(L \) with a \(\delta \)-function in the middle:

\[
V(x) = \begin{cases}
\infty & |x| \geq L/2 \\
V_0 \delta(x) & |x| \leq L/2
\end{cases}
\]

a) (2 pts.) What is the general solution to the time-independent Schrödinger equation in the regions \(x < 0 \) and \(x > 0 \)?

b) (3 pts.) What are the boundary conditions at \(x = 0, \pm L/2 \)?

c) (2 pts.) Show that the odd parity eigenfunctions of this Hamiltonian are the same as the odd parity eigenfunctions of the particle in a box without a \(\delta \)-function.

d) (3 pts.) For the even parity eigenfunctions, obtain a transcendental equation for the allowed wavenumbers. Show that the equation you obtain reproduces the allowed wavenumbers for a particle in a box when \(V_0 \to 0 \).

Problem 2

In this problem, assume the Hamiltonian is that of a free particle,

\[
\hat{H} = \frac{\hat{p}^2}{2m}.
\]

a) (3 pts.) Use Ehrenfest’s Theorem to find \(\langle \dot{x}(t) \rangle \) in terms of \(\langle \dot{x}(0) \rangle \) and \(\langle \dot{p}(0) \rangle \).

b) (4 pts.) Let \(\hat{x}_H(t) \) be the position operator in the Heisenberg picture. Define the pictures to be equivalent at \(t = 0 \), i.e. \(\hat{x}_H(0) = \hat{x} \), where \(\hat{x} \) is the Schrödinger picture (time-independent) operator. Evaluate the commutator

\[
[\hat{x}_H(t), \hat{x}_H(0)].
\]

c) (3 pts.) Use the result of b) to derive an uncertainty relation for measurements of position at different times:

\[
\Delta x(t) \Delta x(0).
\]

Problem 3

In this problem we will consider a simple harmonic oscillator with Hamiltonian

\[
\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2.
\]

The energy eigenkets and eigenvalues are defined by \(\hat{H}|n\rangle = E_n|n\rangle.\)
a) (4 pts.) Show that
\[\sum_{n'} |\langle n | \hat{x} | n'\rangle|^2 (E_{n'} - E_n) = \frac{\hbar^2}{2m}. \]

Let \(U(\eta) \) be the \textbf{unitary} operator
\[U(\eta) = \exp[-\eta \hat{a}^2 + \eta (\hat{a}^\dagger)^2], \]
which satisfies the following identities:
\[U^\dagger(\eta) (\hat{a} + \hat{a}^\dagger) U(\eta) = e^{2\eta}(\hat{a} + \hat{a}^\dagger) \]
\[U^\dagger(\eta) (\hat{a} - \hat{a}^\dagger) U(\eta) = e^{-2\eta}(\hat{a} - \hat{a}^\dagger) \] \hspace{1cm} (1)

b) (3 pts.) Calculate \(\Delta x \) and \(\Delta p \) for the state \(|\eta\rangle = U(\eta)|0\rangle \). Is this a minimum uncertainty state?

c) (3 pts.) Verify Eq. (1). (Hint: Differentiate both sides with respect to \(\eta \).)

Problem 4

Consider a dumbbell constrained to rotate in the \(x - y \) plane about its center of mass.

The Hamiltonian is given by
\[\hat{H} = \frac{\hat{I}_z^2}{2I}, \]
where \(I \) is the moment of inertia of the dumbbell.

a) (3 pts.) What are the allowed energy eigenvalues and what is their degeneracy? Suppose the dumbbell’s wavefunction at time \(t = 0 \) is given by
\[\psi(\theta, t = 0) = \frac{1}{\sqrt{2\pi}} \left(\sqrt{\frac{1}{3}}e^{i\theta} + i\sqrt{\frac{2}{3}}e^{2i\theta} \right). \]

b) (2 pts.) What is \(\langle E \rangle \)?

c) (5 pts.) What is the probability density of finding the dumbbell at angle \(\theta \) at time \(t \), (i.e. what is \(|\psi(\theta, t)|^2 \))?