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Gravity

Nature and Nature's law lay hid in night:
God said, "Let Newton be!" and all was light.

— Alexander Pope

Kepler’s laws

Explanations of the motion of the celestial bodies — sun, moon, planets and stars — are 
among the oldest scientific theories. The apparent rotation of these bodies around the 
earth every day was attributed by the ancients to their place in "celestial spheres" which 
revolved daily around the stationary earth, assumed to be at the center of the universe.

The wandering of the planets against the background of stars presented a challenge to 
this earth-centered (“geocentric”) model. Their peculiar motions were explained in 
terms of smaller spheres rolling on larger ones. As observations became more accurate 
these explanations became more intricately complicated.

The sun-centered (“heliocentric”) model of Copernicus (about 1540) was simpler, but it 
made the earth merely one of the planets orbiting the sun. This provoked outrage, since 
it challenged the central importance of homo sapiens in the universe.

In the late 1500’s the Danish astronomer Tycho Brahe carried out a careful and 
systematic set of observations of the night sky, especially of the motions of the planets. 
His assistant Johannes Kepler inherited the voluminous data he had accumulated; 
Kepler subjected them to careful numerical analysis, and in the early years of the next 
century he was able to discern in the data three regularities:

Kepler’s laws of planetary motion

1. The orbits of planets are ellipses, with 
the sun at one focus.

2. As the planet moves, the line from the 
sun to a planet sweeps out equal areas 
in equal times.

3. The ratio   T
2 /a3  is the same for all 

planets, where T is the period and a is 
the semi-major axis of the orbit.
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How to explain these three laws (the "Kepler problem") was a major concern of the 
scientists of the 17th century, among whom was Isaac Newton.

Universal gravitation

Newton's analysis of gravity was partly motivated by the Kepler problem, but more by 
the idea that the moon in its orbit is continually “falling” toward the earth, much as 
objects near the surface of the earth — including the famous apple? — fall to the 
ground. He proposed that the solution to both problems lay in a universal law:

Law of universal gravitation

Every pair of point masses   m1  and   m2  

attract with a force given by
  
F = G m1m2

r2
, 

where r is the distance between the masses 
and G is a universal constant.

Because of its simplicity, elegance and its universality — note that it applies to every pair 
of point masses in the universe — this has served over the centuries as a model for what 
a general law of nature ought to be like.

The value of G is  6.67 × 10−11  in SI units. This is very small, so the gravitational 
attraction between everyday objects is too weak to be easily detectable — which is why 
Newton never knew its value. Gravity is much weaker than the electric force between 
two moderate sized charges. It is important in our everyday lives because:

• The earth is very massive ( 5.98 × 1024  kg). This means the attraction of the earth for 
ordinary objects is a substantial force.

• Atoms and molecules are electrically neutral, so ordinary objects do not usually 
attract or repel each other electrically unless they get very close together.

Because mass is positive, the gravitational force is always an attraction.
Because electric charge can be either positive or negative, electrical forces can be either attractive or 
repulsive, so they are subject to "shielding" which can reduce or negate their effects.

Gravity is “long range” in nature, meaning that its effects extend indefinitely far. In the 
universe as a whole gravity is the most important force. In very massive stars it can 
even overwhelm even the strong force that binds particles in the atomic nucleus.
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Gravitational potential energy

Consider two masses, M and m. Let M be fixed at the origin and let the position vector 
of m relative to the origin be r. In vector form, the gravitational force by M on m is



   
F(on m) = −G Mm

r2 r̂ ,

where   ̂r  is a unit vector from M toward m. This shows that gravity is a central force, i.e., 
it is always directed toward the “force center” — in this case, M. Since all central forces 
are known to be conservative, there is a potential energy function for this force, which 
we can construct from the definition of potential energy:



  
U(r) −U(r0 ) = − F dr

r0

r
∫ = −G Mm

r
−

Mm
r0

⎛
⎝⎜

⎞
⎠⎟

.

We choose the potential energy to be zero when the masses are infinitely far apart (the 
usual choice), so that as   r0 →∞ ,     

� 

U(r0)→ 0. This gives us a relatively simple formula:

Gravitational potential energy (point 
masses)  

U = −G Mm
r

Here r is the distance between the masses. For a system of more than two point masses, 
each pair contributes to the total according to this formula. 
Note that U is always negative, which is characteristic of an attractive force.

The gravitational field

The total gravitational force on a given particle due to a number of other particles can 
be obtained (by superposition) from the formula for the force between pairs of particles. 
In this way one could (in principle) calculate the force on a particular particle due to all 
the particles in the earth.

But it is more convenient to regard the particles in the earth as a set of given "sources" of 
gravity, and then to regard the force they exert on another particle as a collective effect. 
This is what we do when we say that the earth as a whole exerts a force mg on a particle 
of mass m near its surface. The quantity g represents the collective gravitational effect of 
all the particles in the earth.
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To describe the effect of the sources collectively is an essential idea in the concept of a 
field. The sources “create” the field, and a “test” particle (the one we are interested in) 
exhibits the effects of that field. But what is the field itself?

A field is a physical quantity that has a specific value at each point in space.  

For gravity, we make the following definition:

Gravitational field
The gravitational field g at a point in space is 
defined as the gravitational force on a 
particle of unit mass placed at that point.

That is, if the gravitation force on a particle of mass m at a particular place is   Fg , then 

the gravitational field at that place is given by    g = Fg /m . Conversely, if the field g is 

known at a point in space, and if a particle of mass m is placed there, then it will 
experience a gravitational force   Fg = mg .

If gravity is the only force on the particle, then the value of the gravitational field — the 
force per unit mass on the particle — is the same as the particle's acceleration. (The m on 
both sides of F = ma cancels, so a = g.) The “acceleration of gravity” introduced earlier 
for objects near the earth's surface is in fact just the gravitational field in that region.
As stated above, a field is a physical quantity that has a definite value at each point in space. The “value” 
of the field at a point can be a scalar or a vector, so we have scalar fields and vector fields. We see that g is 
a vector field. The temperature at each point in a room is an example of a scalar field. Other fields are the 
velocity (vector) field in  moving fluid, and the pressure (scalar) field in a fluid, to be discussed later in 
this course. In the next course much time will be spent studying electric and magnetic fields, which are 
vector fields, and electrostatic potential, which is a scalar field.

Why do we introduce the concept of a field? There are several reasons. Some are matters 
of convenience, while others are of fundamental physical importance.

• Knowledge of the field makes it relatively easy to understand what will happen 
to any “test particle” placed at a point in the field.

• For vector fields, one can make drawings (maps) of the field by constructing 
curves ("field lines") tangent to the direction of the field. For scalar fields one can 
draw curves connecting points where the field's value is the same. These maps 
are valuable aids to the intuition.

• By introducing fields we are able to avoid the untenable assumption of “action at 
a distance” in which the interaction is assumed to be transmitted instantly from 
one object to the other, even though they may be light years apart. (Experiment 
in fact shows that no information can travel faster than the speed of light.)
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• The electromagnetic interaction (to be discussed in the next course) is most easily 
expressed in terms of fields. The fundamental equations of electromagnetism are 
given in terms of these fields.

• In the electromagnetic case we know from experiment that the fields themselves 
possess energy and momentum; indeed, proper use of the conservation laws 
requires inclusion of these “mechanical” aspects of the fields as part of the 
system's energy and momentum. Light itself consists entirely of energy and 
momentum possessed by the electromagnetic field, traveling through space as a 
wave in the field. (Because gravity is so weak, it is difficult to test experimentally 
whether the gravitational field also has these properties, although all current 
theories assume it does.)

The concept of a field has developed over the past two centuries into one of the most 
important ideas in science. Modern theories take this to an extreme, postulating that all 
matter (including things usually classed as “particles”) should be described in terms of 
fields that obey the rules of relativity and quantum theory. In this world view we and 
everything around us are just complicated combinations of various quantum fields.

Spherical shells

In applying his gravitation law to the sun and planets, Newton assumed that the 
distance r between them should be taken to be the distance between their centers. Is that 
only an approximation?

Newton was able to show — using his newly developed integral calculus — that it is 
not an approximation, because the external gravitational effect of a uniform spherical 
mass distribution is exactly the same as it would be if all the mass of the sphere were 
concentrated at its center.

The essential step in proving this is to show that it is 
true for a thin spherical shell, since any spherical 
distribution can be considered to be a layered 
combination of concentric shells. Consider the 
gravitational field of a spherical shell, as shown. The 
field at the location of a test mass m can be shown 
(proof at the end of this section) to be:

   

g(r) =
−G M

r2 r̂   for r > R

0     for r < R

⎧
⎨
⎪

⎩⎪
 

This shows two remarkably simple properties:

• At points outside the shell the field is the same as though all the mass of the shell 
were concentrated at its center. 

 R

 M

 r

 m
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• At points inside the shell the field is zero.

Since any spherically symmetric object (such as the sun) can be treated as a 
superposition of concentric spherical shells — like layers of an onion — the total force 
exerted by such an object on an external mass is the same as if the entire mass of the 
sphere were at its center. This justifies Newton's treatment of the sun and planets as 
mass points analyzing planetary motion.

From the formulas for the field it is easy to obtain the potential energy for the system of 
a shell and a point test mass m:




    

� 

U(r) =
−G Mm

r
  for r > R

−G Mm
R

  for r < R

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

Note carefully that although the field inside the shell is zero, the potential energy is not. We have taken 
the potential energy to be zero at infinite distance, and that is the only place where it will be zero. The 
potential energy inside the shell has the same value as at the shell’s surface.

These properties of shells are useful in dealing with any spherical distribution of mass.

Proof of formulas for g for a spherical shell.

To find the field at the field point P shown we first 
find the contribution of an infinitesimal ring on the 
shell, all points of which are at distance s from the 
field point. Let the mass of the ring be dm and let the 
line from the center of the shell to P define the x-axis. 
By the symmetry the field at P has only an x-
component, which is 

  
dgx = −G dm

s2 cosα .

The area of the ring is its circumference times its width, or   2πRsinθ ⋅Rdθ . It mass is 
therefore

  
dm =

M
4πR2 ⋅ 2πR2 sinθdθ =

M
2

sinθdθ .

Thus we have

  
dgx = −

GM
2

cosα
s2 sinθdθ .

The variables s, α, and θ are related by the geometry. From the law of cosines we have 
  R2 = r2 + s2 − 2rscosα  and   s2 = R2 + r2 − 2Rr cosθ . The first of these gives

 R
θ

 M

α
 s

 r
 P
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cosα =

s2 + r2 − R2

2rs
,

while the second gives (since r and R are constants)


   sds = Rr sinθdθ .

Putting it all together we find

  
dgx = −

GM
4Rr2 1 + r2 − R2

s2

⎛

⎝
⎜

⎞

⎠
⎟ds .

To find the field we integrate over s. For points outside the shell ( r > R ) we integrate 
from  s = r − R  to  s = r + R , and find

  
gx = −

GM
r2  for r > R .

For points inside the shell we integrate from  s = R − r  to  s = R + r , and find

  gx = 0 for r < R .

This proves the claimed properties.

Tidal forces

Besides solving the Kepler problem and relating the period of the moon to g at the 
surface of the earth, Newton also was able to explain the ocean tides as a gravitational 
effect caused by the moon and sun.

Shown is the earth, with the moon to the right 
at distance r from the center of the earth. The 
radius of the earth is R. Also shown are two 
particles of mass m located at points 1 and 2 
on opposite sides of the earth. If the moon 
were absent, each of these masses would be 
attracted toward the center of the earth by the 
usual gravitational force  mg . 

We will analyze how the moon alters the forces on these two particles, as measured by 
observers at points 1 and 2. These observers use a reference frame fixed on the earth, 
which is a non-inertial frame because the earth is accelerating toward the moon. 
We ignore (for the moment) the effects of the sun.

 to moon

 R

 1 2
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At the center of the earth let the gravitational field of the moon be   g0 , directed toward 

the moon (to the right in the diagram) with magnitude



  
g0 =

GMM

r2 .

This is also the acceleration of the earth’s CM toward the moon, and it is therefore the 
acceleration of the reference frame of our two observers.

At point 1 the gravitational field of the moon is   g1  with magnitude 



  
g1 =

GMM

(r − R)2 .

Similarly at point 2 the field of the moon is   g2  with magnitude



  
g2 =

GMM

(r + R)2 .

All of these vectors are directed toward the moon, of course. 

But what the observers will measure is the  effective gravity of the moon in their 
reference frame, which we get by subtracting the reference frame’s acceleration   g0 . 

At point 1 the moon’s effective gravity is    g1
eff = g1 − g0 . Since   g1 > g0 , this vector is 

toward the moon. The mass at that point experiences an outward force    mg1
eff  exerted by 

the moon, away from the center of the earth. The total gravitational force on it (toward 
the center of the earth) is thus   F1 = m(g − g1

eff ) . 

At point 2 we have    g2
eff = g2 − g0 . Since   g2 < g0 , this vector is away from the moon, and 

therefore away from the center of the earth. The force of the moon on this mass is    mg2
eff . 

The total gravitational force on it (toward the center of the earth) is   F2 = m(g − g2
eff ) .

Thus the moon produces forces on both of the particles away from the earth’s center, 
reducing their gravitational attraction toward the earth’s center. If the particles are part 
of the oceans there is a small outward bulge in the water surface at both points. This 
gives rise to the twice daily tides. The rise or fall of the level in mid-ocean is tiny, but the 
effect at shorelines of the resulting shift of large volumes of water toward or away from 
the shore can be quite dramatic, especially if it is amplified by channel effects and wave 
resonance.   

Now we calculate the magnitude of these effects. We find
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g1

eff = g1 − g0 = GMM
1

(r − R)2 −
1
r2

⎡

⎣
⎢

⎤

⎦
⎥ ,



  
g2

eff = g0 − g2 = GMM
1
r2 −

1
(r + R)2

⎡

⎣
⎢

⎤

⎦
⎥ .

These are not quite the same. But using the fact that R << r, we can make an 
approximation. We write



    

� 

1
(r ± R)2

= 1
r2 ⋅ 1

(1 ± R /r)2

and use the binomial approximation on the second factor:


       

� 

(1 ± R /r)−2 ≈ 1  2R /r .

This gives



  
g1

eff ≈ g2
eff ≈

2GMMR
r3 .

Thus the effects on opposite sides of the earth are approximately equal and proportional 
to the ratio   MM /r3 .

The sun also gives rise to tidal forces, but because of its much greater distance the ratio   M / r3  for the sun 
is only about half that for the moon. When earth, sun and moon are on the same line (with sun and moon 
either on the same or opposite sides of the earth), their effects add and give rise to especially large tides, 
called spring tides. When the lines from the sun and moon to the earth make a right angle, the effects tend 
to cancel and we have small neap tides. 

An indirect effect of tidal forces is to produce dissipative torques which reduce the 
rotational kinetic energy of the object acted upon. This is why the moon (on which the 
earth’s tidal forces are quite strong because the earth’s mass is so large) has long since 
stopped rotating relative to the earth and keeps the same face toward us. Presumably 
the moon is also making the earth slow in its daily rotation, but very gradually. 
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