
Physics 182

Electrodynamics

Overview.

So far the fields we have been studying have been independent of time, and the field 
equations for E do not contain B, or vice versa. Electricity and magnetism seem to be 
related only through the fact that currents create magnetic fields. Scientists in 1830 
suspected that a current was a flow of electric charge, but they had no direct evidence as 
to what the charges in a wire might be.

The separation of the two fields of study was ended by experiments in 1830-1. In what 
may be the most important finding in terms of practical use of energy since the taming 
of fire, Faraday showed (in effect) that a wire in a changing magnetic field will carry a 
current just as though it had a small battery in it. The E-field that produces this current 
is called induced, and the process is electromagnetic induction. The essence of the matter is 
that a changing magnetic field produces an electric field.

The induced E-field is not like the one created by charges. Its field lines close on 
themselves; it is not related to the scalar potential V but rather to the vector potential A; 
its strength falls off with distance from the source only as   1/r .

In the 1840’s attention turned to electric circuits, where the work of Ohm and Kirchhoff 
was instrumental. The rules relating resistance to current involve the concept of 
electromotive force (emf), which is the work per unit charge that sets currents into motion. 
Among methods of producing an emf is the induced E-field arising from changing 
magnetic fields. This led quickly to the invention of electromagnetic generators and to 
the “second industrial revolution” of the late 1800’s.

Meanwhile various versions of a theoretical framework to encompass these new results 
were offered. In 1860 Maxwell produced his famous equations, showed that light is an 
electromagnetic wave, and paved the way for wireless communication. In the process 
he reasoned theoretically (without direct experimental proof) that, just as a changing B-
field produces and E-field, so the converse is true: a changing E-field produces a B-field. 
Maxwell showed that this must be so if one is to have the law of charge conservation.

In basic terms the theory of electromagnetism was now complete. For the next 50 years 
Maxwell and his successors worked out the consequences, especially in terms of 
radiated energy. Those will be covered in later units.
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Circuits and emf.

As soon as researchers had “Voltaic piles” (as batteries were called then) they started 
investigating the properties of what we now call DC circuits. But it took a long time 
(because of the lack of good measuring devices, mainly) to establish the relationships 
between current, resistance and emf. What is called Ohm’s law was not generally 
accepted until nearly 1850, and the Kirchhoff rules for circuits were published about 
that time. It was not until the concept of energy began to be applied to electricity that 
things became clear.

There is an excellent account of these things in G. Here is a summary:

• When a source of emf (i.e., something external that does work on the charges) is 
applied to a circuit, a current is quite rapidly established in all parts of the circuit. 
If the emf is time-independent (e.g., a battery) the current reaches a steady value 
very quickly. Its magnitude is proportional to the strength of the emf, which is the 
amount of work it does per unit charge (measured in V).

• The energy coming in from the emf is balanced by equal energy going out, 
resulting in a steady state situation. Some of the energy out may be in the form of 
mechanical work (e.g., a motor) but some (or all) of it is in the form of dissipation 
through the phenomenon we call resistance. The rate of this loss is given by the 
Joule heating formula   P = I2R .

• The detailed energy balance is embodied in Kirchhoff’s loop rule. As one goes 
around the circuit tallying the changes in potential, an emf supplying energy is 
represented by a rise in potential, a resistive element by a fall equal to  IR . The total 
potential change for a complete path is of course zero.

• The other general principle is charge conservation, embodied in Kirchhoff’s 
junction rule: the total current coming into any point must equal the total current 
going out.

• The resistance R of a simple passive element is determined by its geometry and by 
the microscopic properties of its material, described by the conductivity. A thorough 
account of that quantity had to wait until the development of quantum mechanics.

These are the essential features of the theory of DC circuits.

Induced emf, Lenz’s law, and the flux rule.

Courses on this subject usually introduce Faraday’s work by discussing the emf 
produced in a wire moving perpendicular to a B-field. (See the discussion in G.) This is 
not how Faraday discovered his law, nor does it make clear that anything really new 
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has been discovered. The emf arises from the Lorentz force   qv × B  on the free electrons 

in the wire as they are moved through the field.

But when one considers how it looks in the reference frame of the moving wire, one sees 
that there really is something new. The wire is at rest, the sources of the magnetic field 
start moving. But suddenly the free charges in the wire begin to move. Why? A force on 
charges at rest is the signature of an E-field.  So somehow the changing magnetic 
situation is causing an E-field to appear in the wire. That is new.

Shown is the circuit with the moving wire. As is shown 
in G, the Lorentz force caused by the wire’s motion 
pushes positive charge up the wire, resulting in a 
counter-clockwise current in the loop containing the 
resistor. The strength of this “motional” emf is 
  E = Bwv . Now the area of the loop is  A = wx , and the 
flux of the B-field into the page is  Φ = BA = Bwx . It was 
noted early on that the rate of change of this flux 
(because the area changes) is   dΦ/dt = Bwv , which is just the emf. So for this case at 
least we have    E = dΦ/dt .

Is this a more general rule? Suppose the wire is fixed, so the loop area doesn’t change, 
but we increase the strength of the B-field and thus increase the flux. Does this result in 
an emf? The answer is yes, and the strength is given by the formula we have.

There is one thing still missing from the rule. Which way does the current go? From the 
Lorentz force argument it is clear: counter-clockwise. But what about a stationary loop 
but a changing field? We need a rule that ties the direction of the current to the sign of 
the change in flux. It is given by Lenz’s law:

A current induced by a change in magnetic flux is in such a direction as to oppose the change 
that caused it.

In this case, if B increases the flux into the page increases. The induced current, running 
counter-clockwise, creates its own B-field, which is out of the page inside the loop. This 
opposes the original increase in flux into the page.

Lenz’s law is written into the formula by means of a negative sign. This gives is the flux 
rule:



  
E = −

dΦ
dt

.
 (1)

Lenz’s law is a necessary consequence of conservation of energy. If the induced current 
went the other way, one would have a runaway situation with energy appearing out of 
nothing.
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Faraday’s law.

The flux rule is very useful in dealing with circuits, but it is not a field equation. What is 
going on at the level of fields is that a changing B-field creates an E-field, one that no 
longer obeys   ∇ × E = 0 . This means that 



    E ⋅dr∫ ≠ 0.

In fact, if the path in the line integral is taken around the loop in the circuit we have 
been discussing, the integral would give us the work done per unit charge to produce 
the induced current. This integral is thus the induced emf itself:



    E = E ⋅dr∫ .

(If, in addition to the induced E-field, there is another E-field created by charges, the 
latter will give zero in the integral, so we can use the total E-field in the above relation.) 
Now the change in magnetic flux through an area bounded by the curve is



  
d
dt

B ⋅dA∫ ,

so we have



   

E ⋅dr∫ = −
d
dt

B ⋅dA∫ ,

which is the flux rule written in terms of the fields. If we consider only paths that are 
fixed in time this becomes



   

E ⋅dr∫ = −
∂B
∂t

⋅dA∫ .
 (2)

This is the integral form of the field equation we are looking for. Using Stokes’s theorem 
we find the differential form:



  
∇ × E = −

∂B
∂t

.
 (3)

These are the two forms of Faraday’s law. It is one of the basic equations of the 
electromagnetic field.

Inductance

This law was not discovered by moving wires in magnetic fields; that came later. The 
phenomenon that led Faraday (and independently Henry) to discover electromagnetic 
induction was what we now call mutual inductance. Both scientists were experimenting 
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with coils of many turns, creating strong magnetic fields. Faraday noticed that when he 
turned the current on or off in his coil, a galvanometer (an instrument to measure 
current) attached to a nearby coil showed deflection, meaning a current was flowing. It 
deflected one way when the current in his coil was turned on, the other ways when it 
was turned off. And it was only a brief deflection, disappearing when the current in his 
coil settled into its final value.

What he had seen was the effect of the flux from his first coil on the second coil, 
inducing an emf in it if the flux was changing. In terms of the flux rule:



   
E2 = −

d
dt

Φ2/1 .

Here   E2  is the emf induced in coil #2 and  Φ2/1  is the flux from coil #1 that passes 

through the area bounded by coil #2. (Actually, if coil #2 has   N2  turns, we should 

multiply the emf by   N2 ; it’s like batteries in series.)

Of course the flux from coil #1 is proportional to the current that created it,   I1 , so   E2  is 

proportional to   dI1 /dt . The proportionality constant is a property only of the coils and 

their geometric placement relative to each other. It is called the mutual inductance of 
the system,   M21 . We have



   
E2 = −M21

dI1
dt

.

One can show (see G) that for the same physical arrangement a change in the current in 
coil #2 will induce the same emf in coil #1, so   M12 = M21 .

Of course the B-field produced by coil #1 also makes flux pass through that coil, so 
there an induced emf in it too. Thus we also have



   
E1 = −L1

dI1
dt

,

Where   L1 is the self inductance of coil #1. In general, then:



   
E2 = −M21

dI1
dt

− L2
dI2
dt

,

and similarly for coil #1.

See G for examples. self and mutual inductance play major roles in circuits with time-
varying currents, especially those which vary sinusoidally (AC). In our electric power 
systems, use of mutual inductance in transformers allows power to be transferred over 
hundreds of miles with relatively little loss to Joule heating.
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Magnetic field energy

Consider a single coil which, at   t = 0 , is attached to a battery so a current begins to flow. 
While the current is rising toward its final value there is an induced emf in the coil:



  
E = −L dI

dt
.

(This is often called a ”back emf” because it opposes the rise of the current.) The battery 
must do work against this emf in order to get the current going. The power it delivers is



  
P = E ⋅ I = L ⋅ I dI

dt
.

(Because of resistance and other things the total power delivered by the battery may be 
larger; this part is what is required to set up the magnetic field.) The total work done is 
the integral of this power over time:


   W = 1
2 LI2 .

This is the energy input to make the B-field, and it can be recovered if the current is 
switched off, so it is potential energy. We call it the B-field energy, denoted by  UB . 

As is shown in G, this energy can be written in terms of the B-field itself, independent of 
the geometric arrangement that L represents. the formula is



  
UB = d3r 1

2µ0
B2∫ .

The integral is (in principle) over all space. The integrand is the energy density in the B-
field:



  
ηb =

1
2µ0

B2 .

If we have both electric and magnetic fields (but no materials such as dielectrics that 
alter the fields) then the total electromagnetic energy density is



  
ηem = 1

2 ε0E2 + 1
2µ0

B2 .

The numbers  ε0  and  µ0  are related:   ε0µ0 = 1/c2 , where c is the speed of light, so we 

finally have


   ηem = 1
2 ε0(E2 + c2B2 ) .

This is an important formula about a very important concept: the fields possess energy.
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Completion of the theory: displacement current.

As we have it so far, Ampere’s law is   ∇ × B = µ0j . This is fine for steady currents, for 

which   ∇ ⋅ j = 0 , since the divergence of a curl is identically zero. But when the current is 
not steady (as for example when a capacitor is being charged) then charge conservation, 
which implies



   
∇ ⋅ j+ ∂ρ

∂t
= 0 ,

is incompatible with Ampere’s law.

Knowing Gauss’s law, Maxwell was able to find the way out of this entirely by 
theoretical arguments. We have    ρ = ε0∇ ⋅E , so    ∂ρ/∂t = ∇ ⋅ (ε0∂E/∂t) . If we add to the j 

on the right side of Ampere’s law the term    ε0∂E/∂t , then we have a quantity whose 

divergence is always zero. In the process we have also enforced conservation of charge. 
The result is



   
∇ × B = µ0 j+ ε0

∂E
∂t

⎛
⎝⎜

⎞
⎠⎟

.

The extra term is called the displacement current density. It is very small in ordinary 
situations because 

  ε0  10−11  in our units. But of course in empty space where   j = 0  it is 

the only source of a new field.

The complete field equations (without dielectrics or materials with magnetic properties) 
are the famous Maxwell equations:


   ε0∇ ⋅E = ρ ,   ∇ ⋅B = 0 ,



  
∇ × E = −

∂B
∂t

, 
   
∇ × B = µ0 j+ ε0

∂E
∂t

⎛
⎝⎜

⎞
⎠⎟

.

To these we add the Lorentz force law for the force on a point charge:


    F = q(E + v × B) .

These five equations embody classical electromagnetism.
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