
Physics 182

Electrostatics III

Overview.

We have discussed the electrostatic field in empty space and on and in conductors. But 
we have not dealt in a systematic way with the field in non-conductors. That is the 
subject of these notes.

Non-conductors are made of atoms and molecules whose electrons are bound to them, 
not free to move around within the material. The atoms and molecules themselves have 
zero total charge, but they are not electrically inert. Atoms alone cannot have an 
intrinsic electric dipole moment, but molecules can. And in the presence of a field cause 
by external charges, atoms can distort their charge distributions so as to create an 
induced dipole moment. The fields created by these dipoles are not as strong as fields 
created by free charges, but they are not negligible.

However, at ordinary temperatures, in the absence of an external E-field the intrinsic 
dipole moments of molecules become randomly oriented as to direction, so their 
average effect is zero; and induced moments require an external field. So in their 
“natural” state non-conductors (or dielectrics, as they are usually called) have no overall 
electric properties.

So our interest is in their properties when there is an externally caused E-field. In simple 
terms, such a field polarizes a dielectric, creating induced dipoles aligned with the field, 
or — because a dipole moment in an external field experiences a torque tending to align 
it with the field — aligning intrinsic dipoles in the direction of the field.

We will give the description of this polarization and its consequences. Since solid 
materials can have structures that are not the same in all directions, the polarization can 
be somewhat complicated, but we will treat only the simpler cases.

Induced and aligned dipoles. The polarization field.

If an atom, or a”nonpolar” molecule which has no intrinsic dipole moment, is placed in 
an E-field, a shift occurs in the average charge distribution. The “clouds” of electrons 
are moved in the direction opposite to the field and the nuclei is moved in the direction 
of the field. This means that, seen from outside the atom, the center of positive charge 
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no longer coincides with the center of negative charge, resulting in a dipole moment 
parallel to the external field. We write

  p = αE .

Here E is the field “seen” by the atom, which may not be the same as the field outside 
the dielectric material, and α  is the electric polarizability of the atom. In the simplest 
cases (to which we will mostly limit our attention) α  is simply a scalar constant.

Actually it is a 2nd rank tensor, and the above equation is  pi = α ijEj . In crystalline materials this is often 

important.

If there are “polar” molecules in the material, the process of alignment of their dipoles is 
the dominant one. The torque  τ = p × E  gives rise to a potential energy of alignment 

  U = −p ⋅E . The stable equilibrium state is with p is the direction of E.

In any case, the external field creates or aligns a set of dipole moments. The average 
dipole moment per unit volume is what is important at the macroscopic level. It is 
called the polarization field:

   P = n < p > ,

where the < > indicates an average over a small volume (that nevertheless contains 
many atoms or molecules) and n is the number of atoms per unit volume.

Within a solid dielectric the existence of a non-zero average dipole moment tends to 
produce no effect because in any given small volume as much positive charges is shifted 
into the volume as negative charge by the external E-field. But at the surface there are 
no atoms beyond the surface to compensate for the charge shifts of the atoms at the 
surface. As a result a net surface charge appears on the surfaces. This is the polarization 
charge, and one can show that it is given by

   σ pol = P ⋅n

where n is a unit vector directed away from the material at the surface.

In a non-uniform E-field, or in a dielectric which does not have the same properties 
everywhere, then P may not be uniform within the material, giving rise to a polarization 
charge of density

   ρpol = −∇ ⋅P .

The polarization charges create their own E-fields, of course, and thus alter the net field.

Since once does not directly measure the polarization by counting up the dipole 
moments in a small volume of the material, one describes the effect in terms of the 
polarization created by a given net E-field. The relation is
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    P = ε0χEtot .

Here χ is called the electric susceptibility. 

Here again the general relation is more complicated:   Pi = ε0χ ijEj . For materials that are isotropic (the same 

in all directions) the tensor is diagonal and we have the simpler relation.

If the material is isotropic, homogeneous (the same at all points in it), and linear ( χ  is a 
constant independent of E), we call it “simple”. We will deal only with simple materials.

The total field is related, through the polarization, to the externally applied field   E0 , of 

course. For simple materials we have    Etot = E0 − P/ε0 . Using the relation above this 

gives    E0 = (1 + χ)Etot . We define the dielectric constant by  κ = 1 + χ   and have


   
Etot =

1
κ

E0 .

The dielectric constant is easy to measure, for example by placing the material between the plates of a 
capacitor and measuring the change in capacitance.

The polarization charge must be included as a source of the E-field, of course. Gauss’s 
law becomes

    ε0∇ ⋅E = ρ free + ρpol .

In principle, of course, this and   ∇ × E = 0  contain all we need to determine the E-field. 
But because the polarization charges are not usually known in advance, we use other 
methods.

Models for the susceptibility.

For atoms or non-polar molecules, the polarization is in the form of induced dipoles, so 
we need to know the “local” field seen by an individual microscopic particle. This is 
neither the applied field   E0  nor the average field. To make a guess as to what it is we 

imagine a small cavity in the material, within which the particle will reside. The walls of 
the cavity will contain polarization surface charge, given by  P ⋅n , which makes the field 
in the cavity different from the average field in the material.

The simplest choice of cavity is a small spherical hole. It is not hard to show that the 
field in such a hole is parallel to the average field (and to P) with magnitude

   Elocal = Eav + P/3ε0 .

 3



Now P obeys two relations, one to the polarizability ( P = nαElocal ) and one to the 

susceptibility (  P = ε0χEav ), so combining these with the equation above we find


  
χ =

nα/ε0
1 − nα/3ε0

.

This is the Clausius-Mossotti equation, relating the microscopic quantity α  to the 
macroscopic (measurable) one χ .

To use this relation we need a model of the atom or non-polar molecule from which to 
estimate α . That means we need quantum mechanics. Simple estimates from, e.g., the 
Bohr model give 

   α  ε0a3 , where a is the radius of the atom or molecule. This means 

that 
  α/ε0  10−30  m3 . In a gas, where    n  1025  atoms per  m3 , we get 

   nα/ε0  10−5 . In 

the C-M equation the denominator is close to 1 and we have 
  χ  10−5 , which is 

consistent with experiment. For a solid it is not unusual to have    n  1030 , so we must 
use the C-M equation to make estimates.

Boundary conditions.

For simple dielectrics we have   P = ε0χE , so Gauss’s law reads

    ε0∇ ⋅E = ρ free + ρpol = ρ free − ε0χ∇ ⋅E .

Rearranging and using  κ = 1 + χ  we have    ε0κ∇ ⋅E = ρ free . In integral form the two field 

equations become


    ε0 κE ⋅dS∫ = Qfree , 

    E ⋅dr∫ = 0 .

Here  Qfree  is the free charge enclosed in the volume bounded by the closed surface. 

What is new about this form of Gauss’s law is that the field for which the flux is 
calculated is not E but  κE . If κ  is the same everywhere on the surface, it can be taken 
outside the integral, and things are simple. But if κ  changes for different parts of the 
surface, we must be careful.

Consider the boundary between two dielectrics (one of which might be the vacuum). 
We wish to determine how E changes as the boundary is crossed.
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First we use the circulation equation. Shown is the boundary 
and a closed curve to integrate over. Let the horizontal length 
of the path be   , and integrate clockwise, starting at the top 
left corner. Since the path will be shrunk to infinitesimal size, 
we can assume the field does not change in the horizontal (x) 
direction. We will also shrink the vertical sides to zero, so they will give no contribution. 
For the top part we get 

   Ex(1) ⋅  ; for the bottom part, 
   −Ex(2) ⋅   (the integration is in the 

negative x-direction). The total integral is the sum of these, and it must give zero, so we 
have, calling the x component 

  E  because it is the one parallel to the surface:


   E(1) = E


(2) .

The component of E parallel to the surface is continuous across the boundary.

Now we use Gauss’s law, with a pillbox surface as shown. 
Again we will shrink the vertical dimension to zero, and treat 
the top and bottom area A is small enough to assume E is 
constant. For the top we have the contribution   κ1E⊥ (1) ⋅A , 

where  E⊥  means the component of E perpendicular (upward) 

to the boundary between the materials. For the bottom we have   −κ 2E⊥ (2) ⋅A . If there is 

no free charge in the situation, then the flux integral vanishes, so we find

   κ1E⊥ (1) =κ 2E⊥ (2).

The component of  κE  perpendicular to the surface is continuous across the boundary. 

These two statements are what we need in many situations involving dielectrics with no 
free charge.

One is often solving Laplace’s equation for the potential and must apply the boundary 
conditions at boundaries between dielectrics. The conditions on E become conditions on   
V:

(1) The potential V is continuous across the boundary.

(2) The quantity 
 
κ ∂V
∂rn

 is continuous across the boundary, where  rn  is the coordinate 

perpendicular to the boundary.

There are several examples of the use of these conditions worked out in G.
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