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Electrostatics II

Overview.

In the late 18th and early 19th centuries remarkable progress was made in the study of 
differential equations, especially those that applied directly to problems in physics and 
engineering. Some of the most famous names in the history of mathematics are 
associated with these efforts: Lagrange, Laplace, Poisson, to name only those who 
worked mainly in France. The “paradigm shift” responsible for this new progress was 
the discovery that energy is more important than force in describing physical systems, 
and that the proper way to think about interactions is in terms of fields.

In the case of gravity and electrostatics (which are mathematically very similar) 
attention was focused on properties of the potentials., scalar fields obeying linear partial 
differential equations. In the case of electrostatics, our main interest, the equations are 
those of Poisson and Laplace. These arise out of Gauss’s law for the E-field:


    ∇ ⋅E = 4πkρ .

We use the electrostatic connection between E and V:   E = −∇V . This gives Poisson’s 
equation for V:


   ∇ ⋅∇V = −4πkρ .

The derivatives on the left side are  ∂i∂iV , which is conventionally written as  ∇2 . In 

cartesian coordinates Poisson’s equation is


   (∂x
2 + ∂y

2 + ∂z
2 )V = −4πkρ .

In other coordinate systems (e.g., spherical) the left side is more complicated.

Poisson’s equation is a linear second order partial differential equation. It is 
inhomogeneous (the term on the right side does not contain V of its derivatives). This 
means that the general solution is a particular solution plus any solution of the 
homogeneous equation with zero on the right side. Thus our focus turns to that 
equation, which is Laplace’s equation:


   ∇2V = 0 .
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The study of the solutions of this equation, subject to various boundary conditions, is 
called potential theory. We will discuss some of the major findings of this study.

We will also discuss an expansion of the potential as a series in inverse powers of the 
distance r between the sources (assumed to occupy a finite region of space) and the field 
point. This is the multipole expansion.

Laplace’s equation in cartesian coordinates.

The standard method of finding solutions to Laplace’s equation is called separation of 
variables. One looks for a solution that is the product of functions of only one variable. In 
(x,y,z) coordinates, this means trying a solution of the form   V(x, y,z) = f (x)g(y)h(z) . 

Substitution gives


   gh ⋅ ′′f (x) + fh ⋅ ′′g (y) + fg ⋅ ′′h (z) = 0 ,

where the double-primes mean second derivatives with respect to the relevant 
variables. Dividing by  fgh we have



  

′′f
f
+

′′g
g

+ ′′h
h

= 0 .

For this to hold for all values of all three variables, we must have each of these terms 
equal to a constant, and the sum of the constants equal to zero:




  

′′f = α f
′′g = βg
′′h = γ h

α + β + γ = 0

Clearly at least one of the constants must be positive and at least one negative.

Now an equation like  ′′f = α f  has well known solutions. If  α > 0  the solutions are 

exponentials:   f (x) = Ae± α ⋅x , where A is some constant. If  α < 0  the solutions are sines 

and cosines, or   f (x) = Ae± i α ⋅x . The former are rising or falling functions, the latter 

oscillate. So we see that the general solution rises or falls in at least one coordinate, and 
oscillates in at least one.

Of course there is an infinite number of sets of “separation constants”  (α ,β ,γ )  that 
satisfy  α + β + γ = 0 . But the boundary conditions reduce the number of possibilities, 
perhaps to only one or a few. We will look at a case in the examples.
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Spherical coordinates.

For good diagrams and a general discussion of these coordinates, see G, Sec. 1.4. Their 
relation to cartesian coordinates are as follows:


   x = r sinθ cosφ ,   y = r sinθ sinφ ,   z = r cosθ .

To work out what the differential operator  ∇2  is in these coordinates is not simple, nor 
is the answer:



  
∇2 =

1
r2

∂
∂r

r2 ∂
∂r

⎛
⎝⎜

⎞
⎠⎟
+

1
r2 sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1
r2 sin2θ

∂2

∂φ2 .

We try to find solutions to  ∇2Ψ = 0  of the form   Ψ(r ,θ ,φ) = f (r) ⋅ g(θ) ⋅ h(φ) . Substituting 

and dividing by  fgh  we manage to separate the part dependent on r:



  

1
f
∂
∂r

r2 ∂f
∂r

⎛
⎝⎜

⎞
⎠⎟
+

1
gsinθ

∂
∂θ

sinθ ∂g
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1
hsin2θ

∂2h
∂φ2 = 0 .

This gives, calling the separation constant α :



  

d
dr

r2 df
dr

⎛
⎝⎜

⎞
⎠⎟
= α f ,
 (1)



  

sinθ
g

∂
∂θ

sinθ ∂g
∂θ

⎛
⎝⎜

⎞
⎠⎟
+α sin2θ +

1
h
∂2h
∂φ2 = 0 .

Not the second equation can be separated, with separation constant β :



  
sinθ d

dθ
sinθ dg

dθ
⎛
⎝⎜

⎞
⎠⎟
+α sin2θ ⋅ g + βg = 0 ,
 (2)



  

d2h
dφ2 = βh .
 (3)

Eqs (1-3) are ordinary differential equations. Two of the variables are angles, with 
 0 ≤θ ≤ π  and  0 ≤ φ ≤ 2π . Of course  φ = 0  and  φ = 2π  are the same point in space, so we 
must have   h(2π ) = h(0)  for single-valuedness. This can only happen if h is an oscillating 

function rather than a real exponential, which in turn requires  β < 0 . We write   β = −m2  

and find the solutions 
   h(φ)  e± imφ . The single-valuedness requirement then means that 

m must be an integer (positive, negative, or zero).
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That takes care of Eq (3). In Eq (2) we change the variable:  µ = cosθ . Then after some 
effort we find



  
(1 − µ2 ) d2g

dµ2 − 2µ dg
dµ

+ α −
m2

1 − µ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

g = 0 .

Of course  −1 ≤ µ ≤ 1 . This is a famous equation, named for Legendre. He found that 
most of its solutions are singular (go to ∞ ) at  µ = ±1 . The ones that are well-behaved 
require that   α = ( + 1)  where    = 0,1,2,... and also require that 

  m ≤  . Further, he 

found that these solutions are polynomials of order    in µ . They are called the 

associated Legendre polynomials, 
   P

m(µ) . In the special case where   m = 0  they become 

simply the Legendre polynomials 
   P(µ) = P



0(µ)

Returning to Eq (1) with the new value of α , we have



   

d
dr

r2 df
dr

⎛
⎝⎜

⎞
⎠⎟
= ( + 1) f .

The two solutions of this are   r  and    r−(+1) , as is easy to show.

Putting it all together, for given    and m we have the solution



   Ψ,m(r ,θ ,φ) = [A

,mr + B
,mr−(+1)]P



m(cosθ)eimφ .

Here 
   A,m  and 

   B,m  are constants to be fixed by boundary conditions. The most general 

well-behaved solution is a sum of these functions over all allowed values of    and m.

In situations with axial symmetry, we can choose the z-axis to be the symmetry axis. 
Then the solutions must be independent of φ , so only   m = 0  solutions occur. Most of 
our cases will be like that. Of course if there is spherical symmetry, the solutions cannot 

depend on θ  either, and only    = 0  is allowed (  P0(µ) = 1 ). In that case 
  
Ψ(r) = A + B ⋅

1
r

.

There is a more complete discussion in G, with a list of a some Legendre polynomials.

The multipole expansion

In realistic situations the charges that are the sources of a static E-fled occupy a limited 
region of space. At large distance from that region the field is dominated by a few of the 
simpler aspects of the charge distribution. The simples is its total charge: if that is not 
zero, then at a great distance the field is approximately that of a distant point charge.
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The finer details of the field so exist, of course, but they can be displayed in a series of 
terms that become smaller as the distance becomes larger. That series is called the 
multipole expansion.

We start from the general formula for the potential:



   
V(r) = k d3 ′r ρ( ′r )

R∫ ,

where as usual    R = r − ′r = (ri − ′ri )(ri − ′ri )  (sum over i of course). We make a Taylor 

expansion about   ′r = 0 :



   

1
R
=

1
r
+ ′ri

∂
∂ ′ri

1
R

⎛
⎝⎜

⎞
⎠⎟ 0

+ 1
2 ′ri ′rj

∂
∂ ′ri

∂
∂ ′rj

1
R

⎛

⎝
⎜

⎞

⎠
⎟

0

+…

The objects  (...)0  depend only on r, the field point. The first two, for example, are



  

∂
∂ ′ri

1
R

⎛
⎝⎜

⎞
⎠⎟ 0

=
ri
r3 ,



  

∂
∂ ′ri

∂
∂ ′rj

1
R

⎛

⎝
⎜

⎞

⎠
⎟

0

=
3rirj − r2δ ij

r5 .

Exercise: Derive these.

Substituting in the formula for V we have



    
V(r) = k 1

r
⋅ d3 ′r ρ(∫ ′r ) + k ri

r3 ⋅ d3 ′r ρ(∫ ′r ) ′ri + k
3rirj − r2δ ij

2r5 ⋅ d3 ′r ρ(∫ ′r ) ′ri ′rj +…

This is the series we want. The integrals are just numerical quantities for a given charge 
distribution. The first one is that total charge, for example:


 Qtot = d 3 ′r ρ(∫ ′r ) .

The second integral is the electric dipole moment, a vector:


   pi = d3 ′r ρ(∫ ′r ) ′ri .

The third integral, a second rank tensor, is the electric quadrupole moment:


   Qij = d3 ′r ρ(∫ ′r ) ′ri ′rj .

Using these, the first three terms of the series give
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V(r) = k Qtot

r
+ k p ⋅ r

r3 + k
Qij(3rirj − r2δ ij )

2r5 …

For large r, the first term (proportional to   r−1 ) is dominant unless   Qtot = 0 , in which case 

the second term (proportional to   r−2 ) is dominant unless , and so on.

From   E = −∇V  one can work out the corresponding terms in the series for the E-field, 
but the become messy to look at very quickly.

In the case of a neutral object like an atom or molecule, the dominant term from outside 
is the dipole. In our analysis of dielectrics, it is the fields of these dipoles that will 
dominate the represent the electric effects of the material.

The simplest charge distribution that has zero charge but a non-zero 
dipole moment is a pair of equal and opposite point charges separated 
by a distance, as shown. The dipole moment is   p = qr .

One can similarly make out of point charges a distribution that has no charge or dipole 
moment but has a quadrupole moment.

 r
 −q  +q
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