
Physics 182

Electrostatics I

Fields.

Electrodynamics is a field theory. What does that mean?

The idea of a physical field developed slowly in the first half of the 19th century, as 
phenomena apparently acting “at a distance” were subjected to close study. Those 
phenomena included gravity, electricity and magnetism, through which objects 
interacted with each other with no apparent contact between them.

The idea of a field started with the belief that there must be something going on in the 
space between the interacting objects, something that transmits the observed effects. In 
a search for a pictorial conception, a mysterious “medium” was invented to “transport” 
the effect from the “source” to the “object” of the force. This medium was, of course, 
invisible. One could also walk through it without sensing its presence. Nevertheless, it 
could transmit (very quickly) information about the status of the source to the object, 
even if the latter was a large distance away.

When it became clear about 1820 that light is a wave phenomenon, it was natural to 
assume that the same mysterious medium that carries light waves is the one that 
transmits electric, magnetic, and perhaps gravitational forces. But there was a problem. 
The speed of waves in a medium increases with the “stiffness” of the medium; the 
speed of sound is much larger in a steel rod than in air. But the speed of light is 
extremely large, so the presumed medium must be extremely stiff. How then can one 
walk through it and not know it is there? Nevertheless, lacking a better explanation, the 
existence of this medium (called the luminiferous æther) was a common assumption in 
19th century physics.

The æther could undergo stresses, strains and vortex motions, resulting in the 
propagation of waves and the transmission of forces. To study the state of the material 
(whatever it might be) in the æther was of obvious importance. That state involved 
physical properties, and the idea that physical properties could be attributed to points 
in apparently empty space was a crucial first step toward the idea of fields.

In fact, what we now call a field is just an entity in which some kind of physical 
property is distributed in space, having a value at each point. But we no longer try to 
associate that physical property with a substance filling the space. We reduced the 
theory of the æther to the status of historical myth, but we kept the idea of a field.
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To define a field, we simply give some plausible way to measure its value at each point. 
The field of temperatures at various locations on the earth’s surface is defined by the 
method of measuring the value of the temperature at a location. This is an example of a 
scalar field, because temperature is a scalar quantity. 

The main fields we will deal with in this course are those associated with electric and 
magnetic forces; since force is a vector, these are vector fields. We will also introduce 
some auxiliary fields called potentials; one is a scalar, the other a vector.

The electric field.

As was discovered in the late 18th century by Coulomb, the fundamental electric force 
is that between two “point” objects with electric charge, separated by a distance, and 
both at rest. The force law is very similar to Newton’s law of universal gravitation:

Coulomb’s law
   
F(1 on 2) = k q1q2

r2 r̂

Here   q1  and   q2  are the electric charges of the two objects (either positive or negative), r 

is the distance between them,   ̂r  is a unit vector directed from #1 toward #2, and k is a 
universal constant. If the two charges have the same sign, then F is in the direction of   ̂r , 
so it is a repulsion; if the charges are of opposite sign it is an attraction.

The numerical values depend on the system of units. In the SI system charges are 
measured in coulombs (C). In that system   k ≈ 9 × 109  (actually it is   10−7c2 , where c is the 
speed of light). This means that electric forces between ordinary charges are much 
larger than gravitational forces between ordinary masses.

Suppose we have a point charge   q0  being acted up by a set of other point charges, all at 

rest. The total force on   q0  is simply the sum of the pairwise forces:



   
F(on q0 ) = k q0qi

ri
2 r̂i

i
∑ .

Here  ri  is the distance between the ith charge and   q0 , and    ̂ri  is a unit vector directed 

from the ith charge toward   q0 . We can rewrite the equation as follows:



   
F(on q0 ) = q0 ⋅ k qi

ri
2 r̂i

i
∑ .
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If   q0  is moved to a different point in space the quantity represented by the sum will be 

different, because the r’s will be different. So the equation can also be written as


    F(on q0  at P) = q0 ⋅E(P) .

Here P stands for a point in space where   q0  is located. The vector   E(P)  depends on the 

other charges, where they are, and the point P, but not on the value of   q0 . This quantity  

is called the electric field at point P. The  qi  are called the source charges, and their 

locations are the source points.

The proper definition of the field, which stresses how it is measured, is this:

Electric field definition

1.  Place   q0  at P, at rest.

2.  Measure    F(on q0  at P) .

3.  Then 
   
E(P) = F(on q0  at P)

q0

If the sources of this field are charges at rest, then it is an electrostatic field. But, as we 
will see later, there are electric fields satisfying the above definition that do not arise 
from charges at rest. For now we treat only the electrostatic field.

Is it necessary to introduce this field? Not if all we ever do is treat charges at rest. But 
later we will see that the field has an independent existence, possessing energy and 
momentum. And even in the treatment of charges at rest it is a great convenience to 
divide the interaction of a given charge with other charges in two steps: (1) the other 
charges set up the field; (2) the given charge experiences their effect through the field.

Finding the field by superposition.

The electric field (which we will call the E-field) obeys a principle of superposition, 
which means that if there are multiple sources the total field is the (vector) sum of the 
fields of the separate sources. The sum used above is an example.

Let us clarify the notation for such sums. We will use the symbol r to represent the field 
point, the point in space where we are evaluating the field. We will use r’ to represent a 
source point, the location of a source charge. We will denote the displacement of the field 
point from the source point by  R = r − ′r .
The text by Griffiths (G) uses a script “r” for this displacement.
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In this notation, the contribution of a source charge  qi  located at source point   ′ri  to the 

E-field at field point r is:



   
Ei(r) = kqi

R i
Ri

3 .

Here we have used the fact that a unit vector in the direction of   R i  can be written out as 

   R i /Ri . The total field at r due to a set of sources is



   
E(r) = k qi

R i
Ri

3
i
∑ .
 (1)

This is all for point charge sources. Often we will treat the sources as a continuous 
distribution of charge, with charge per unit volume   ρ( ′r ) . The total field is then given 
by an integral over the region of space containing the sources:



   
E(r) = k ρ( ′r ) R

R3 d3 ′r∫ 
 (2)

where  R = r − ′r , and the integration is over the volume containing all points where ρ  

is not zero. (We use   d3r  to denote an element of volume. G uses  dτ  for this.)

Eqs (1) and (2) provide one method for calculating E. It must be remembered that the 
sum or integral is adding up vectors.

General properties of the electrostatic field: the divergence.

A vector field is specified uniquely by the values of its divergence and curl, except for a 
possible additive uniform field (one that is the same everywhere). So we will examine 
those two quantities.

First the divergence. One must be careful because simply calculating   ∇ ⋅E(r) = ∂iEi(r)  

seems to give the result zero.
Actually it is indeterminate at the location of the source charges. 

Instead we will use the divergence theorem:



    ∇ ⋅Ed3r∫ = E ⋅dA∫ .

Here the volume integral covers a region of space bounded by the surface in the area 
integral, and   dA  is an element of that area, directed outward from the enclosed volume.
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The area integral (the total flux of the field through the surface of the region) gives a 
simple result if the source is a single (positive) point charge q at the origin. First, we note 
that the direction of E is radially outward. The infinitesimal contribution to the flux by 
the surface element   dA  can be written as    E(r) ⋅dA = Ecosα ⋅dA , where α  is the angle 
between the outward normal to the surface element and the direction of E (which in this 
case is the same as the direction of r). 

The geometry is shown. The element of surface area perpendicular to r is 

  dA⊥ = r2 ⋅dΩ , where  dΩ  is the element of solid angle subtended at the 

origin by  dA⊥ ; this is the set of angular displacements indicated by the 

dotted lines in the drawing. 
In spherical coordinates the solid angle element takes the form   dΩ = sinθ dθ dφ . See the 

section on curvilinear coordinates in Chap. 1 of G.

But since   dA⊥ = dA ⋅cosα , we find



   
E ⋅dA = E ⋅dA⊥ =

kq
r2 ⋅ r2dΩ = kq ⋅dΩ .

The total flux through a closed surface surrounding the charge is



    E ⋅dA∫ = kq dΩ∫ = 4πkq .

We have used the fact that the integral of  dΩ  over all directions is  4π .

To prove this, use the formula above in spherical coordinates, and note that all directions are covered by 
the ranges  0 ≤ θ ≤ π  and  0 ≤ φ ≤ 2π .

So a single point charge q within the volume bounded by the closed surface gives a 
contribution   4πkq  to the flux outward. By superposition, if we have a number of 

charges within that volume, the total flux is 
  
4πk qi

i
∑ = 4πk ⋅Qtot . The net flux from 

charges not enclosed in the volume is zero, because  cosα  is negative as much as 
positive. The final result is called Gauss’s law:

Gauss’s law (integral form)
    E ⋅dA∫ = 4πk ⋅Qtot

Here  Qtot  is the total charge in the volume enclosed by the surface.

Notation: it is common to write the universal constant k as  1/ 4πε0 , in which case   4πk = 1/ε0 . This is the 

notation used in G.

 r
  dA

α
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Now we return to the question of  ∇ ⋅E . We write the total charge in the volume as 

  Qtot = ρd3r∫ , where the integral covers the volume bounded by the surface. On the 

other hand, the divergence theorem says 
    E ⋅dA∫ = ∇ ⋅Ed3r∫ . So Gauss’s law tells us 

that    ∇ ⋅Ed3r∫ = 4πk ρd3r∫ , where the integrals on the two sides cover the same volume. 

This implies

Gauss’s law (differential form)    ∇ ⋅E = 4πkρ

The integral form makes it easier to include both point charges and continuous distributions in the law. 
For a true point charge, ρ  is zero except at the location of the charge, where it is infinite. This makes the 

differential form of the law a bit awkward to use directly. One handles this difficulty by use of the Dirac 
delta function, discussed in Chap. 1 of G.


General properties of the electrostatic field: the curl.

It is easier to calculate the  ∇ × E  for the electrostatic field. Consider the field of a point 
charge at the origin:    E(r) = kq ⋅ r /r3 . This has the form    f (r) ⋅ r , and the curl of any such 

function is zero.

Proof: Write the curl as   ε ijkl∂ j[ f (r) ⋅ rk] . Do the derivative: 

  ∂ j f (r) ⋅ rk = ′f (r) ⋅ (∂ jr) ⋅ rk + f (r) ⋅ ∂ jrk = ′f (r) ⋅ (rj /r) ⋅ rk + f (r) ⋅δ jk . This object is 

unchanged when the indices j and k are interchanged. But  ε ijk  changes sign under that 

interchange of indices, so the curl is equal to minus itself, therefore zero.

The conclusion is a fundamental property:

Curl of the electrostatic field   ∇ × E = 0

 
We can convert this into integral form by using Stokes’s theorem:



    E ⋅dr∫ = (∇ × E) ⋅dA∫ .

Here the line integral is called the circulation. The curve integrated over is the boundary 
of the surface integrated over on the right side. Applying this we have
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Circulation of the electrostatic field
    E ⋅dr∫ = 0

These two properties, expressed here in both integral and differential form, are 
fundamental aspects of the electrostatic field.

Electric potential.

Since the curl of any function that is the gradient of a scalar function is automatically 
zero, we can write the electrostatic field as such a gradient. We define:

Electric potential (differential form)   E = −∇V

The negative sign is for convenience later. The integral form of this is:

Electric potential (integral form)
   
V(r2 ) −V(r1) = − E ⋅dr

r1

r2∫

If one can calculate V, then the first form of the definition can be used to find  E. If one 
can calculate E, then the second form can be used to find V.

Because adding a constant to V everywhere does not alter the fact that it satisfies the 
definitions, specifying V completely requires making a choice as to its value at a 
particular point. There are conventional choices, however. For example, if all the source 
charges for the fields are confined to a finite region of space, then V is usually taken to 
be zero at infinite distance from that region. Or perhaps it will be set to zero on some 
conductor in the situation.

The potential is a scalar field. As a result it is often easier to calculate for given source 
charges than E. The direct method is like the one used for E: find the formula for the 
field of a point source, then use superposition.

Let the source be a point charge at the origin. Then we know E:



   
E(r) = kq r

r3 .

The integral form above then gives
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V(r) −V(r0 ) = − kq ′r

′r 3 ⋅d ′r
r0

r
∫ ,

where   r0  is a reference point at which we will assign a particular value to V. The line 

integral follows some path from   r0  to r, but any path will give the same answer as any 

other, so we can choose the simplest. We choose   r0  to be infinitely far away, set   V = 0  at 

that distance, and choose a path along a line straight toward the origin. Then in the 
integrand  ′r  and   d ′r  will both be along that line, so   ′r ⋅d ′r = ′r d ′r . This gives



   
V(r) = − kq d ′r

′r 2∞

r
∫ =

kq
r

.

That this result depends only on the distance from the source charge and not on the 
direction is a consequence of the symmetry. We have found our answer:

Potential of point charge
  
V(r) = kq

r

If there are several point charges we note that the contribution of one of them to the 
potential at a particular field point depends only on the charge and its distance from that 
point. Using superposition we find:



   
V(r) = kqi

r − rii
∑ .
 (3)

If the source charges are continuously distributed, this becomes an integral:



   
V(r) = k ρ( ′r )

r − ′r
d3 ′r∫ .
 (4)

It should be remembered that in all these formulas we have chosen   V(∞) = 0 . Other choices would result 
in adding a constant to V.

Because potential involves an arbitrary choice of its value at some point, it is not 
directly measurable. Only differences in potential between different points are 
measurable. The E-field, on the other hand, is directly measurable.

Energy in electrostatics.

The Coulomb force is a central force, therefore conservative. So there is potential energy 
associated with it. As usual, one can find the potential energy difference between two 
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states in two equivalent ways: (1) Calculate the work done by the force itself in moving 
the system from rest in the initial state to rest in the final state; the potential energy 
change is the negative of this work. (2) Calculate the work done by an external agent in 
make the same change of the state of the system; the potential energy change is this 
work. Both ways of finding the change are useful.

Taking the first point of view, assume the E-field is known. Now take a “test” charge   q0  

at point A (at rest) and let the force    F = q0E  move it to point B (also at rest). The work 

done is 
   
W(A → B) = q0E(r) ⋅dr

A

B
∫ . This is minus the change in potential energy, so



   
U(B) −U(A) = − q0E(r) ⋅dr

A

B
∫

But the right side is just   q0[V(B) −V(A)] , so we have

Relation of U to V   ΔU = q0ΔV

We must interpret this simple equation carefully. It says that if a charge   q0  is moved 

through a potential difference  ΔV  in a field due to other charges, then the potential energy 
of the whole system (sources of the field and   q0 ) changes by the amount   q0ΔV . As   q0  

moves the other charges must remain fixed so that their field does not change.

Now we look at the energy “stored” in a system of charges due to the electrostatic 
interaction. For this purpose it helps to take the other point of view about potential 
energy, that is is the work done by an external agent to put the charges in their places.

Consider first a pair of point charges,   q1  and   q2 . Initially let them be infinitely far away 

and from each other, and define this state to have potential energy zero. We ask for the 
potential energy when   q1  is at location   r1  and   q2  is at   r2 . First we move   q1  to its final 

location   r1 ; since there is no interaction with the other charge, it requires no work to do 

this, but now there is a potential   kq1 /r  at every point at distance r from this charge. 

Then we move   q2  to   r2 ; the work done is the change in potential energy of the system, 

which by the above formula is 



  
U = q2ΔV = q2V1(r21) = k q2q1

r21
.
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Here    r21 = r2 − r1  is the distance from   q1  to   q2 , and   V1(r21)  is the potential of   q1  at 

distance   r21  from it. What we have calculated is the potential energy change while   q2  is 

moved from infinity to a point at distance   r21  away from   q1 , which was held fixed.

If we had brought in   q2  first, then held it fixed while we brought in   q1 , the result would 

have been



  
U = q1V2(r12 ) = k q1q2

r12
.

But   r12 = r21 , so the potential energy change would have been the same. The total 

potential energy depends only on the final configuration of the charges, not on the order 
in which they were put in place.

We emphasize this symmetry by writing the answer as


   U = 1
2 [q1V2(r12 ) + q2V1(r21)] .

This shows how to generalize to more charges:

Potential energy of point charges
  
U = 1

2 qiV(at qi )
i
∑

Here   V(at qi )  is the potential at the location of  qi  due to all the other charges.

If the charge is a continuous distribution this becomes an integral:

Potential energy for a continuous 
distribution of charge    U = 1

2 ρ(r∫ )V(r)d3r

The potential energy here is that of static charges, held in place somehow. If the charges 
are set free, they will move. If the total potential energy is positive, they will move away 
from each other; if the potential energy is negative they will move toward each other. If 
the system is one of point charges interacting only by the Coulomb forces, one can show 
(Earnshaw’s theorem) that no configuration of stable equilibrium exists.

We can recast the formula for total potential energy of a system of charges entirely in 
terms of the E-field. We start from the expression immediately above. Putting   E = −∇V  
into Gauss’s law we find Poisson’s equation for V:
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Poisson’s equation   ∇
2V = −4πkρ

Here   ∇2V = ∇ ⋅∇V , or   ∇
2V = ∂i∂iV . We use this to solve for ρ  and substitute into the 

formula for potential energy of a continuous distribution (above), obtaining 



  
U = −

1
8πk

V ⋅∇2V d3r∫ .

Now we note that   ∇ ⋅ (V∇V ) = ∂i(V∂iV ) = (∂iV )(∂iV ) +V(∂i∂iV ) = E2 +V ⋅∇2V , so 

  V ⋅∇2V = ∇ ⋅ (V∇V ) − E2 . Then we have



  
U =

1
8πk

[E2 − ∇ ⋅ (V∇V )]d3r∫ .

Let us examine the 2nd term in the integral. By the divergence theorem it is 
proportional to 

    (V∇V ) ⋅dA∫ . This is the flux of the quantity  V∇V  through a surface 

surrounding all space, i.e., at infinite distance. Think of it as a sphere of radius R as 
 R →∞ . The surface area is proportional to   R2 . But the potential of any charge 
distribution confined to a finite region of space will decrease with distance at least as 
fast as   R−1 , and  ∇V  will decrease at least as fast as   R−2 . So  V∇V  decreases with 

distance at least as fast as   R−3 . The integral must then be proportional to   R−1  or 
smaller. As  R →∞  it vanishes.

Our final result is:

Potential energy in E-field
  
U =

1
8πk

E2 d3r∫

The integral covers all space. The quantity   E
2 /8πk  give the energy per unit volume 

associated with the electric field. This is called the energy density:

Energy density in E-field
  
ηe =

1
8πk

E2 = 1
2 ε0E2

These formulas give a way of calculating the potential energy directly from the E-field. 
More importantly, they show that the field possesses energy, with density proportional 
to the square of the field strength.
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Conductors in electrostatics.

It was found in the 18th century that metals and some other materials can convey 
charge from one place to another, and, if isolated from other bodies, can keep charge 
stored. These are conductors. We are not concerned here with the flow of charge by 
means of conductors, but rather with the situation when all charges are at rest, in what 
is called electrostatic equilibrium.

There are several ways to place charge on an isolated conductor:

• Bring into physical contact an already charged object. Some of its charge will flow 
onto the conductor, and remain there when the object is removed.

• Charge by induction, bringing, say, a positively charged object near the conductor. 
This will attract negative charge to the near side of the conductor, leaving the far 
side with net positive charge. Then bring a second conductor (such as a wire 
attached to the earth) into contact with the far side of the conductor. Positive charge 
will flow off. When the wire is removed the conductor will have net negative charge.

• Put another charged conductor nearby that creates an E-field so intense that the air 
molecules are ripped apart and the air itself becomes a conducting path to carry 
charge to the original conductor.

Suppose we have a charged conductor, and the charge has been distributed so that it 
has come to rest. What can we say about the E-field and the distribution of charge?

First, what makes a material a conductor? We consider only solids here. When atoms or 
molecules arrange themselves so tightly bound as to make a solid, the nature of the 
states of the least tightly bound electrons is altered. In some materials those electrons 
remain identified with individual atoms, but in some they become common property, 
able to move around in the material. In the former case it takes a very large external E-
field to make any electrons break free from their atoms; these are non-conductors. In the 
latter case, a very small E-field can make some the electrons move (opposite to the 
direction of the field, because they have negative charge); these are conductors.
There is not a complete dichotomy here, but a continuum. The ability of electrons to move varies and is 
measured by the conductivity of the material. For our purposes here we assume a conductor has a very 
high conductivity. There are in fact (at very low temperatures) superconductors with infinite conductivity.

So what distinguishes a conductor is the fact that any weak external E-field will make 
charges move within the material or along its surface. It follows that:

If all charges are at rest, there can be no E-field within the material or along its 
surface.

There can, however, be an E-field at the surface directed perpendicular to it, because the 
electrons are not free to leave the conductor. So:

If all charges are at rest, any E-field at the surface must be perpendicular to it.
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Now we look at the distribution of charge. The tool to use is Gauss’s law in integral 
form: 

    E ⋅dA∫ = 4πk ⋅Qtot .

First, the charge within the conductor. Choose for the “Gaussian” 
surface to be used on the left side of Gauss’s law the dotted surface 
shown, below the surface of the conductor. Because it is entirely 
within the conductor, the E-field is zero everywhere on it, so the flux 
integral is zero. This means the total charge enclosed is zero. We 
could shrink this surface to surround any region within the 
conductor and the conclusion would be the same. Or we could expand it until it lies just 
beneath the actual surface of the conductor. So we conclude:

There is no net charge within a conductor , if all charges are at rest.

This means any charge there is must reside on the surface(s) of the conductor. How it is 
distributed is related to the E-field (if any) at the surface. We examine this connection.

Shown is part of the top surface of a conductor. We construct 
a “pillbox” Gaussian surface as shown: its is top above the 
conductor surface, its bottom is embedded in the conductor, 
and its sides are perpendicular to the conductor surface. 
Consider the flux through this pillbox. The flux through the 
bottom is zero, because the E-field is zero within the conductor. The flux through the 
sides it is zero because the field is either zero (within the conductor) or parallel to the 
sides, so that    E ⋅dA = 0  (  dA  is perpendicular to the surface). This leaves only the top. 
Call its area A. If the pillbox is very small the E-field is the same across the area of the 
top; because it is perpendicular to the conductor surface it is parallel to   dA . So the flux 
through the top is E ⋅ A . The total charge enclosed in the pillbox is the charge on that 
part of the surface inside the pillbox. Call the charge per unit area σ . Then the enclosed 
charge is  σ ⋅A . Putting these facts into Gauss’s law we find E ⋅ A = 4πk ⋅σ ⋅ A , or:

If all charges are at rest, the E-field at the surface of a conductor is related to the 
charge per unit area by   E = 4πk ⋅σ = σ /ε0 .

Finally, we consider the potential at points on the conductor. We use the definition: 

   
V(r2 ) −V(r1) = − E ⋅dr

r1

r2∫ . Let both points be on or in the conductor. We can take a path 

between them that either goes within the conductor (where   E = 0 ) or along the surface 
(where   E ⊥ dr ). Either way, the line integral is zero, so the two points are at the same 
potential:

If all charges are at rest, all points on or in a conductor are at the same potential.

These are the five important properties of a conductor in electrostatics.
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