
Physics 182

Assignment 4

1. A dipole (electric or magnetic) in a non-uniform field will in general experience a 
net force. The electric case was the subject of a problem on the midterm exam; 
here we examine the magnetic case. Let the dipole moment be m, and let the field 
be B. The potential energy of alignment is   U = −m ⋅B . As in the electric case, one 
can show that if m is parallel to B, the force on m is toward the region where B is 
stronger, while if m is antiparallel to B the force is away from that region.

 Consider a small cylindrical bar magnet, which creates a field 
with lines emanating from its north pole and entering its south 
pole, much like the field of a short solenoid. This magnet is near 
a fixed circular loop of wire as shown.

a. Suppose the magnet is moved toward the loop. Find the 
direction of the induced current in the loop, the direction of the resulting 
magnetic moment of the loop, and the direction of the force the magnet 
exerts on it. Explain your choices.

b. Repeat if the magnet is moved away from the loop.

c. Use these results to explain the following demonstration. A small 
cylindrical magnet is dropped down a long vertical copper tube. It is 
observed that the magnet quickly reaches a terminal speed and takes 
much longer to traverse the tube than does a non-magnetic object.

a. Looking toward the loop from behind the magnet, the field lines pass into the area 
bounded by the loop, and the flux is increasing. By Lenz’s law the induced current 
is counter-clockwise to produce flux in the opposite direction. The magnetic 
moment of this current is toward the magnet, opposite to the field of the magnet. 
The force on the loop is thus away from the stronger field, i.e., a repulsion by the 
magnet. 

b. Now the flux is decreasing, so the induced current is clockwise to produce more 
flux. The magnetic moment is away form the magnet, parallel to its field. The force 
is an attraction, pulling the loop toward the magnet.

c. Induced currents above the falling magnet attract it upwards, those below the 
magnet repel it upwards. The force increases with the speed, so it produces a 
terminal velocity.
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2. Shown in cross section is a long solenoid that 
produces a B-field uniform within its windings and 
zero outside. The current in the windings are varied 
so that B is changing at rate   dB/dt . Take the 
direction of the B-field to be into the page. We are 
interested in the fields at the point indicated.

a. Use the integral form of Faraday’s law to find 
the E-field (magnitude and direction) at the point, if  r > R . [Make use of 
the symmetry.]

b. Repeat for  r < R .

a. Choose a circle about the symmetry axis, passing through the point. By the 
symmetry the induced E-field has the same magnitude at all points on the circle, 
and is tangent to it, so 

 
E ⋅dr∫ = 2πrE . The flux through the circle is that through 

the cross-section, or   Φ = B ⋅πR2 . Faraday’s law gives   2πr ⋅E = πR2 ⋅dB/dt , or 

  E = dB/dt ⋅R2 /2r . The direction (by Lenz’s law) is upward if   dB/dt > 0 , since an 
induced current would run counter-clockwise.

b. Now the flux through the circle is only   Φ = πr2 ⋅B , so we find   E = dB/dt ⋅ r /2 . 
Same direction.

3. Refer to the situation in a problem on the midterm exam, 
concerning a primitive motor. We will explore more fully the 
source of the energy that lifts the massive block.

a. Find the emf   E0  required to hold the block at rest.

b. If the block moves upward at speed v, what is the 
induced back emf  ′E  in the circuit?

c. Taking this into account, what must be the emf 
supplied by the battery to keep the block moving at 
constant speed?

d. The additional emf implies an additional amount of power   ′E I  delivered 
by the battery. Show that it is exactly the power that lifts the block. [Recall 
that power input from a force is P = F ⋅v .] 
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a. The force magnetic on the bar must equal the weight, so 
  IB = mg . But    I = E0 /R , 

so  
    E0 = mgR/B .

b. The motional emf is    ′E = Bv , opposite to the emf of the battery by Lenz’s law.

c. The total emf must be the value of   E0  in (a) because the total force on the bar is still 

zero, so the new emf of the battery must be 
    E0 + Bv .

d. The power supplied by the extra emf is 
   Bv ⋅ I = Bv ⋅ (mg/B) = mgv , which is the 

power needed to lift the block at constant speed. [The magnetic forces can support 
the block but cannot do any work on it.]

4. Shown in perspective is a section of a coaxial cable. 
The inner wire has radius a and the outer thin 
cylindrical sheath has radius b. The section has 
length d. You are to calculate the self inductance of 
this section of the cable, by two methods. 

 Let current I be carried to the right in the inner conductor and back to the left in 
the sheath.

a. What is the B-field in the region between the conductors? What is the 
magnetic energy density  ηm  in that region?

b. Integrate  ηm  over the volume of the region to find the total magnetic 

energy in this section of the cable. [For the volume element   d3r  use a thin 
cylindrical volume of radius r, thickness dr, and length d.]

c. Use the formula for stored energy in an inductor to find L.

 The second method uses the flux rule. Shown is the 
section of the cable in a view from the top.

d. Calculate the magnetic flux through the hatched 
rectangular area shown. [Consider the flux 
through a thin strip of length d and width dr 
parallel to the symmetry axis at distance r from that axis.] 

e. Let the current be changing at rate   dI /dt . Find the induced emf, and use 
it to find L.
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a. The field in the gap (by Ampere’s law) is   B = µ0I /2πr . It is zero outside the cable, 

and we assume it is negligible inside the inner wire. The energy density is 
  

µ0I2

8π 2
1
r2 .

b. We have 
  
U =

µ0I2

8π 2
2πrd ⋅dr

r2a

b
∫ =

µ0I2d
4π

ln(b/a) .

c. Comparing to   U = 1
2 LI2  we find 

  
L =

µ0d
2π

ln(b/a) .

d. The flux is 
  
Φ =

µ0Id
2πra

b
∫ dr = µ0d

2π
ln(b/a) ⋅ I .

e. From the flux rule we have 
   
E = −dΦ/dt = −

µ0d
2π

ln(b/a) ⋅ dI
dt

. Comparing to 

  
E = −L dI

dt
, we find the same result as in (c).

5. One uses Ampere’s law to derive the B-field around a long 
straight wire as follows. Shown is the situation looking along 
the wire in the direction of the current I. By the symmetry the 
B-field lines must be circles around the wire as center, so we 
choose a circle of radius r for our path in the integral form of 
Ampere’s law: 

    B ⋅dr∫ = µ0Ienc . The left side becomes   2πr ⋅B , 

while the right side is simply   µ0I , so we get   B = µ0I /2πr .

 However, if the current is not steady there is a 
problem. Consider a capacitor with circular plates, 
shown in perspective view. The current carries charge 
to the plates. We ask for the B-field at a point in a 
plane passing through the gap between the plates, 
indicated by the dotted line in side view. The situation 
still has axial symmetry, so the field lines are circles 
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around the symmetry axis (the wire). We can repeat the 
analysis given above. But now the current passing 
through the surface bounded by the integration path is 
zero, because no current runs between the plates. We 
conclude that the B-field is zero in this plane. That is 
wrong. You are to show how including the displacement 
current in Ampere’s law solves the problem.

a. Let the plates have area A and at the moment 
shown carry uniform charge Q. What is the E-field in the gap?

b. What is the displacement current density in the gap in terms of I? [Recall 
that   I = dQ/dt .]

c. Show that for a point in the given plane but outside the gap (i.e., at a 
distance from the symmetry axis greater than the radius of the plates) the 
B-field is given by the formula derived above.

d. Find the B-field at a point in the plane but inside the gap.

a. We have   E = σ /ε0 = Q/Aε0 .

b. The density is   ε0 ⋅dE/dt = ε0 ⋅ (1/Aε0 ) ⋅dQ/dt = I /A .

c. Using the usual geometry we have   2πr ⋅B = µ0 ε0 ⋅dE/dt ⋅dA∫ = µ0I , which leads to 

the formula above.

d. For r inside the gap the flux of the displacement current density is 

  ε0 ⋅dE/dt ⋅dA∫ = (I /A) ⋅πr2 , so we find from Ampere’s law   2πr ⋅B = µ0I ⋅ (πr2 /A) , 

or   B = 1
2 µ0I ⋅ r /A .
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6. When the switch is closed in the circuit shown, the current 
rises toward its steady final value  Im .

a. Write the circuit equation (Kirchhoff’s loop rule) and 
arrange it as a differential equation for   I(t) . Solve it 
with the initial condition   I(0) = 0 .

b. Show that the power supplied by the battery (  EI ) is 
equal to the power going to Joule heating in the resistor plus the power 
gong to build the magnetic field energy in the inductor.

a. We have 
   
E − L dI

dt
− IR = 0 . This gives 

  
dI
dt

+
R
L

I = E
L

. The solution is 

   
I(t) = E

R
1 − e−Rt/L( ) .

b. The power to the resistor is   I2R , and the power to the magnetic field is   LI ⋅dI /dt . 

The total is 
   
I ⋅ IR + L ⋅

E
R
⋅
R
L

e−Rt/L⎡
⎣⎢

⎤
⎦⎥
. The quantity in [ ] is in fact  E , which proves 

the claim.
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