
Physics 182

Assignment 3

1.
 A rectangular slab conductor carries uniform 
current I as shown. It is in a uniform B-field directed 
across the slab as shown. We are interested in the 
effect of the B-field on the microscopic particles 
whose flow constitutes the current.

a.
 Assume those particles carry positive charge. 
Which direction will they be deflected by the B-field?

By the Lorentz force   F = qv × B , if the moving charges are positive and v is to the right, 

the deflection is downward.

b.
 The deflection causes an accumulation of positive charge on one surface of 
the conductor and negative charge on the other, creating an E-field.. What 
direction is that field in this case?

Since positive charge accumulates on the bottom, E is upward.

c.
 The force on the moving charges due to the E-field balances that due to the 
B-field when equilibrium is established. What magnitude must the E-field 
have if the charges are moving with speed v?

We must have  qE = qvB , or  E = vB .

d.
 What will be the potential difference between the top and bottom of the 
slab? Which surface is at higher potential?

Assuming the E-field is uniform,  ΔV = vBt , with higher potential at the bottom.

e.
 How would things change if the charge carriers were negative, and 
moving in the direction opposite to I?

With negative charge, v would be to the left, deflecting the charges down again. This 
would mean the E-field is downward, and the higher potential would be at the bottom. 
{This is in fact what experiment (the Hall effect) shows, because the moving charges are 
electrons. The potential difference is very small because the speed v is very small.]
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2.
 The B-field on the axis of a single circular loop of wire carrying a current is 
worked out in G. That formula can be used to find the field along the axis of a 
solenoid, which is a closely wound coil of circular cross-section as shown. 

a.
 
Let the coil be wrapped with n turns per unit length. Then the amount of 
current in a strip around the coil of width dz will be  dI = I ⋅n ⋅dz . Integrate 
over z from one end of the coil to the other to find the field in terms of the 
two angles shown.

The strip makes a contribution 
  
dB =

µ0nI
2

R2dz
(R2 + z2 )3/2 . To integrate this we change the 

variable to θ , where   tanθ = R/z . Then   R/ R2 + z2 = sinθ  and   dz = −(R/sin2θ)dθ . 

The integral becomes 
  
B = −

µ0nI
2

sinθ dθ
θ1

θ2∫ =
µ0nI

2
(cosθ2 − cosθ1) .

b.
 Show that if the solenoid is infinite (so the field point has to be inside it) 
the magnitude of the field is   µ0nI .

In that case  θ2 = 0  and  θ1 = π , so we get   B = µ0nI .

3.
 Use Ampere’s law in integral form to find the field inside a toroidal coil. (This is 
worked out in G using the Biot-Savart law). Show that the field outside the coil is 
zero.

Use  circular path inside the coil. By the symmetry, B is tangent to this circle and has the 
same magnitude at all points. So 

    B ⋅dr∫ = B dr = 2πr ⋅B∫ . The linked current is NI, 

where N is the number of turns. Ampere’s law gives 
  
B =

µ0NI
2πr

. If the path is outside the 

coil, the current linked is zero, so the field is zero.
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4.
 Find the vector potential A at point 
P for a finite straight section of wire 
carrying current I as shown. The 
ends of the wire segment are at   z1  

and   z2 . Use cylindrical coordinates 

  (r ,φ ,z)  and make the usual 

replacement    j( ′r )d3 ′r → I dl  for situations involving wires.

We have 
  
Az(r) = µ0I

4π
dz

z2 + r2z1

z2∫ =
µ0I
4π

ln z + z2 + r2( )
z1

z2

=
µ0I
4π

ln
z2 + z2

2 + r2

z1 + z1
2 + r2

.

5.
 Take your answer to the above question and show that it leads to the B-field 
derived from the Biot-Savart law in Example 5 in Chap 5 of G. [Use the fact that 
the B-field lines are circles around the z-axis, so B has only a φ -component. Look 
up the formulas for the curl in cylindrical coordinates in G.]

The only component of the curl that is non-zero is 
 
Bφ = −

∂Az
∂r

. Let   f (z,r) = z + z2 + r2 . 

Then 
  

∂ ln( f )
∂r

=
1
f
∂f
∂r

. Using the angles shown below we find after some manipulation 

that 
  

1
f (z1 ,r)

∂f (z1 ,r)
∂r

=
1 − sinθ1

r
, and similarly for   z2 . Thus 

  
Bφ (r) = µ0

4π
I
r

(sinθ2 − sinθ1) .
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6.
 Since there is no magnetic equivalent of a point charge, the most elementary 
source of a magnetic field is a dipole. As is shown in Sec 5.4 of G, the vector 
potential of such a dipole, denoted by m, is given by


 

   
A(r) = µ0

4π
m × r

r3 .


 Show that the B-field in this case is 


 

   
B(r) = µ0

4πr5 [3(m ⋅ r)r − m r2] .

This is just a matter of carrying out the derivatives. Use the identity for   ∇ × (A × B)  
given on the inside cover of G, and the fact that m is a constant.
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7.
 A loop of wire carrying a current I creates a magnetic moment given in general 
by


 

    m = 1

2 I ′r × dl∫ .



 As is shown in G, if the loop lies in a plane, then 
    
1
2 ′r × dl∫ = a , where a is a 

vector perpendicular to the plane of the loop, with magnitude equal to the loop’s 
area. (The direction is given by a right hand rule: see G.)

a.
 Find the magnetic moment (magnitude and direction) of a 
circular loop of wire, of radius R, carrying current I 
counter-clockwise as seen from above.

Here  ′r  is perpendicular to   dl , and the magnitude of   ′r × dl  is   R
2 dθ . The integral over 

the angle gives  2π  and we have    m = πR2I a .

b.
 Find the magnetic moment of a ring of total charge Q, uniformly 
distributed, of radius R, which rotates about its symmetry axis at angular 
speed ω . [It is like the current in (a).]

This is the same as (a), but we must find the current. The total charge Q passes a point 
in time equal to the period of the rotation, so   I = Q/T = Q ⋅ω /2π . The magnetic 

moment is    m = 1
2 R2Qω a .

c.
 Suppose the ring in (b) has mass m. What is the ratio of its magnetic 
moment to its angular momentum as it rotates? [This is called the 
gyromagnetic ratio.]

The angular momentum has magnitude   L = mR2ω , so the gyromagnetic ratio is   Q/2m .
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