Physics 182

Assignment 3

1. A rectangular slab conductor carries uniform current I as shown. It is in a uniform B-field directed across the slab as shown. We are interested in the effect of the B-field on the microscopic particles whose flow constitutes the current.

a. Assume those particles carry positive charge.

Which direction will they be deflected by the B-field?
By the Lorentz force $\mathbf{F}=q \mathbf{v} \times \mathbf{B}$, if the moving charges are positive and \mathbf{v} is to the right, the deflection is downward.
b. The deflection causes an accumulation of positive charge on one surface of the conductor and negative charge on the other, creating an E-field.. What direction is that field in this case?

Since positive charge accumulates on the bottom, E is upward.
c. The force on the moving charges due to the E-field balances that due to the B-field when equilibrium is established. What magnitude must the E-field have if the charges are moving with speed v ?

We must have $q E=q v B$, or $E=v B$.
d. What will be the potential difference between the top and bottom of the slab? Which surface is at higher potential?

Assuming the E-field is uniform, $\Delta V=v B t$, with higher potential at the bottom.
e. How would things change if the charge carriers were negative, and moving in the direction opposite to I ?

With negative charge, \mathbf{v} would be to the left, deflecting the charges down again. This would mean the E-field is downward, and the higher potential would be at the bottom. \{This is in fact what experiment (the Hall effect) shows, because the moving charges are electrons. The potential difference is very small because the speed v is very small.]
2. The B-field on the axis of a single circular loop of wire carrying a current is worked out in G. That formula can be used to find the field along the axis of a solenoid, which is a closely wound coil of circular cross-section as shown.

a. Let the coil be wrapped with n turns per unit length. Then the amount of current in a strip around the coil of width $d z$ will be $d I=I \cdot n \cdot d z$. Integrate over z from one end of the coil to the other to find the field in terms of the two angles shown.

> The strip makes a contribution $d B=\frac{\mu_{0} n I}{2} \frac{R^{2} d z}{\left(R^{2}+z^{2}\right)^{3 / 2}}$. To integrate this we change the variable to θ, where $\tan \theta=R / z$. Then $R / \sqrt{R^{2}+z^{2}}=\sin \theta$ and $d z=-\left(R / \sin ^{2} \theta\right) d \theta$. The integral becomes $B=-\frac{\mu_{0} n I}{2} \int_{\theta_{1}}^{\theta_{2}} \sin \theta d \theta=\frac{\mu_{0} n I}{2}\left(\cos \theta_{2}-\cos \theta_{1}\right)$.
b. Show that if the solenoid is infinite (so the field point has to be inside it) the magnitude of the field is $\mu_{0} n I$.

In that case $\theta_{2}=0$ and $\theta_{1}=\pi$, so we get $B=\mu_{0} n I$.
3. Use Ampere's law in integral form to find the field inside a toroidal coil. (This is worked out in G using the Biot-Savart law). Show that the field outside the coil is zero.

Use circular path inside the coil. By the symmetry, B is tangent to this circle and has the same magnitude at all points. So $\oint \mathbf{B} \cdot d \mathbf{r}=B \oint d r=2 \pi r \cdot B$. The linked current is NI, where N is the number of turns. Ampere's law gives $B=\frac{\mu_{0} N I}{2 \pi r}$. If the path is outside the coil, the current linked is zero, so the field is zero.
4. Find the vector potential \mathbf{A} at point P for a finite straight section of wire carrying current I as shown. The ends of the wire segment are at z_{1} and z_{2}. Use cylindrical coordinates
 (r, ϕ, z) and make the usual replacement $\mathbf{j}\left(r^{\prime}\right) d^{3} r^{\prime} \rightarrow I d \mathbf{l}$ for situations involving wires.

We have $A_{z}(r)=\frac{\mu_{0} I}{4 \pi} \int_{z_{1}}^{z_{2}} \frac{d z}{\sqrt{z^{2}+r^{2}}}=\left.\frac{\mu_{0} I}{4 \pi} \ln \left(z+\sqrt{z^{2}+r^{2}}\right)\right|_{z_{1}} ^{z_{2}}=\frac{\mu_{0} I}{4 \pi} \ln \frac{z_{2}+\sqrt{z_{2}^{2}+r^{2}}}{z_{1}+\sqrt{z_{1}^{2}+r^{2}}}$.
5. Take your answer to the above question and show that it leads to the B-field derived from the Biot-Savart law in Example 5 in Chap 5 of G. [Use the fact that the B-field lines are circles around the z-axis, so \mathbf{B} has only a ϕ-component. Look up the formulas for the curl in cylindrical coordinates in G.]

The only component of the curl that is non-zero is $B_{\phi}=-\frac{\partial A_{z}}{\partial r}$. Let $f(z, r)=z+\sqrt{z^{2}+r^{2}}$. Then $\frac{\partial \ln (f)}{\partial r}=\frac{1}{f} \frac{\partial f}{\partial r}$. Using the angles shown below we find after some manipulation that $\frac{1}{f\left(z_{1}, r\right)} \frac{\partial f\left(z_{1}, r\right)}{\partial r}=\frac{1-\sin \theta_{1}}{r}$, and similarly for z_{2}. Thus $B_{\phi}(r)=\frac{\mu_{0}}{4 \pi} \frac{I}{r}\left(\sin \theta_{2}-\sin \theta_{1}\right)$.

6. Since there is no magnetic equivalent of a point charge, the most elementary source of a magnetic field is a dipole. As is shown in Sec 5.4 of G , the vector potential of such a dipole, denoted by \mathbf{m}, is given by

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{r}}{r^{3}} .
$$

Show that the B-field in this case is

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi r^{5}}\left[3(\mathbf{m} \cdot \mathbf{r}) \mathbf{r}-\mathbf{m} r^{2}\right] .
$$

This is just a matter of carrying out the derivatives. Use the identity for $\nabla \times(\mathbf{A} \times \mathbf{B})$ given on the inside cover of G, and the fact that \mathbf{m} is a constant.
7. A loop of wire carrying a current I creates a magnetic moment given in general by

$$
\mathbf{m}=\frac{1}{2} I \oint \mathbf{r}^{\prime} \times d \mathbf{l}
$$

As is shown in G, if the loop lies in a plane, then $\frac{1}{2} \oint \mathbf{r}^{\prime} \times d \mathbf{l}=\mathbf{a}$, where \mathbf{a} is a vector perpendicular to the plane of the loop, with magnitude equal to the loop's area. (The direction is given by a right hand rule: see G.)
a. Find the magnetic moment (magnitude and direction) of a circular loop of wire, of radius R, carrying current I counter-clockwise as seen from above.

Here \mathbf{r}^{\prime} is perpendicular to $d \mathbf{l}$, and the magnitude of $\mathbf{r}^{\prime} \times d \mathbf{l}$ is $R^{2} d \theta$. The integral over the angle gives 2π and we have $\mathbf{m}=\pi R^{2} I \mathbf{a}$.
b. Find the magnetic moment of a ring of total charge Q, uniformly distributed, of radius R, which rotates about its symmetry axis at angular speed ω. [It is like the current in (a).]

This is the same as (a), but we must find the current. The total charge Q passes a point in time equal to the period of the rotation, so $I=Q / T=Q \cdot \omega / 2 \pi$. The magnetic moment is $\mathbf{m}=\frac{1}{2} R^{2} Q \omega \mathbf{a}$.
c. Suppose the ring in (b) has mass m. What is the ratio of its magnetic moment to its angular momentum as it rotates? [This is called the gyromagnetic ratio.]

The angular momentum has magnitude $L=m R^{2} \omega$, so the gyromagnetic ratio is $Q / 2 m$.

