
Physics 182

Electrostatics I — Applications

Field lines.

Since fields are themselves invisible, those trying to “visualize” them have resorted to 
geometric mapping. For a scalar field it is simple enough: one draws curves through 
points having the same value of the field, making a new curve each time the value 
increases by a chosen amount. For the potential field these curves are called 
equipotentials. Where they crowd together the potential is changing quickly with 
location; where they are sparse, it is changing very little.

A vector field presents a different kind of mapping problem: one needs to deal with 
both the magnitude and direction at each point. One common map is to draw a curve 
tangent to the direction of the field, attach an arrow to show that direction, and let the 
“density” of such curves indicate the magnitude. These are field lines.

For more detail about the lines of the electrostatic field, and their use in dealing with the 
integral form of Gauss’s law, see G, Sec 2.2. Here we give some general features. Some 
of these apply only to the E-field set up by static charges.

• Since the E-field is directed away from positive charge and toward negative 
charge (the directions of the force on a positive test charge) we can say that field 
lines start on positive charge and end on negative charge. They do not close on 
themselves.

• As one follows a field line in the direction of the arrow, the potential falls. As one 
moves against the arrow, the potential rises. Put another way, as one moves away 
from positive charge, or toward negative charge, the potential falls, etc.

• Equipotentials cross field lines at right angles.

• Because a conductor is an equipotential region, field lines intersect the surface of 
a conductor at a right angle.

• Field lines do not penetrate into a conductor, because the E-field is ero within the 
conductor. (Actually the field does not drop discontinuously to zero, but it 
becomes negligible over a distance of only a few atomic diameters.)

Field line mapping is not a precise method of calculating anything, but provides some 
intuition about the field. It has a useful connection to the flux of the field, and to Gauss’s 
law. In a rough sense, the flux through a surface “counts” the number of field lines. In 
considering Gauss’s law, it’s easy to see why a positive charge within the volume leads 
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to a positive contribution to the flux: the field lines emanate from the enclosed charge, 
passing outward through the surface and “measuring” the outward flux. Negative 
charge within the volume leads to lines passing inward through the surface, and thus to 
negative flux. Lines from charges not located within the surface pass inward at one part 
of the surface and out again at another part; the net flux is zero.

Use of Gauss’s law to find the field.

In the integral form of Gauss’s law, 
    E ⋅dA∫ = 4πkQenc , E is part of an integrand, so this 

formula is not very useful for calculating E directly. But in some cases of high symmetry 
one can choose the Gaussian surface cleverly enough that E will be constant (or zero) 
and can be pulled through the integral sign. Then one can solve for it.

The most important case is that of spherical symmetry. This means that there is a point 
(the center of symmetry) about which the physical situation is the same in all directions. 
An example is a sphere of charge for which the density may depend on the distance one 
goes from the sphere’s center, but not on the direction goes.

In such a case the lines of the E-field are straight lines emanating radially frm the 
symmetry center. If the charge is positive, the lines are directed outward from the 
center; if negative, inward.

To take advantage of this symmetry in using Gauss’s law, one chooses a spherical 
Gaussian surface. At all points on this sphere E will have the same magnitude, E. Since 
  dA  is radially outward, E is either parallel (for positive charge) or opposite (for 
negative charge) to   dA . So   E ⋅dA = Er dA , where  Er  is the outward radial component of 

E — which is the only component it has, so  Er = ±E . If the Gaussian sphere has radius r 

then we have 
    E ⋅dA∫ = Er dA∫ = 4πr2 ⋅Er .

Call the amount of charge enclosed in this sphere   Q(r) . Then from Gauss’s law we find


  
Er (r) = k Q(r)

r2 .

This is exactly like the field of a single point charge at the origin, with charge equal to 
  Q(r) , i.e., to the amount of charge enclosed in a sphere of radius r about the center of 
symmetry. So the problem is reduced to finding   Q(r) . All spherically symmetric situations 
are like this.

The symmetry also applies to the potential. The equipotentials are concentric spherical 
surfaces with centers at the symmetry center.
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Example 1. Find the E-field and potential at distance r from the center 
of a solid non-conducting sphere of radius R in which a total amount of 
positive charge Q is uniformly distributed.

We use the result above. For  r ≥ R  the charge enclosed is 

  Q(r) = Q(R) = Q . Therefore we have


  
Er = k Q

r2  for  r ≥ R .

For points inside the sphere ( r < R ) we must calculate   Q(r) . Since the charge is 
uniformly distributed, the ratio   Q(r)/Q  is simply the ratio of the volumes of shpers of 

radius r and R, which is   r
3 /R3 . So we find


  
Er = kQ r

R3  for  r < R .

The sign of  Er  is the sign of Q, so E is outward (inward) for positive (negative) Q.

Now the potential. As is customary, we will choose at infinite distance. We use the 
definition and the fact that if we choose a path along a radial line then    E  dr . So


  
V(r) = − Er dr

∞

r
∫ .

Because  Er  changes when r becomes less than R, the integral may have two parts. 

Outside the sphere it is easy:


  
V(r > R) = −kQ 1

r2 dr
∞

r
∫ =

kQ
r

.

So outside the sphere both the E-field and the potential are just those of a point charge 
at the origin with charge Q. Inside the sphere we have to break the integral into a part 
from ∞  to R, plus a part from R to r. The former is just   kQ/R , so we have


  
V(r < R) = kQ

R
−

kQ
R3 r dr

R

r
∫ =

kQ
2R

3 − r2

R2

⎛

⎝
⎜

⎞

⎠
⎟ .

Let us check that the answer gives back   E = −∇V . For this it is helpful to use spherical 
coordinates   (r ,θ ,φ) . (The various vector derivatives are given on the inside front cover 
of G.) Since V depends only on r, we see that only the radial component of the gradient 

contributes (as expected, since we know E is radially directed). We have 
 
Er = −

∂V
∂r

.

 r

 R
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Outside the sphere we find 
  
Er = −kQ ∂

∂r
(r−1) = kQ

r2 . Inside we find 

  
Er =

kQ
2R3

∂
∂r

(r2 ) = kQ r
R3 . These are the formulas we obtained from Gauss’s law.

Example 2. We have a system of two conductors, a small solid 
sphere of radius a and a larger spherical shell with inner radius b 
and outer radius c. The inner sphere carries positive charge Q. The 
total charge on the shell is zero. Find the E-field and the potential 
at all distances from the center of symmetry, and find the charges 
on the two surfaces of the shell.

Because all charges are at rest there is no charge anywhere except 
on the surfaces of the conductors, and whatever charge is on the 
inner surface of the shell, equal and opposite charge is on the outer surface. Because of 
the symmetry the charge on any of these surfaces is distributed uniformly, with the 
same charge per unit area everywhere on the surface. Finally, the E-field is zero within 
the inner sphere and between the inner and outer surfaces of the shell.

We use the general formula for spherical symmetry, starting outside the shell ( r > c ). 
Here   Q(r) = Q  so we have


  
Er =

kQ
r2  for  r > c .

Of course for  b < r < c the field is zero. In the space between the shell and the sphere 

  Q(r) = Q  again, so we find


  
Er =

kQ
r2  for  a < r < b .

Again, for  r < a  the field is zero.

That’s the easy part. Outside the shell everything is like a point charge at the origin with 
charge Q, so we have


  
V(r > c) = kQ

r
.

From c in to b there is no E-field, so the potential does not change. Therefore

 V (b < r < c) = kQ
c

.

 a
 b

 c
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In the gap between the conductors we have 
  
V(r) =V(b) − Er dr

b

r
∫ =

kQ
c

− kQ 1
r2 dr

b

r
∫ . This 

gives


  
V(a < r < b) = kQ 1

r
−

1
b
+

1
c

⎛
⎝⎜

⎞
⎠⎟

.

For  r < a  the potential remains at it value at a, so


  
V(r < a) = kQ 1

a
−

1
b
+

1
c

⎛
⎝⎜

⎞
⎠⎟

.

Now about the surface charges. To find the charge on the surface at b we use Gauss’s 
law and the fact that the field is zero within the conducing material. Use a Gaussian 
surface with radius between b and c. This surface lies entirely within the conductin 
material, so there is no field and therefore no flux through this surface. By Gauss’s law 
the total enclosed charge must be zero. That charge consists of the charge Q on the 
sphere plus whatever charge is on the surface at b. The latter must therefore be  −Q . It 
follows that charge on the surface at c is  +Q .

This is easy to visualize in terms of field lines. The lines cannot penetrate the shell, so 
every line that emanates from the charge at a must terminate at b. For this to happen the 
charges on those surfaces must be equal and opposite in sign.

Gauss’s law can also be used for cases of axial symmetry, situations in which rotation 
about a straight line (axis) changes nothing physically. In that case one uses a cylinder 
around the symmetry axis as a Gaussian surface. See Example 3 of Sec. 2.2 in G.

Grounding and shielding.

The fact that the static E-field cannot penetrate a conductor has many practical 
applications. So does the fact that all points on a conductor are at the same potential if 
all charges are at rest.

The earth is a very large conductor, and any other conductor attached electrically to the 
earth comes to the potential of the earth. This makes the earth’s potential a useful one to 
take to be zero, measuring all other potential relative to it. Attaching a conductor in a 
system one is analyzing is called grounding. (The British are more precise: they call it 

“earthing”.) The circuit diagram icon for grounding is the symbol 
 

.

 Example 3. Suppose the conducting shell in the previous example is grounded. Then its 
potential will be zero (by choice of the earth to have   V = 0 ). How does that happen?
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We saw that the charge on the outer surface of the shell (at  r = c ) was +Q. If we connect 
the shell to the earth electrically, that charge will spread out all over the earth (because 
of the repulsion of like charges), making the amount on the surface of the shell 
essentially zero. So there are no sources on the outer surface, which means there is no E-
field outside the shell, and consequently no change in potential between infinity and the 
outer surface of the shell. This means the potential is zero everywhere outside the shell.

Now consider the situation if we bring up a point 
charge q outside the shell, as shown. What happens?

We can give qualitative answers by considering the 
field lines. Let q be positive. The field lines emanate 
from it. They must either terminate on negative 
charges or go off to infinity. The earth will supply 
some negative charge to put on the outer surface of 
the shell, which will terminate some of the field lines 
from q. Because the attractive force is greater at closer 
distance, most of the negative charge on the outer surface of the shell will accumulate 
on the side nearest q.

But what changes inside the shell because of the presence of q? Nothing. The field lines 
from the inner sphere still terminate on the negative charges on the inner surface of the 
shell. The distribution of charge inside the shell, which resulted in making the potential 
on the shell zero, will still have that effect. No change is necessary, so none occurs.

In effect, the grounded shell divides the world into two non-interacting parts: inside the 
shell and outside the shell. This is the phenomenon of shielding.

Mathematically this illustrates a uniqueness theorem: if a certain distribution of charges 
makes the potential at points on a closed surface have certain values, then this is the 
only distribution of charges that can have that effect. In other words, given a certain 
configuration of conductors, and given the value of the potential at all points on a 
surface enclosing the system, there is only one possible set of charges on the conductors.

In this case the system is the shell and the sphere inside it, the surface is any surface 
embedded in the shell, on which we know the potential is zero everywhere because the 
conductor is grounded. Without the external charge we know how the charges inside 
the shell arrange themselves. The presence of the external charge does not change the 
potential on the embedded surface. Therefore its presence does not change the 
distribution of charge on anything inside the shell.

The same theorem can be applied to the system consisting of the outer surface of the 
shell and the world outside that. If we hold q fixed and move the inner sphere with 
charge Q to a different location in the cavity within the shell, there will be no effect on 
the charge distribution on the outer surface of the shell, and no change in the force 

 

 q Q
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exerted on q by the shell. (There will be changes in the region inside of the shell: the 
field in the cavity will no longer be spherically symmetric, nor will the charge 
distributions on the inner sphere and the inner surface of the shell.) The grounded 
conductor truly divides the world into non-interacting parts.

Capacitors as energy storage devices.

Because the electric field possesses energy, one can make energy storage devices in 
which the energy is located in an electric field. The most common such device is a 
capacitor. This consists of two conductors separated from each other. Charge is put on 
each of them, usually equal and opposite charge so the field is strongest in the region 
between them.

Because of this E-field, there is a potential difference between the conductors, which we 
will call  ΔV . Let the charge on the positive conductor be Q. Then the capacitance of the 
system (a measure of its effectiveness in storing energy) is defined by

   C = Q/ΔV .

Let us find the energy stored. Suppose charge q is already on the positive conductor, 
and –q on the negative conductor, while the potential difference is  ΔV . To increase the 
charge we move an amount  dq  from the negative to the positive conductor. Let the 

potential of the negative plate be held to zero (perhaps by grounding it). Then the 
removal of  dq  from it makes no change in the potential energy, but adding  dq  to the 

positive conductor at potential  ΔV  increases the potential energy by the amount 

 dq ⋅ ΔV . This is therefore the amount of work that must be done by some external agent 

(perhaps a battery) to move the charge. In any case, we have an increase in potential 
energy  dU = dq ⋅ ΔV . But   ΔV = q/C , so we have 


  
dU =

1
C

qdq .

If we define   U = 0  when there is no charge on the conductors, then the potential energy 
when the positive one has charge Q is given by integrating this expression:


  
U =

Q2

2C
.

Alternatively, using  Q = CΔV , we have

   U = 1
2 C ⋅ ΔV 2 .
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Since in general  ΔV  is proportional to Q, C is determined only by the nature of the 
configuration of conductors — and, as we will see, the properties of the space around 
them.

Example 4. In a few cases of simple geometry one can calculate 
C easily. In introductory courses one usually works out the 
case of two parallel flat plates, as shown. Let the plates have 
area A and be separated by distance d. Let them be charged as 
shown. What is  ΔV ? The simplest approach is to find E first.

One usually makes some simplifying assumptions. If d is small compared to the 
dimensions of the plates, then between them (where E is largest by far) one uses the 
field of an infinite plate, which one can get from Gauss’s law (see Examples 4 and 5 in 
Chap 2 of G):   E = σ /ε0 , where   σ = Q/A  is the area charge density on the positive 

plate. Then we have, by integrating over a path from the negative to the positive plate: 

  ΔV = Ed = (Q/Aε0 ) ⋅d . Then   C = Q/ΔV  gives   C = ε0A/d .

This is an approximation, of course. It assumes that E is uniform in the region between 
the plates, and that it drops to zero discontinuously at the edge of that region. Neither is 
strictly true, and the second is a violation of the field equation   ∇ × E = 0 . But it serves 
the pedagogical purpose.

In this approximation it is easy to calculate the stored energy from the energy density 
formula   ηe =

1
2 ε0E2 . We simply integrate and use the “fact” that E is uniform between 

the plates and zero elsewhere:

   U = ηed
3r∫ = ηe ⋅ (Ad) = 1

2 ε0(ΔV /d)2 ⋅ (Ad) = 1
2 (ε0A/d) ⋅ ΔV 2 = 1

2 C ⋅ ΔV 2 .

In principle one can always find the stored energy in the E-field this way, but it’s not 
usually this easy.

Capacitors have more uses in electronic circuits than as simple storage devices. But their 
fundamental principle is always that an electric field possesses energy.
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