Formulas for PHY 141

Kinematics		
Constant acceleration	$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$ $\mathbf{v} = \mathbf{v}_0 + \mathbf{a} t$ $v^2 = v_0^2 + 2\mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0)$	
Circular motion	$\mathbf{a} = \mathbf{a}_r + \mathbf{a}_t$ $a_r = v^2 / r = r\omega^2$ $a_t = r\alpha, \ v = r\omega$	
Dynamics		
Gravity near earth's surface	$\mathbf{F}_{g} = m\mathbf{g}$	
Elastic force	F = -kx	
Friction	$f_k = \mu_k N$ $f_s \le \mu_s N$	
Effective gravity	$\mathbf{g}_{eff} = \mathbf{g} - \mathbf{a}$	
Potential Energy		
Gravity near earth's surface	U = mgy	
Elastic force	$U = \frac{1}{2}kx^2$	
Rotational Motion		
Circular motion vectors	$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$	
Radial acceleration	$\mathbf{a}_r = -\omega^2 \mathbf{r}$	
Tangential acceleration	$\mathbf{a}_t = \mathbf{\alpha} \times \mathbf{r}$	
Moment of inertia (particle)	$I = mr^2$	
Rotational kinetic energy	$K_{rot} = \frac{1}{2}I\omega^2$	
Symmetric rigid body	$\tau = I\alpha$ $\mathbf{L} = I\omega$	

Rolling $v_{CM} = R\omega$ $a_{CM} = R\alpha$ Angular momentum (particle) $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ Gravity and Satellite MotionPoint masses or spherically $F = G \frac{Mm}{r^2}$			
momentum (particle) $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ Gravity and Satellite MotionPoint masses or $F = G \frac{Mm}{2}$			
Point masses or $F = G \frac{Mm}{2}$			
Point masses or $F = G \frac{Mm}{r^2}$	Gravity and Satellite Motion		
symmetric objects $U = -G \frac{Mm}{r}$			
Planet with small satellite in orbit $E = -G \frac{Mm}{2a}$			
Oscillations (SHM)			
Displacement $x = A\cos(\omega t + \phi)$			
Force $F = -m\omega^2 x$			
Potential Energy $U = \frac{1}{2}m\omega^2 x^2$			
Total energy $E = \frac{1}{2}m\omega^2 A^2$			
Mass on ideal spring $\omega = \sqrt{k/m}$			
Wave Motion			
Harmonic wave $y = A\cos(kx - \omega t + \delta)$ $k = 2\pi / \lambda, \ \omega = 2\pi f$ $v = f\lambda = \omega / k$)		
Interference, waves of equal $I = 2I_0(1 + \cos \delta)$ intensity			
Phase difference due to path difference $\delta = k\Delta x$			
Loudness level $\beta = 10 \log_{10}(I/I_0)$			

Formulas for PHY 141

Doppler effect, source chasing fleeing receiver	$f = f_0 \frac{v - v_R}{v - v_S}$	
Standing wave, string fixed at both ends, pipe open at both ends	$f_n = nf_1, n = 1, 2, 3,$ $f_1 = v / 2L$	
Standing wave, string fixed at one end, pipe open at one end	$f_n = nf_1, n = 1, 3, 5,$ $f_1 = v / 4L$	
Wave in string	$v = \sqrt{T / \mu}$	
Beat frequency	$f_B = \left f_2 - f_1 \right $	
Approximations		
Small angles (radians)	$\sin\theta \approx \tan\theta \approx \theta$ $\cos\theta \approx 1$	
Binomial approximation	$(1+x)^n \approx 1+nx$ $ x \ll 1$	
Numerical Constants		
Gravity near earth's surface	$g \approx 9.81 \text{ m/s}^2$	
Gravitation constant	$G = 6.67 \times 10^{-11}$ (SI units)	
Earth's mass	$M_E = 5.98 \times 10^{24} \text{ kg}$	
Earth's radius	$R_E = 6.37 \times 10^6 \text{ m}$	
Earth-moon distance	$3.82{ imes}10^8$ m	
Earth=sin distance	$1.50\! imes\!10^{11}$ m	

De	erivatives		
Powers	$\frac{d}{dx}x^n = nx^{n-1},$ $\frac{d}{dx}\ln x = \frac{1}{x}$		
Exponentials	$\frac{d}{dx}e^{ax} = ae^{ax}$		
Trigonometry	$\frac{d}{dx}\sin ax = a\cos ax,$ $\frac{d}{dx}\cos ax = -a\sin ax$		
Integrals			
Powers	$\int x^n dx = \frac{x^{n+1}}{n+1},$ $\int \frac{1}{x} dx = \ln x$		
Exponentials	$\int e^{ax} dx = \frac{1}{a} e^{ax}$		
Trigonometry	$\int \sin ax dx = -\frac{1}{a} \cos ax,$ $\int \cos ax dx = \frac{1}{a} \sin ax$		
Trig	Trigonometry		
General	$\sin\theta / \cos\theta = \tan\theta,$ $\sin^2\theta + \cos^2\theta = 1$		
Two angles	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha,$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$		
Double angles	$\sin 2\theta = 2\sin\theta\cos\theta,$ $\cos 2\theta = \cos^2\theta - \sin^2\theta$		
Logarithms			
General	$\ln a + \ln b = \ln(ab),$ $\ln a - \ln b = \ln(a / b)$		