Formulas for PHY 141

Kinematics	
Constant acceleration	$\begin{aligned} & \mathbf{r}=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2} \\ & \mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t \\ & v^{2}=v_{0}^{2}+2 \mathbf{a} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right) \end{aligned}$
Circular motion	$\begin{aligned} & \mathbf{a}=\mathbf{a}_{r}+\mathbf{a}_{t} \\ & a_{r}=v^{2} / r=r \omega^{2} \\ & a_{t}=r \alpha, v=r \omega \end{aligned}$
Dynamics	
Gravity near earth's surface	$\mathbf{F}_{g}=m \mathbf{g}$
Elastic force	$F=-k x$
Friction	$\begin{aligned} & f_{k}=\mu_{k} N \\ & f_{s} \leq \mu_{s} N \end{aligned}$
Effective gravity	$\mathbf{g}_{\text {eff }}=\mathbf{g}-\mathbf{a}$
Potential Energy	
Gravity near earth's surface	$U=m g y$
Elastic force	$U=\frac{1}{2} k x^{2}$
Rotational Motion	
Circular motion vectors	$\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$
Radial acceleration	$\mathbf{a}_{r}=-\omega^{2} \mathbf{r}$
Tangential acceleration	$\mathbf{a}_{t}=\boldsymbol{\alpha} \times \mathbf{r}$
Moment of inertia (particle)	$I=m r^{2}$
Rotational kinetic energy	$K_{\text {rot }}=\frac{1}{2} I \omega^{2}$
Symmetric rigid body	$\begin{aligned} & \tau=I \boldsymbol{\alpha} \\ & L=I \omega \end{aligned}$

Rolling	$\begin{aligned} v_{C M} & =R \omega \\ a_{C M} & =R \alpha \end{aligned}$
Angular momentum (particle)	$\mathbf{L}=\mathbf{r} \times \mathbf{p}$
Gravity and Satellite Motion	
Point masses or spherically symmetric objects	$\begin{aligned} & F=G \frac{M m}{r^{2}} \\ & U=-G \frac{M m}{r} \end{aligned}$
Planet with small satellite in orbit	$E=-G \frac{M m}{2 a}$
Oscillations (SHM)	
Displacement	$x=A \cos (\omega t+\phi)$
Force	$F=-m \omega^{2} x$
Potential Energy	$U=\frac{1}{2} m \omega^{2} x^{2}$
Total energy	$E=\frac{1}{2} m \omega^{2} A^{2}$
Mass on ideal spring	$\omega=\sqrt{k / m}$
Wave Motion	
Harmonic wave	$\begin{aligned} & y=A \cos (k x-\omega t+\delta) \\ & k=2 \pi / \lambda, \omega=2 \pi f \\ & v=f \lambda=\omega / k \end{aligned}$
Interference, waves of equal intensity	$I=2 I_{0}(1+\cos \delta)$
Phase difference due to path difference	$\delta=k \Delta x$
Loudness level	$\beta=10 \log _{10}\left(I / I_{0}\right)$

Formulas for PHY 141

Doppler effect, source chasing fleeing receiver	$f=f_{0} \frac{v-v_{R}}{v-v_{S}}$
Standing wave, string fixed at both ends, pipe open at both ends	$f_{n}=n f_{1}, n=1,2,3, \ldots$ $f_{1}=v / 2 L$
Standing wave, string fixed at one end, pipe open at one end	$f_{n}=n f_{1}, n=1,3,5, \ldots$ $f_{1}=v / 4 L$
Wave in string	$v=\sqrt{T / \mu}$
Beat frequency	$f_{B}=\left\|f_{2}-f_{1}\right\|$

Derivatives	
Powers	$\begin{aligned} & \frac{d}{d x} x^{n}=n x^{n-1}, \\ & \frac{d}{d x} \ln x=\frac{1}{x} \end{aligned}$
Exponentials	$\frac{d}{d x} e^{a x}=a e^{a x}$
Trigonometry	$\begin{aligned} & \frac{d}{d x} \sin a x=a \cos a x \\ & \frac{d}{d x} \cos a x=-a \sin a x \end{aligned}$
Integrals	
Powers	$\begin{aligned} & \int x^{n} d x=\frac{x^{n+1}}{n+1} \\ & \int \frac{1}{x} d x=\ln x \end{aligned}$
Exponentials	$\int e^{a x} d x=\frac{1}{a} e^{a x}$
Trigonometry	$\begin{aligned} & \int \sin a x d x=-\frac{1}{a} \cos a x, \\ & \int \cos a x d x=\frac{1}{a} \sin a x \end{aligned}$
Trigonometry	
General	$\begin{aligned} & \sin \theta / \cos \theta=\tan \theta \\ & \sin ^{2} \theta+\cos ^{2} \theta=1 \end{aligned}$
Two angles	$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \sin \beta \cos \alpha$, $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
Double angles	$\begin{aligned} & \sin 2 \theta=2 \sin \theta \cos \theta \\ & \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \end{aligned}$
Logarithms	
General	$\begin{aligned} & \ln a+\ln b=\ln (a b) \\ & \ln a-\ln b=\ln (a / b) \end{aligned}$

