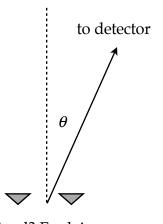
Physics 141 Summer 2020

Quiz 9

Solutions


Choose the best answer.

1. Two sound waves of wavelength 0.34 m start out in phase. Wave #1 has intensity I_0 alone and wave #2 has intensity $3I_0$ alone. The speed of sound is 340 m/s. Which of the following is wrong?

- A. The frequency of the waves is 1000 Hz.
- B. If wave #2 travels 0.68 m farther than wave #1 to get to a detector, there will be constructive interference.
- **►**C. If the waves interfere constructively the resulting intensity is $4I_0$. $[(1+\sqrt{3})^2I_0.]$
- D. The ratio of the amplitude of #2 to that of #1 is $\sqrt{3}$.

Choose T or F depending on whether the statement is true or false.

- 2. Nearly all of the energy of a sound wave striking a rigid smooth wall is reflected back by the wall. **T**
- 3. Two speakers sending out waves of a single wavelength in phase are arranged as shown, 0.5 m apart. The resulting sound is received by a detector at angle θ relative to the dotted line shown. Maximum intensity is received at four angles from 0 to $\pi/2$.
 - a. What is the smallest of those angles? Explain how you know.
 - b. If $\pi/2$ is the largest of those angles, what is the wavelength?
 - c. At how many angles will minimum intensity be received? Explain.

Physics 141 Summer 2020

- a. Along the vertical line the path difference is zero, so $\theta = 0$ is the smallest.
- b. The points of maximum intensity correspond to $\delta=0,2\pi,4\pi,6\pi$, so $\theta=\pi/2$ corresponds to $\delta=6\pi$. The path difference is 0.5 m, so we have $6\pi=\frac{2\pi}{\lambda}(0.5)$ or $\lambda=1/6$ m.
- c. There is a minimum between each pair of maxima, so there are three angles where $\delta = \pi, 3\pi, 5\pi$.