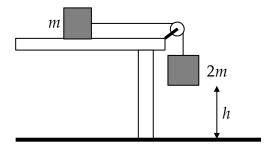
Physics 141 Summer 2020

Quiz 3


Solutions

Choose the best answer.

- 1. A stone is thrown from the top of a cliff of height h, with initial speed v_0 and at angle θ above the horizontal. Neglecting air resistance, the speed v with which it lands in the ocean below:
 - A. Is greater for positive θ than for $\theta = 0$.
 - B. Is greater for negative θ than for $\theta = 0$.
 - C. Is less for positive θ than for negative θ .
 - **►**D. Is independent of θ . [Depends only on h, by conservation of energy.]

Choose T or F depending on whether the statement is true or false.

- 2. The total potential energy is a minimum at a point of stable equilibrium. T
- 3. The two blocks shown are connected by a light string passing over an ideal pulley. The kinetic friction coefficient between the table and block on the table is $\mu_k = \frac{1}{2}$. The system starts from rest and the hanging block drops to the floor. Give answers in terms of the given quantities and g.

- a. How much work is done by friction? [Be careful about the sign.]
- b. The hanging block strikes the floor with speed *v*. What is the change in total mechanical energy *E*?
- c. What is v in terms of the other quantities?

Physics 141 Summer 2020

a. The block on the table also moves a distance h, so friction does work $W_f = -\mu_k N \cdot h = -\tfrac{1}{2} mgh \,.$

- b. $\Delta E = \frac{1}{2}(3m)v^2 (2m)gh = \frac{3}{2}mv^2 2mgh$. [Both blocks are moving.]
- c. Set $\Delta E = W_f$: $\frac{3}{2}mv^2 2mgh = -\frac{1}{2}mgh$. This gives $v^2 = gh$.