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Soft   air real and virtual infrared functions in QED 
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We calculate the soft pair production analogues of the Yennie-Frautschi-Suura (YFS) real and 
virtual infrared functions B, and B,,  where the latter describe the respective infrared singularities 
in QED to all orders in a via YFS exponentiation. In our work, we extend the discussion of B, and 
B, by YFS to treat the case of soft pairs. The respective pair versions of B, and B, are exhibited 
explicitly. We also discuss some possible applications to high precision Z0 physics at SLC andjor 
LEP. 
PACS number(s): 12.20.D~. 11.15.Bt. 13.10.tq; 13.40.K~ 

I. INTRODUCTION 

The problem of the effect of soft pair production in the 
radiative corrections to  QED processes is a furidanle~ltal 
problem in its own right. Indeed. it is just as fundamen- 
tal as the analogous problem of soft photon production 
in such processes. In practice, the fact that  the pair pro- 
duction effect occurs first a t  O ( a 2 )  means that  it has only 
recently [I] come under the kind of detailed investigation 
of the type effected for soft photons already in [2],  for 
example. Recent irnprovernerlts i11 the rrleasurernent of 
the SLAC Linear Collider (SLC) or CERN eie- collider 
LEP luminosity process e + e -  i e+e-  +n(-y) necessitate 
the extension of the methods in [2] to soft pairs as well. I11 
the following discussion we carry out the first step in the 
latter extension. Namely, we calculate the soft pa& ana- 
logues of the real and virtual infrared functions B, and 
B,. respectively, of [2]. In this way, we prepare the way 
for the rigorous exponentiation of the Yennie-Frautschi- 
Suura (YFS) type for the effect of soft pair production in 
processes such as the SLC and/or LEP luminosity pro- 
cess via the same type of Monte Carlo irlethods as two 
of us (S.J. and B.F.L.W.) have realized for multiple pho- 
ton production in SLC/LEP physics processes in 131, for 
example. The actual Monte Carlo event generator for 
multiple soft pair production in the SLC/LEP luminos- 
ity process will appear elsewhere [4j. 

We want to emphasize that  the high precision Z0 
physics, in which the experimental error on the all im- 
portant luminosity process is expected to reach 0.15% iin 
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the near future [5], makes it necessary to prove that  the 
attendant theoretical error is below 0.05%. Recently. we 
have shown [6] that  indeed we can control the contribu- 
tion of soft pairs to  this process a t  the required level of 
precision. The implementation of the results in [6] into 
our Bhabha luminosity YFS exponentiated event gener- 
ator BHLUMI 2.01 [7] would then allow the pair produc- 
tion effect to  be treated on a n  event-by-event basis on 
equal footing with the respective multiple photon effects. 
would obviate the need for specialized subtrdctio~ls for 
the pair effects, and would allow detailed detector sim- 
ulation analysis of the soft pair production effect. This 
would significantly improve the efficiency of the analysis 
of the pair production effect in the SLC/LEP luminosity 
process. The latter improvement is the primary motiva- 
tion for our work in this paper. 

Our work is organized as follows. In the next section, 
we analyze the soft pair analogue of the YFS real photon 
infrared function B,. In Sec. 111, we compute the soft pair 
analogue of the YFS virtual photon infrared function By .  
Section IV contains some concluding remarks. 

11. THE REAL B~ FOR SOFT PAIR 

In the following we calculate Bf ,  the analogue of the 
YFS real soft photon factor B, for the emission of a real 
soft fermion pair. The total QED _soft quanta real ~ m i s -  
sion function is then extended to  Btot = B, + Cf Bf. 

Repeating exactly the steps leading to  B, we find the 
following expression for Bf [note tha t  we repeat only the 
construction of B,. and do not make a claim for any com- 
plete proof of exponentiation; in other words we show 

0556-2821/94/49(3)/1178(5)/$06.00 9 1178 @ 1994 The American Physical Society 



49 SOFT PAIR REAL AND VIRTUAL INFRARED FUNCTIONS IN QED 1179 

that, for this particular class of graphs, both leading-log (LL) and infrared (IR) singular contributions can be expo- 
nentiated just like one does for photon emission graphs]: 

We work in the s channel, where p ,pl  are the four- 
momenta of the incoming electron and antielectron (with 
masses p2 = = m2).  ql, 92 are the four-momenta of 
the additional pair (with masses q T  = q; = p2) and 
q = q1 + q2. The parameter a = 0 or 1 reflects partly 
the freedom we have in the definition of the noninfrared, 
finite part of Bf. We recall that the parameter choices 
a = 0 , l  were first introduced in the original YFS[2] anal- 
ysis, where in their Appendix A, they derive the general 
photon emission factor (here, k is the respective pho- 

2p,-k, 2 ~ :  +k, ton four-momentum) R, = (k2-2kp+ic  + k2+2kp!+ie)  , 
which corresponds to a = 1 in Eq. ( I ) ,  and point out 
that for real emission one may use the emission factor 
R, = (pL/plk - p,/pk), which corresponds to a = 0 in 

Eq. ( I ) ,  since the difference between using the two ex- 
pressions is a term of the type K ( k ) ,  in their notation 
[2], which vanishes for k -+ 0 and does not contribute to 
the infrared limit. We will see below that our result for 
Bf will have the same property insofar as a is concerned. 

In the first step we rearrange two body phase space1 
d3qld3q2. We work temporarily in the ql + q2 rest frame 
(CMS,). Introducing 64(q - ql - q2)d4q, with the help of 
the identity 

we get 

Next we introduce also S4(Q -p-p1+q)d4Q. The d4qd4Q integration we parametrize in the p+pl  rest frame (CMSp). 
Since 

we arrive at  

In the above s = ( p f p l ) '  and 4 ~ I q ~ ~ ~ ~ l ~  = ( S  - 
M," - M,$)~ - 4M:Mi. For the further reference we also 
note that qgMS, Eq = (S - M i  + M;)/(2&). 

Let us emphasize here that so far the evaluation of Eq. 
(1) was rigorous; i.e., no small mass approximation was 
made, and all mass terms are kept in Eq. (5). 

The definitions of the infrared cutoff and soft phase- 
space limits depend on the variables used. For the mass 
variables M;, M i  we have 

fined in terms of Eq,  the CMS, energy of the pair. The 
soft phase space in variables M i  and Eq is then defined 
by 

A' > M: > 4p2, A > Eq > Mq. ( 7 )  
To proceed further with the integration of Eq. (5) over 

the range (7)  we will assume that the IR cutoff A satisfies 
the inequalities & ,> A >> 2p, i.e., we will discard all 
terms of order A/& and 2plA.  In this limit Eq. (5) 
becomes 

Having in mind the Monte Carlo implementation of this 'The following phase-space evaluation, up to E ~ .  (s ) ,  is 
formalism, we would rather have the infrared cutoff de- based on the notes of D ~ .  2. wgs. 
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could differ by some finite constant.' 
The remaining integration over dM: can be easily done 

Note that all the dependence of Bf on a has &sap- if the integration range is split into two parts a2 > ~ , 2  > 
peared in the Eq. ( 8 ) .  This is not a completely trivial 2pA and 2pA > >I," > 4p2.  The appropriate approxi- 
fact, since. in principle. the solutions for a = 1 and a = 0 mations in both integrals convert Eq. (9) into 

A2 dM,2 B, = ;(q)'  [lpA T('~n2y -1ng ln (1  + y ~  - Liz(-yj - 

and finally 

4 a ' l  5 5 df ( A )  = - 3 r  (-1 [ 3 - - 1  6 + ( - :)i, + ((3) + %r2 - $1 (1 + o($ ,  z ) )  
324 

The big logarithms are defined by I ,  = In(?) and L,  = 
1 - 5  
P 6 '  

The last question to be addressed here is how do w~ 
compare to the results in the literature? The correction 
to the process e+e-  -i p+p-  due to ernission of onr 
additional fermion pair has been calculated in Refs. [8. 
91. Apart from the Born cross section, the double mass 
distributions presented therein coincide in the soft region 
(6) with our Eq. ( 8 ) .  Since also the IR cut definitions 
(6)  and ( 7 )  differ only by terms of O ( A / f i ) .  the overall 
result for Bf of Eq. (11) is identical to the corresponding 
results of Refs. [8. 91. Let us stress again. however, that  
this is not an  obvious coincidence. but rather a nice but 
nontrzz~zal consequence of the specific convention for the, 

finite part of B ~ .  as defined in Eq. (1). 

111. THE VIRTUAL Bf FOR SOFT PAIR 

In this section we define and calculate the virtual factor 
Bf arising from the virtual soft fermion pair contribution. 
It is the analogue of the YFS virtual photonic B, factor 
of Ref. 121. The total QED virtual infrared function will 
then be given by BtOt = B, + Cf Bf. Following closely 
Ref. [2] we define Bf as 

with the vacuum polarization P ( k 2 ) .  due to virtual 
fermion pair with arbitrary Inass p ,  given in Ref. [lo]: 

Here we note that  P ( k 2 )  is already renormalized and that  
Bf as given by Eq. (12) is free of infrared divergences. As 
in the real case we work in the s channel with p , p l  being 
the incorning electron and positron four-momenta with 
masses p2 = = m2 and s = (p + The index Ii' 
in Eq. (12) refers to the fact that  so defined BY requires 

%et us stress tha t  even though the  mass m disappeared also 
from Eq. (8).  an  arbitrary choice of p 2 m is all the  times 
legitimate in Eq. (8). In other words no additional approxi- 
mation such as p >> m was taken in Eq. (8). This is consistent 
with the  requirements of the  Lee-Kinoshita-Nauenberg theo- 
rem. .4n analogous behavior for the  dependence of our soft 
pairs virtual infrared function on m must hold due to  the 
same theorem. 
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further UV renormalization. Like in the photonic case of d4k iP(k2)  
Ref. [2] it can be done by the direct replacement 2iImBf (s) = e2 J ol - 

k4 
(2p + k)(-2p' + k) 

x6((p + k)2 - m2) 

(kF++2Ek) ( G ~ T  Gt) x6((p1 - k)2 - m2)6'(po + ko). (15) 

The dispersion relation with one subtraction leads to the 

+ - A (  2 p + k  - -2p t+k  renormalized real part of B f ,  compatible with the re- 

2 k2 + 2pk k2 - 2p'k ) (I4) placement (14): 

in Eq. (12). Instead, we prefer to use the method of s t  - S 
(16) 

dispersion relations to evaluate Eq. (12), cf. e.g., Refs. 
[lo-121. As always only the real part of BfU is UV di- The P stands for the principal value of the integral. 
vergent, and the imaginary part of Bf is given by the The evaluation of Eqs. (15) and (16) proceeds as fol- 
formula lows. The simple identity (cf. Ref. [lo]) 

leads to 

where y = - ( d m  - Js - 4m2 + 4p2)/ 

( d m  + Js - 4m2 + 4p2), or alternatively s = 
p2(1 - y)'/y + 4m2. Consequently, introducing the new 
variable y' related to st  as y is related to s, the dispersion 
relation (16) becomes 

dy' 1 - yt2 1 ImB(yt) 
ReBf(s) = Y P ~  - -  

Y' Y - Y' 1 - YY' s t ( ~ ' )  
. (19) 

So far the evaluation of Bf was valid for any choice of 
mass p; i.e., no small mass approximation of any kind 
was made. At this point we have to consider separately 
the cases p = m and p >> m, as well as to take the 
appropriate small mass limits. 

A. The case p = m 

In this case the direct integration of Eq. (19), with 
S' = m2( l  + y')2/y' and y 21 m2/s,  leads to 

(20) 

with Lm = ln(s/m2). 

B. The case p >> m 

As far as this case is concerned, we found it convenient 
to divide the integration range in Eq. (16) into two parts: 
(I) 4mZ < st  < 4mp and (11) 4mp < s' < m. One can 
easily show that the entire integral I is of O(m/p) and 
therefore can be discarded in our approximation. With 
the same accuracy we can set in the range (11) st E s' - 
2m2 .- st - 4m2 = p2 (1 - Y ' ) ~ /  yl[l + O(m/p)] and y'(sl = 
4mp) = 1 - 2 m + 0 ( m / p ) .  Integrating Eq. (16) with 
those simplifications we arrive at3 

with L, = log(s/p2). 
How do Eqs. (20) and (21) compare to the literature? ---- 

The corrections to the electron form factors due to vac- 
uum polarization by an arbitrary fermion pair have been 34 little care is reqllired to show that terms of ~(m)  
presented various limits in Refs. [12, 131. We find imme- actually cancel in the final result, 
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diately tha t  the leading terms ( L 3 )  of Eqs. (20) and (21) 
are, as expected. the same as in Refs. [12,13]. The  other, 
"noninfrared." terms differ, however, as in the photonic 
case of the original paper [2]. 

IV. CONCLUSIONS 

In this paper. we have extended the computation of 
the YFS photon real and  virtual infrared functions B, 
and B, to include the effect of soft fermion pair emis- 
sion. The  resulting complete QED soft quanta emission 
functions BtOt and BtOt allow one to  treat the LL and 
soft pair emission effects by the same YFS exponeniia- 
tion methods as one uses for photons. We note tha t  Btot 
and BtOt are fundamental properties of the soft and LL 
limits of the QED theory and therefore are of theoretical 
interest in their own right. 

Our primary objective in deriving the complete QED 
soft quanta emission functions lies in their application to 
our [7] high precision YFS exponentiated calculation of 

the SLC/LEP luminosity process on an  event-by-event 
basis via Monte Carlo methods. With  these complete 
QED soft quanta emission functions, we may now incor- 
porate the effect of soft pairs into our luminosity simula- 
tions on equal footing with soft photons. The resulting 
version of our luminosity event generator BHLUMI 2.01 [7] 
will appear elsewhere [4]. 
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