Available online at www.sciencedirect.com

SCIENCE dDIHECT‘
C NUCLEAR I\
PHYSICS

Nuclear Physics A 765 (2006) 126-187

Global study of nuclear structure functions

S.A. Kulagin®*, R. PettP

2 |nstitute for Nuclear Research, 117312 Moscow, Russia
b CERN, CH-1211 Genéve 23, Switzerland

Received 18 February 2005; received in revised form 17 October 2005; accepted 19 October 2005
Available online 14 November 2005

Abstract

We present the results of a phenomenological study of unpolarized nuclear structure functions for a wide
kinematical region ofc and 02. As a basis of our phenomenology we develop a model which takes into
account a number of different nuclear effects including nuclear shadowing, Fermi motion and binding,
nuclear pion excess and off-shell correction to bound nucleon structure functions. Within this approach we
perform a statistical analysis of available data on the ratio of the nuclear structure furietitomglifferent
nuclei in the range from the deuteron to the lead. We express the off-shell effect and the effective scattering
amplitude describing nuclear shadowing in terms of few parameters which are common to all nuclei and
have a clear physical interpretation. The parameters are then extracted from statistical analysis of data. As a
result, we obtain an excellent overall agreement between our calculations and data in the entire kinematical
region ofx and Q2. We discuss a number of applications of our model which include the calculation of the
deuteron structure functions, nuclear valence and sea quark distributions and nuclear structure functions for
neutrino charged-current scattering.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

The lepton Deep Inelastic Scattering (DIS) has been since long time a powerful tool to probe
the structure of hadrons and nuclei at small and intermediate scales. After the discovery of the
parton structure of nucleons, DIS remains to be the primary source of experimental information
on the distribution of quark and gluon fields in the nucleon and nuclei and a valuable tool to
test predictions of QCD. New data from high-intensity electron (Jefferson Laboratory) and neu-
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trino (NuMI at Fermilab and JPARC in Japan) beams will allow in future to further extend our
knowledge of the nucleon and nuclear structure from high-precision experiments.

The role of nuclei in DIS studies is dual. First, it should be noted that the study of nuclei at
small space—time scales is interesting by itself and it can provide valuable insights into the origin
of nuclear force and properties of hadrons in nuclear medium. On the other hand the nuclear data
often serve as the source of information on hadrons otherwise not directly accessible. A typical
example is the extraction of the neutron structure function which is usually obtained from deu-
terium and proton data in a wide kinematic region. This procedure requires, in turn, a detailed
knowledge of nuclear effects in order to control the corresponding systematic uncertainties. An-
other example is the determination of nuclear parton distribution functions which are universal
high-momentum transfer characteristics of complex nuclei.

Significant nuclear effects were discovered in charged lepton DIS experiments [1-13]. These
observations rule out a simple picture of a nucleus as a system of quasi-free nucleons and indi-
cate that the nuclear environment plays an important role even at energies and momenta much
larger than those involved in typical nuclear ground state processes. The study of nuclei is there-
fore directly related to the interpretation of high-energy physics from hadron colliders to fixed
target experiments. The measurements of nucleus—nucleus and proton—nucleus interactions a
RHIC [15] and LHC [16] will help to clarify the nuclear modifications of the parton distribu-
tions, as well as to define the initial conditions towards the studies of new states of matter in
heavy ion collisions.

The understanding of nuclear effects is particularly relevant for neutrino physics, where the
tiny cross section with matter requires the use of heavy nuclear targets in order to collect a sig-
nificant number of interactions. The presence of an axial-vector component in the weak current
and the quark flavour selection differentiate neutrinos from charged leptons and imply a more
complex description of nuclear effects in neutrino scattering. The role of nuclear corrections to
neutrino structure functions has been recently emphasized [17] after the NuTeV collaboration
reported a deviation from the Standard Model prediction for the value of the weak mixing angle
(sir? Oy) measured in neutrino DIS [18]. One of the original motivations of the present work is
indeed related to the extraction of the weak mixing angle from neutrino DIS data of the NOMAD
experiment [19]. It must be remarked that nuclear effects are important not only in the determi-
nation of electroweak parameters, but also for the understanding of neutrino masses and mixing.
The recent high-intensity NuMI [20] and JPARC [21] neutrino facilities offer the possibility to
perform a detailed study of nuclear effects in neutrino interactions on a relatively short time
scale. The construction of a future neutrino factory [22] would then allow to reach the ultimate
precision of the neutrino probe.

The main experimental information on nuclear structure functions comes from charged-lepton
scattering DIS experiments performed at CERN [2—8], SLAC [9,10], FNAL [11,12] and recently
at JLab [13,23]. The measurements usually refer to the fagiof the structure functiorF, of
two nuclei (usually a complex nucleus to deuterium). Additional data from the Drell-Yan reac-
tion of protons off nuclear targets are also available [14]. From the studies of data on the ratio
R2 one can separate a few regions of characteristic nuclear effects: depletion of nuclear struc-
ture functions at small Bjorkem (x < 0.05) known as shadowing region; a small enhancement
of nuclear structure functions for.D< x < 0.3 (antishadowing); depletion with a minimum
aroundx = 0.6—0.7 followed by a rise at large (known as “EMC effect” after the name of the
experiment which discovered it). It is interesting to note that a of#adependence has been
reported only in the shadowing region, while fad3 x < 0.6 R is almostQ? independent.
However, the data available on ti# dependence of nuclear effects are still scarce. One of the
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main drawbacks of all existing data is the strong correlation between 02 resulting from the
kinematics of fixed (stationary) target experiments. As a result, significant regions(af tQé)
plane are still uncovered in DIS experiments.

Many different theoretical models have been proposed to explain the basic features of data (for
a detailed summary of the current understanding of nuclear corrections we refer to recent reviews
and references cited therein [24-27], see also discussion in Section 4 of this paper). The mod-
elling is important to derive some insights on the underlying physics of observed phenomena.
However, consistent and quantitative description of nuclear effects in DIS in a wide kinematical
region ofx and Q2 and for a wide range of nuclei are clearly needed. In this paper we perform
a quantitative study of data aiming to develop a model of nuclear DIS applicable in the analysis
of existing data and in the interpretation of future experiments. In order to describe nuclear data
over a wide kinematical region we take into account many effects including nuclear shadowing,
nuclear pion excess, Fermi motion, nuclear binding and off-shell corrections to bound nucleon
structure functions. It should be noted that if some effects, such as Fermi motion and nuclear
binding, are well constrained by other studies or data, the remaining ones are less known. The
main example is the off-shell correction which describes the modification of structure functions
of bound nucleons in nuclear environment. We study this effect phenomenologically by parame-
terizing the off-shell correction to the nucleon structure function in terms of a few parameters
which are fixed from statistical analysis of nuclear data, together with the corresponding uncer-
tainties. It is worth to emphasize that these parameters are universal, i.e. common for all nuclei,
since they are related to the nucleon structure. In a certain sense the off-shell correction can be
considered as a new structure function which describes the response of the nucleon parton dis-
tributions to the variation of the nucleon invariant mass. Even if this structure function is not
accessible for free proton and neutron, it can be probed in nuclear reactions.

It should be also emphasized that different nuclear effects in different kinematical regions of
x are correlated by DIS sum rules. For example, the light-cone momentum sum rule links bound
nucleon and pion contributions to DIS. We use this requirement in order to constrain mesonic
contributions to nuclear structure functions. Another example is the baryon number sum rule
which links shadowing and off-shell corrections. In our approach the off-shell effect provides the
mechanism of cancellation of a negative nuclear-shadowing contribution to the normalization of
nuclear valence quark distributions.

After fixing the parameters of our model, we compute predictions for a number of applica-
tions. In particular, we discuss nuclear valence and sea quarks apRighd compute nuclear
corrections to neutrino structure functions. These subjects will be treated more extensively in
future publications.

The paper is organized as follows. In Section 2 we briefly summarize the DIS kinematics
for electron (muon) and neutrino scattering and introduce notations used in this paper. Sec-
tion 3 provides information on the nucleon structure functions and parton distributions necessary
for our analysis. Section 4 is devoted to the theoretical framework to treat different nuclear
corrections in our studies. In particular, in Section 4.1 we examine the derivation of nuclear
structure functions in the approximation of incoherent scattering off bound nucleons and nu-
clear pions (Section 4.1.3), the off-shell effects in the structure functions and quark distributions
(Section 4.1.6) and coherent nuclear effects leading to nuclear shadowing and antishadowing
(Section 4.2). In Section 5 we discuss in detail the nuclear input which is used in our analysis
(Sections 5.1 to 5.3), the model of off-shell effects (Section 5.4) and effective scattering ampli-
tude (Section 5.5). The analysis of data is described in Sections 5.6 and 5.7. In Section 6 we
present the results obtained from our fits to nuclear data.g‘hend A dependence of nuclear
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effects are discussed in Sections 6.4 to 6.5. In Section 7 we apply our approach to study nuclear
parton distributions (Section 7.1) and neutrino structure functions (Section 7.2). In Appendix A
we provide the details of the integration in nuclear convolution and in Appendix B the multiple
scattering coefficients are given.

2. Kinematics of lepton inelastic scattering

Consider the scattering ofcharged leptor(electron or muon) off a nucleon with the four-
momentump = (E,, p) and massM. The scattering matrix element to leading order in the
electromagnetic coupling constant ¢?/4r ~ 1/137 is determined by the standard one-photon
exchange process. In inclusive scattering, the final hadronic state is not detected and the differ-
ential cross section is fully given by hadronic ten$gy,, which is the sum of hadronic matrix
elements of the electromagnetic currdﬁf” over all final hadronic states (see, e.g., [28])

1
Win(p, @) = 2= 3 0% (p +4 = pu){plJ O} (n IO p), (1)

wheregq is four-momentum transfer to the target.

We do not consider the polarization effects and assume the averaging over the target and
beam polarizations. Then only the symmetric part of the hadronic tensor contributes to the cross
section. Because of the conservation of electromagnetic current, time reversal invariance and
parity conservation in electromagnetic interaction, the symmetric hadronic tensor has only 2
independent Lorentz structures (see, e.g., [28])

. . .
Wun(p,q) = =8 F1+ Pupvﬁ» 2

where Fy » are Lorentz-invariant structure functions, and, for simplicity, we use the following
notations:

quqv

g;w =8uv — 612 s (3a)
- pP-q
Pu=Pu _QM7' (3b)

We use the normalization of statgs|p’) = 2Ep(2n)36(p — p’) for both bosons and fermions.
With this normalization the hadronic tensor and the structure functignsare dimensionless.

The structure functions are the functions of two independent invariant variables. In deep
inelastic regime the Bjorken variable= Q?/(2p - ¢) and four-momentum transfer squared
02 = —¢? are usually used as the variables the structure functions depend on.

The polarization averaged differential cross section is determined by the structure functions
F1-. In terms of the variables and Q2 the cross section reads

d’o 47 o2 (Mxy)? 2m?
drage = sor (1~ g ) (-G )] “

wherey = p - ¢/p - k. The variabley is not independent variable and relateditand Q2 via

the equationcy = Q2/(2p - k). The lepton mass term is kept in Eq. (4) for the sake of complete-
ness. Although it is negligible in electron deep inelastic scattering, it might be relevant for muon
scattering at small momentum transfer or fdepton scattering.
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The structure functiong’; » can be related to the virtual photon helicity cross sections by
projecting Eq. (1) onto the states with definite photon polarizations. These states are described
by the photon polation vectors. In the reference frame, in which the momentum transfer is along

thez-axis,q = (0,01, ¢;), g: = —|q| the photon polarization vectors are
ex =(0,1,+i,0)/v2, (5a)
e0=(qz,01,90)/ Q. (5b)

whereQ = \/@ The polarization vectors, ande_ describe transversely polarized states with
helicities+1 and—1, respectively (right- and left-polarized photons). The veegarorresponds
to the longitudinally polarized (scalar) virtual photons. The polarization vectors are orthogonal
to momentum transfegy - ¢ = ¢g - ¢ = 0, and obey the orthogonality and the normalization
conditionsey - eg =0, e} -ex = —1,e5=1.

The helicity structure functions are

Wi =el{"Wyel = Fi, (62)
Wo = ey Wvey = y2F2/(2x) — F1, (6b)

wherey = |ql/qo = (1 + 4x>M?/0?)Y2. In applications the transverse and the longitudinal
structure functions are commonly used

Fr=x(Wy 4+ W_) =2xF1, (7a)
Fi =2xWo=y?F> — 2xFy. (7b)

Let us briefly consider the scattering of (anti)neutrino. In the Standard Model neutrino can
either couple to charget* bosons or to neutraf boson. In the former case interaction is
driven bycharged curenfCC) J £ = V£ — A* with V:F andA: the charged components of the
vector and axial-vector current. The interaction withboson is described by threeutral current
(NC) which is the superposition of the isovector weak left current and electromagnetic current
JO0=V2(VE— A3 - 25sirf oy JE™), wheredy, is the Weinberg weak mixing angle.

The hadronic tensor for CC or NC interaction is given by Eq. (1) with the electromagnetic cur-
rent replaced by the corresponding weak current. The Lorentz decomposition of hadronic tensor
is different for neutrino case and includes additional terms compared to Eq. (2). For example, for

CC neutrino interaction we havésee, e.qg., [28])
+ +
+ FY FY
Wi =—8uFl +pubr—2—+icun(p.9)5o—
A nAS L 23 p-q 122 2]7 g
qudr ~wt | QuDr T D.Pp W+
F, +——F , (8)
02 4 pg °
where we denote,; (a, b) = gﬂmﬂa“bﬁ. The first two terms withFy and F» in Eq. (8) are simi-
lar to those in charged-lepton scattering and appear due to VV and AA interactions in Eq. (1). The
term with F;3 describes parity-violating VA and AV interference. The terfgsand F5 are present
because the axial current does not conserve. The contributions from the structure fuRgtions

+

1 The tensoWV‘& corresponds to interaction mediated Wy~ boson and describes neutrino CC scattering whi
describes antineutrino. It should also be remarked that the neutrino and antineutrino NC structure functions are identical,
since neutrino and antineutrino in NC scattering couple to the same hadronic NC. This is not the case for CC neutrino
and antineutrino structure functions.
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and Fi to the neutrino production cross section are suppressed by a sma)nhfaﬁME) (these
terms vanish in the NC cross section). It was also shownAhat 0 and & F5 = F» in the lead-
ing order and in the limit of massless quarks (Albright—Jarlskog relations [29]). Recently it was
argued that the second of these relations survives the higher order and the target mass correction:
in massless QCD, while the relation f6j; should be replaced bk, = F>/(2x) — F1 [30].

The relations between the helicity structure functions and the structure funétionsin the
neutrino scattering are

Wi=F1+tyFs, (9a)
Wo=1y2F2/(2x) — F1. (9b)

The definition of Fr ;. by Eq. (7) also apply in this case. One observes from Egs. (9) that the
structure functionFs determines the left-right asymmetry in the transverse helicity structure
functions.

3. Nucleon structure functions

The structure functions remain important observables to probe QCD structure of proton and
neutron and nuclei. In this section we briefly review the characteristics of nucleon structure func-
tions necessary for our analysis.

3.1. QCD perturbative regime

In the region ofQ? large compared to the nucleon scale the structure functions can be analyzed
in perturbative QCD. A working tool of this analysis is the operator product expansion (OPE)
[31]. Using the OPE, the contributions from different quark-gluon operators to hadronic tensor
can be ordered according to thiirist For the DIS structure functions this leads to the expansion
in inverse powers 00?:

2
Fule, 0%) = P (v, %)+ P50
wherea labels the type of the structure functian=£ 7, 2, 3). The first term is the leading twist
(LT) contribution andH,, are the twist-4 contributions (higher twist, HT).

The leading twistcontribution is directly related to the distributions of quarks and gluons
inside the nucleon, the parton distribution functions (PDFs) via the DIS factorization theorem
as a convolution with coefficient functions (for more detail see, e.g., Ref. [32] and references
therein). The coefficient functions depend on the process and the type of the structure function
but are independent of the target. These functions are computable as power sekie3 e
parton distributions are independent of the process but do depend on the target.

The PDFs have non-perturbative origin and cannot be calculated in perturbative QCD. How-
ever, theQ? dependence of the PDFs can be handled using QCD perturbation theory, and is
governed by the well-known DGLAP evolution equations with the kernel given by the splitting
functions [33].

The one-loop (NLO) coefficient and splitting functions have been computed since long
time [34]. The two-loop (NNLO) coefficient functions [35] and the corresponding splitting func-
tions [36] are now also available. In our analysis of nuclear data we use both the coefficient
functions and the PDFs to NNLO approximation calculateM® scheme using the factoriza-
tion and the renormalization scales se{a®.

+0(1/0%, (10)



132 S.A. Kulagin, R. Petti / Nuclear Physics A 765 (2006) 126-187

The HT components involve interactions between quarks and gluons and lack simple proba-
bilistic interpretation.

It must be noted that the twist expansion was derived in the massless limit. If a finite mass for
the nucleon target is considered, the new terms arise in Eq. (10) that mix operators of different
spin, leading to additional power terms of kinematical origin—the so-c#dlegt mass correc-
tions(TMC). If the parametex2M2/ Q2 is small, the TMC series can be absorbed in the leading
twist term [37]. Therefore, Eq. (10) remains valid with the LT terms replaced by

1

2 2x3M2 [ d
FTTMC(X’QZ)Z;TVFIT'T(Sa Q2)+Q2—J/2/Z—§F2|‘T(z, 0?), (11a)
&
T™C 2 X2 T o, 6x3M2 le LT 2
FIMO(r. 0%) = 5 (6.0 + ooy [ ST 07, (11b)
&
T™C 2 X2 T oy 2x3M? le LT 2
xFg (X»Q)=W§F3 (E’Q)+Q2—)/:”/z_2ZF3 (z, 09), (11c)
&

wherey = (1+ 4x2M?/0%)Y? and¢ = 2x /(1 + y) is the Nachtmann variable [38].

However, it must be remarked that the derivation of [37] was given in the zeroth ordgr in
assuming that the target quarks are on-shell and neglecting the transverse degrees of freedom.
Furthermore, Egs. (11) suffer the so-called threshold problem. Indeed, it follows from Eqgs. (11)
that the target mass corrected inelastic structure funcmg'r'Y? remain finite asx — 1 even if
the LT terms vanish in this limit. Clearly, the regianclose to 1 is beyond the applicability of
Egs. (11). However, in the applications to nuclear structure functions atidtgeimportant to
meet the threshold condition. One possible way to deal with this problem is to expand Egs. (11)
in power series inD 2 and keep a finite number of terms. In particular, keeping the LT and the
1/ 0% term we have

FM%(x, 0%) = Fr' (x, Q%)
1

3142
+x—QA;I <2fg—§FzLT(Z7 Qz)_%FJI:T(vaZ)>, (122)
24702
A (. 09) = (1- 255 )T (v 09
x3M2 ldz T 2 d T )
+ 02 (6/2_2F2 (z.0 )—ng (x. 0 )) (12b)
2402
*xFJMC(x, 0?) = (1 2 " )ngLT(x, 0?)

1
3152
+ xM* <2 %ngLT(Z, Q2) _ 2 xFé‘T(x, QZ))>. (12c)
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In this approximation the structure functions have a correct threshold behavior and vanish in the
limit of x — 1, provided that the LT terms and their derivatives vanish in this limit.

In general, the target mass corrections should also be applied to the HT terms in the higher
order terms in the twist expansion (10). In this paper we only consider twist 2 and 4 terms. For
consistency we do not considet@* terms in Egs. (11), (12) and do not apply TMC to HT terms.

We also note, that the extrapolation of the target mass corrections to off-shell pegibiM? is
important in the treatment of the nuclear effects and will be discussed in Section 4.1.6.

3.2. Structure function phenomenology

The twist expansion and PDFs as universal, process-independent characteristics of the target
are at the basis of extensive QCD phenomenology of high-energy processes. In phenomeno-
logical studies, the PDFs are extracted from QCD global fits. A number of such analyses are
available [39-41]. In our studies of nuclear data described in Sections 5.6 to 6.5 we use the re-
sults by Alekhin [39] who provides the set of the nucleon PDFs obtained with the coefficient and
splitting functions calculated to the NNLO approximatfoRurthermore, the HT terms and the
PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently breaks
down at lowQ?2. Furthermore, the conservation of electromagnetic current requires the structure
function F> to vanish ag? for 02 — 0. The data seem to indicate the presence of a transition
region between perturbative and non-perturbative regimeg about 1 Ge¥. In our studies of
nuclear effects in the structure functions some data points at snaa# in the lowQ? region.

In order to match low@ and high©Q regions we apply spline interpolations for the structure
functions which obeys the current conservation requirements.

4. Nuclear structure functions

In this section we describe a theoretical framework which will be the basis of phenomenolog-
ical studies of nuclear DIS data discussed in Sections 5 to 6.

The mechanisms of nuclear DIS appear to be different for small and large Bjodswiewed
from the laboratory system. The physics scale for this separation comes from the comparison of a
characteristic DIS time, which is also known as loffe length=1/(Mx) (see, e.g., Ref. [28]),
and an average distance between bound nucleons in nuclei which is abdemnl At large
x > 0.1 the characteristic DIS time is smaller than average internucleon distance. This obser-
vation justifies the use of the incoherent approximation for the nuclear Compton amplitude in
this region. It was realized long ago that the nucleon momentum distriblgm{ motior) is
important effect even in the scaling limit and results in the enhancement of nuclear structure
functions at large Bjorken [43]. After discovery of the EMC effect [1] the calculation of nu-
clear DIS in impulse approximation was revisited [44,46,48-50] and effecticiear binding
was emphasised which explains a significant part of the observed dip in the EMC patioGaé
(for a review of the EMC effect and more references see [25-27]).

Effects beyond the impulse approximation are important. It should be noted that because of
binding, the nucleons do not carry all of the light-cone momentum of the nucleus and the mo-

2 In our analysis we use PDFs obtained from new fits optimized in the@dwegion and including additional data
with respect to [39]. This extraction of PDFs also takes into account the nuclear effects in the deuterium data as described
in the present paper (see Section 5.7). Results from the new fits will be reported elsewhere.
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mentum sum rule is violated in the impulse approximation. A natural way to correct this problem
is to explicitly consider the pion contribution to the structure functions [54] which balances miss-
ing momentum. Several calculations of thien correctionto nuclear structure functions have
been performed in different approaches and approximations [55]. Although all calculations pre-
dict some enhancement at smajlthe concrete predictions are model-dependent. In this paper
we calculate nuclear pion correction following the approach of Ref. [47] in which the pion con-
tribution was constrained using the equations of motion for interacting pion—nucleon system. By
using the light-cone momentum balance equation we effectively constrain the contribution from
all mesonic fields responsible for nuclear binding.

It should be noted that bound nucleons are off-shell particles and their structure functions
can be different from those of free nucleo@ff-shell effectsn nuclear DIS were discussed
in a number of papers [45,46,48,50,51,53]. It was shown that, because of /&ithé off-
shell nucleon is characterized by the increased number of structure functions which depend on
the nucleon virtuality as an additional variable [48-51]. However, in the vicinity of the mass
shell (which is the relevant case for nuclei) the off-shell nucleon can still be described by the
same number of structure functions as the on-shell nucleon [48-50]. Nevertheless, the off-shell
dependence of structure functions remains an important effect through which the modification of
the internal structure of the bound nucleon in nuclear environment can be assessed. It should be
also emphasized that the off-shell effect provides the specific mechanism of balancing a negative
contribution to the nuclear baryon number sum rule from nuclear shadowing effect (for details see
Sections 6.1 and 6.2). In Section 4.1 we discuss the derivation of the nuclear structure functions
in the presence of off-shell effects with the full consideration of the nucleon spin. The treatment
of the off-shell effect in the parton distributions is discussed in more detail in Sections 4.1.6
and 5.4.

In the smallx region the space—time picture of DIS is different. ko& 0.1 the character-
istic DIS time is large on the nuclear scale, the nuclear DIS becomes “stretched” in time and in
the longitudinal direction. The process can be viewed as the intermediate boson first fluctuates
into a quark pair which can form a complex configuration (hadronic or quark-gluon) which then
scatters off the target. As an average time of life of such fluctuation is large compared to average
distance between bound nucleons, the photon interaction with nuclear targets resembles hadronic
properties [57,58]. In particular, since hadron scattering amplitudes are almost imaginary at high
energy, the double scattering correction to the DIS cross section is negative leading to nuclear
shadowingeffect, similar to that in hadron scattering [56]. Nuclear shadowing in DIS was sub-
ject to intensive studies [60] (for a review of nuclear shadowing and more references see, e.g.,
[24,27]). In the present paper we treat nuclear shadowing effect in a semi-phenomenological
approach by introducing phenomenological amplitude which describes interaction of hadronic
component of the intermediate boson with the nucleon and consider the propagation of this state
in nuclear environment using multiple scattering theory. Details are discussed in Section 4.2.

Summarizing we write the nuclear structure functions as the sum of incoherent and coherent
contributions

FA=FY* + By B 4 sFD, (13)

whereFap/A, F,Z’/A, Ff/A denote the contributions to the structure function of tyfem bound
protons, neutrons, and nuclear pions, respectively. The last term in Eq. (13) is a correction due
to nuclear coherent interaction. The exact meaning of all these terms will be explained in the
following sections.
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4.1. Incoherent scattering approximation

The DIS hadronic tensor is given by the imaginary part of the virtual photon Compton am-
plitude in the forward direction. In the incoherent scattering regime (laygaking into account
the nucleon spin the nuclear hadronic tensor can be written as (see also [47—-49])

Py = /[dp 1TV, (0, ) A" (p; A)], (14)

T=p,n

where the sum is taken over the protons and neutrons, Tr is taken in the nucleon Dirac space and
the integration is performed over the nucleon four-momentap] = d*p/(27)%. In Eq. (14)

A" (p; A) is the imaginary part of the proton & p) or the neuteroniy= n) propagator in the
nucleus

Alp(p; A) = / dt d3reip°’_i1’"(A|lI_/g (t,r) ¥l (0)|A) (15)

with ¥ (z, r) the nucleon field operator and and g the Dirac spinor indeces. The off-shell
nucleon electromagnetic tens)zﬁfw(p, q) is the matrix in the Dirac space. On the mass shell
pZ=M? averaging/V,, (p, ¢) over the nucleon polarizations we obtain the nucleon tensor (2)

1 N
Wi (P ) = 5 TH (B + MW, (P, 9)]. (16)

In off-shell region, the Lorentz tensor structure}&Lv is more involved than the correspond-
ing structure of the on-shell nucleon tensor. In order to establish the tensor struckiyg efe
expand the latter in terms of a complete set of Dirac matrfées®, o*#, y%ys, y5}. The vari-
ous coefficients in this expansion must be constructed from the veetanslg, and from the
symmetric tensog.g and the antisymmetric tensey,,s. For the symmetric part olﬁ/,w we
keep only those terms which are even under time-reversal and parity transformations, since only
such terms can contribute 1 . Keeping only current-conserving terms we have 7 independent
Lorentz—Dirac structures which can be written as [48,51]

0 1 2
P
M M2 p.g
L 0 1 2 3
+Pupv(f()+f2( P S )rj) 5 P )
Vi ’
p-g\ M = M2 " p-g g "
whereg,, andp,, are given by Eq. (3). The curly braces in the last term denote symmetryzation
over Lorentz indeces, i.ey,b,) = %(aubu +ayb,). The coeﬁicientsff” in Eq. (17) are the
dimensionless Lorentz-invariant functionsxof Q2 and the nucleonpﬁ‘shellne%.
Similar analysis can also be applied to the antisymmetric parvgf for the neutrino scat-

tering. This term is described by the structure functiéBsn Eq. (8). For off-shell nucleon the
result can be written as [50]

. 0 (1) (2)
2. q) = 1 q“[(f + 52 p+£ j)pﬂféz‘)yﬂ} (18)

ZWMV (p,q) = _gpw<

where the coefficientgy”’ are dimensionless Lorentz-invariant functionscof? and p2.
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By substituting Egs. (17) and (18) into Eq. (16) one observes that atM? Egs. (2) and (8)
are recovered with the nucleon structure functions given by

0 1 2

Fi=£2+ Y + £2. (19a)
0 1 2 3

FBo=f) + L0+ 50+ 15 (19b)
0 2 3

Fa=f3) + f57 + 137 + 137 (19¢)

It should be noted that the Dirac equation is the underlying reason of simplification of the Lorentz
structure of the hadronic tensor of the on-shell nucleon.

One important observation which follows from this analysis is that Eq. (14) does not factor-
ize into completely separate nuclear and nucleon parts. The off-shell nucleon is described by 7
independent structure functions in the symmeRieven hadronic tensorff’) and fz(’)) and 4
independent structure functiooé“ in the P-odd antisymmetric hadronic tensor. These func-
tions depend om? as an additional variable and weighted in Eq. (14) with generally different
nuclear distributions.

Clearly, the fact that we have to deal with unknown functions not present for the on-shell
nucleon introduces additional uncertainty in the calculation of nuclear structure functions. How-
ever, in practice it may be quite sufficient to treat nuclei as non-relativistic systems. In this limit
the nuclear hadronic tensor considerably simplifies, as will be discussed in the next section.

4.1.1. The limit of weak nuclear binding

Let us now discuss Eq. (14) in the limit of weak nuclear binding. We assume that the nucleus
is a non-relativistic system with small characteristic momentum and energy of bound nucleons,
|pl <K M, |po— M| > M. The antinucleon degrees of freedom are neglected in this approxi-
mation. A non-relativistic approximation to Eq. (14) is derived using the relation between the
relativistic four-component nucleon fieldd and the non-relativistic two-component operator
(for simplicity we suppress the isospin index

_ —ime A= p?/8M?) Y (p, 1)
Vip.n=e ( (o - p/2M) ¥ (p. 1) ) (20)

where the nucleon operators are taken in a miged) representation. The renormalization op-
erator 1— p2/(8M?) is introduced to provide a correct normalization of non-relativistic nucleon
field v, i.e. the operatoy Ty is normalized to the nucleon number to orgkéy M2.

In order to make the non-relativistic reduction of Eq. (14), we separate the nucleon mass
from the energypg and write the four-momentum of the bound nucleorpas (M + ¢, p). We
then substitute Eq. (20) into Eq. (14) and reduce the four-dimensional Dirac basis to the two-
dimensional spin matrices. In this way we examine all Lorentz—Dirac structures in Egs. (17) and
(18) and keep the terms to ordetM and p2/ M?. The result can be summarized as follows:

1 A 1
M—ATF(A(p; AW (p.q)) = s PE P (p.9), 1)

whereM 4 is the mass of a nucleus and

P, p)=/dt exp(—iet) (Aly"(p, )Y (p, 0)|A)/(A|A) (22)
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is the non-relativistic nuclear spectral function normalized to the number of nucleons in the
corresponding isospin state

f [dp] PP" (e, p) = (Z, ). (23)

Note that the factoM 4 in the left side of (21) is absorbed in the normalization of nuclear states
(A]A) in Eq. (22). The hadronic tensd¥,,, (p, ¢) in Eq. (21) is given by Eq. (2) with the struc-
ture functions

2
Oy P~ @ P 2
Fl( ) f < W) + f1 W2 + /17 (24a)
oy, P 1 P @ O
Fa(x, 0%, p?) = f} )< W) + s+ B2+ (24b)
2 2
2 014 P~ M e 7 @ (O
From Eq. (21) we obtain a non-relativistic approximation to the nuclear hadronic tensor (14)
2 (Pa.q) [dp]
““ > / TP ) Wi (.9, (25)
T=p,n

which is a basic equation for further analysis of nuclear DIS.

A few comments are in order. It should be emphasized that the non-relativistic limit is taken
with respect to the nucleon momentum. In the derivation of Eq. (21) we keep terms to order
p?/M? ands/M and neglect the higher-order terms. Furthermore, Eq. (21) is valid for arbitrary
momentum transfey. Note the factorization of the high-energy amplituélg, from the spectral
function? which describes the low-energy part of the problem. In the vicinity of the mass shell
the hadronic tensor involves the same number of independent structure functions as on the mass
shell. Therefore the problem of “splitting” of structure functions in the off-shell region (i.e. the
problem of additional nucleon structure functions) can be avoided in this region. Egs. (24) give
the nucleon structure functions in the off-shell region in the vicinity of the mass-shell and it is
easy to see that Eqgs. (24) reduce to Eqgs. (19fat M2 thus assuring a correct on-shell limit.

Let us extract the relations between the nuclear and the nucleon structure functions from
Eq. (25). Nuclear structure functions are given by Eq. (2) witheplaced byP, and x by
xa = 0%/(2M 4q0). However, it is convenient to consider the nuclear structure functions as the
functions of the variable = Q?/(2Mqo) instead of the “natural” nuclear scaling variablg.

We then defineFy, (x. 0% = Fj, (xa. Q%) andxF3 (x, 0%) = x4 F4'(xa. 0?). In order to
separate the structure functions we contract the both sides of Eq. (25) with the virtual photon
polarization vectors (5) and consider the helicity structure functions. As a result we have

. 2x12 2
-y /[dp]Pf(g p)<1+ Q) <F; + 7’”1&*;), (26a)
T=p,n

i 4 12 .2
-y / [dp]P" e, p)<1+ %) <F[+%F§>, (26b)
T=p,n

where in the integrand’} with a =T, L, 2 are the structure functions of bound proten< p)
and neutron{ = n) with the four-momentunp = (M + ¢, p), x' = 0%2/2p-q) = x/[1+ (¢ +
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ypz)/M] is the Bjorken variable for the bound nucleon gmd is the transverse component of

the nucleon momentum with respect to the momentum transfer. The off-shell nucleon structure
functions depend oxr’, momentum transfer squag? and the virtualityp® = (M + €)% — p? as
additional variable. In Eq. (26) the off-shell transverse and longitudinal structure functions are
given by equations similar to (7) with/2 replaced byp?, i.e. Fr = 2x'F1, F; = y/%F> — Fr

with y'2 = 1+ 4x'2p2/ Q2. Using Egs. (26) we have for the nuclear structure functign

6x/2 2
yPFs (x, 0%) = > /[dp]Pf(e p)<1+—>< 2y 2 )F;. (27)

T=p,n

The nuclear structure functiafs can be extracted from the left-right asymmetry in the helic-
ity amplitudes, Eq. (9). We have [50]

xF4(x, Q2 /[dp]PT(s p)( >x’F3’. (28)
T=p,n
Egs. (26) to (28) allow us to compute the structure functions of a generic nucleus as a convo-
lution of nuclear spectral function, which describes the distribution of the bound nucleons over
momentum and separation energy, with the bound proton and neutron structure functions.
We also comment that the transverse motion of the bound nucleon in the target rest frame
causes the mixture of different structure functions in Egs. (26a) and (26b) to@rdginote pi

terms in these equations). This effect on the rﬂ’gfo/F;‘ was recently discussed in [52].

4.1.2. Convolution representation
If 02 is high enough to neglect power terms in (26)—(28) then these equations can be written
as two-dimensional convolution. For example, for the structure fundfomne have

F3(x, 0%) = / dy dv[ fp/a (v, V)FS (x/y, Q% 0) + faya(y, v)FS (x/y, 0% v)],  (29)

y>x

wheref,,4(y, v) and f,,4(y, v) are the proton and the neutron distributions over the fraction of
light-cone momentuny and the virtualityy = p2. The proton (neutron) distribution function is
given in terms of the proton (neutron) spectral function as follows [47,48]

2 + Z
f,v)= /[dp]P(e, p)<1+ %)8()} —1-= Mp )5(v — p?). (30)

The distribution functions are normalized to the number of bound protons (neutrons), as follows
from Eq. (23). Equations similar to (29) hold for other structure functions with the same nucleon
distribution functions. If we further neglect off-shell effects in the structure functions, Eq. (29)
reduces to the familiar one-dimensional convolution.
It is instructive to calculate the average nucleon light-cone momefigimper one nucleon.

Using Eq. (30) we have
(e) + 5(T)

" )
where(e) and(T) are the average nucleon separation and kinetic energies. Because of binding

effect we havgy)y < 1 (using our nuclear spectral function from Section 5.2 we have for iron
(y)ny = 0.966). The missing nuclear light-cone momentum apparently should be carried by fields

(y)In=1+ (31)
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responsible for nuclear binding. In our approach the missing light-cone momentum is balanced
by nuclear pion field. Note that this situation is qualitatively similar to the balance of light-cone
momentum in the nucleon in which about a half of the nucleon momentum is carried by gluons.
However, in nuclear case the fraction of pion light-cone momentum is much smaller because the
nuclei are weakly-bound systems. The scattering from nuclear pions is discussed below.

4.1.3. Pion contribution to nuclear structure functions
The lepton can scatter off virtual pions which are exchanged by bound nucleons. The pion
correction to nuclear hadronic tensor can be written as follows (see, e.g., [47])

WAy, g) = Z [18a02 00w ko) (32)

where W,’jv(k, q) is hadronlc tensor of a pion with four-momentumand the functionD;, /4
describes the distribution of pions in a nucleus and the sum is taken over different types of pions.
The distributionD; /4 can be expressed in terms of the pion propagator in a nucleus as

Dn/A(k)=/d4x explik - x)(Algi (x)@i (0)|A), (33)

where ¢; is the pion field operator in the corresponding isospin state. Ahestate is de-
scribed by real pseudoscalar figlg, while the charged pion states are described by the complex
pseudoscalar fieldg: + ¢2)/+/2. The factor 12 in Eq. (32) is because of the chosen representa-
tion of the pion field operator in Eq. (33) in whighis real (particle and antiparticle are identical).

In the further discussion of pion effect it is convenient to consider the normalized pion distri-
bution, i.e. independent of normalization of the target state. We define this as follows

Dn/A(k)=/dteXp(ikot)(AIq)*(k,t)(/)(k, 0)[A)/(A]A), (34)

ok, 1) =/d3r exp(ik - r)o(r, 1), (35)

wheregp(k, t) is the pion field operator in momentum representation. Using translational invari-
ance it is easy to verify thd®, /4 (k) = Dy a(k)/(2M4) in the nucleus rest frame.

In order to extract the pion contribution to nuclear structure functions we contract both sides
of Eg. (32) with the photon polarization vectors. Assuming that the hadronic tensor for off-shell
pions is given by Eq. (2) we obtain from Eq. (32)

/2k2
FPA (w0 = Y [1daDm a0 (ko + yk) (F;f L2 ) (363)
/A ) /2k2
Fi'(x, 0% =) / [dk1 Dy (k) (ko + v k) (Ff 0 =Fj ) (36b)
2 -m/A 2 6x/2k2 -
2 (x, 09 =Y f [Gk1Dz/a (k) (ko + v k) <y + =52 )Fz , (360)
xF3! M (x, 0% =) f (k1D () (ko + k. /v ) ¥ 5 (36d)

whereF,/* denotes the pion correction to the nuclear structure fundiibnin the integrand=7
are the structure functions of virtual pion with four-momentkink ; is transverse component
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of the pion momentum relative to the direction of momentum transferard 02/ (2 - q) is
the pion Bjorken variable. The pion structure functions in Egs. (36) depend, @? and pion
invariant mas? = kg — k? as an additional variable. The transverse and longitudinal structure
functions are related t6y andF» asFr = 2x'Fy, F; = y'?Fy — Fr with /2 = 1+ 4x'%k?/ Q°.
The mixture of the structure functiog and Fy, in Egs. (36) is because of transverse motion of
nuclear pions, similar to the corresponding effect in Egs. (26) for bound nucleons.

At high 02 Egs. (36) can be written in a convolution form. For example, pion correction to
F»> can be written as

Fg/A Z/dydvfn/A(y,v)Fz (x/y. 0% v), 37)
x<y
kO"‘kz 2
fn/A(y,v)=2yM/[dk]D’”A(k)(S ye Ty )P, =

Similar equations hold for other structure functions in Egs. (36). If one neglects the off-shell
dependence of the pion structure functions then Eq. (37) reduces to the standard one-dimensional
convolution with the pion light-cone distribution which is given by Eq. (38) integratedavéle

note that the distribution function by Eq. (38) is antisymmetric functign, (—y) = — fz/a (»).

This property allows us to derive the sum rules for the odd moments of the pion distribution
function which will be discussed in more detail in Section 5.3. Note that beyond the leading
order approximation the gluonic effects should also be considered.

4.1.4. Application to the deuteron

So far the discussion did not refer to particular nuclear target. In this section we apply the
discussed formalism to thdeuteron The deuteron is an isoscalar bound state of the proton and
the neutron. The residual nuclear system is, therefore, the proton or neutron and the spectral
function is given in terms of the deuteron wave functisp(p)

(39)

2
PP (e, p) =278 (8—8D+—)

whereep = Mp — 2M and p2/2M are the deuteron binding energy and the spectator nucleon
recoil energy, respectively. The deuteron structure functions then become

d3 . Zx/z
2):/—(2 ’;3|w0(p)\ (1+ Q)(F;VJF Q”LFZ> (40a)
2x
/(2 )3| wp(p)| (1+ &)(qu QPLF2> (40b)
2D 2\ P 2 YP: /2 6x’2 2 N
yeFy (x, 0%) = (Zﬂ—)gw,)(pn 1+— Yo+ Q2 F,, (40c)

<3 /(2 gl o) (

whereFN = (Ff + F")/2 with a = T, 2, 3 are the structure functions of the isoscalar nucleon.
The variables of these structure functions are similar to those of Egs. (26)—(28) and we do not
write them explicitly.

) 'FY, (40d)
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4.1.5. Application to complex nuclei

Unlike the deuteron, the spectral function of complex nuclei does not reduce to the ground
state wave function but includes, generally infinite, set of excited residual states (this can be seen
directly from Eq. (22) by inserting the complete set of intermediate states). Furthermore, complex
nuclei typically have different numbers of protons and neutrons and, in contrast to the deuteron
case, the calculation of nuclear structure functions requires both the isoscalar and the isovector
contributions. In order to take into account this effect we explicitly separate the isoscalar and
the isovector contributions to Eqgs. (26)—(28). To this end we consider generic integrand in the
convolution formulas and write

> PTFf=PPEN + PPTUE)T" )2, (41)

T=p,n

where we denotéP?*" = PP + P" and FN = %(Ff + F" and F/™" = FI' — F! for the
structure function of type.

In an isoscalar nucleus with equal number of protons and neutrons Eg. (41) is dominated by
the isoscalar contribution and one generally assuRiEs' = 0. However, it must be remarked
that this equation is violated by a number of effects even in the isoscalar nucleus. The finite
difference between the proton and neutron spectral functions is generated by the Coulomb inter-
action and isospin-dependent effects in the nucleon—nucleon interaction. The discussion of these
effects goes beyond the scope of this paper and we leave them for future studies. Instead we
focus on the neutron excess effect for heavy nuclei.

We write the isoscalar and isovector spectral functions in terms of reduced fun®gons
andP; as

PPt = APy, (42a)
PP =(Z — N)P1. (42b)

The functionsPp andP; are normalized to unity as follows from Eqg. (23). These spectral func-
tions are quite different. The functighy involves the averaging over all isoscalar intermediate
states. The functiofi*; probes the isovector component in a nucleus and its strength is peaked
about the Fermi surface as argued in Section 5.2. The model spectral furRgiand Pz, which
are used in this paper, are discussed in Section 5.2.
Using Egs. (41) and (42) we can write each of the structure funatierf’, 2, 3 as
Z—N _

R = A(FN g+ (R, 43)
where the averagingF,)o 1 denotes the integration in Egs. (26)—(28) with the reduced spectral
functionsPg andP1, respectively.

We conclude this section by commenting that data are sometimes naively corrected for the
neutron excess effect neglecting Fermi motion and binding effects (as well as any other nuclear
effects) in the isovector and the isoscalar distributions. As follows from the present discussion,
the Fermi motion and binding effects are quite different in the isoscalar and the isovector distri-
butions in heavy nuclei. If neglected, this effect may cause an additional systematic uncertainty
in data and a distortion of final results.

4.1.6. Off-shell effects
The bound proton and neutron are off-mass-shell and their structure functions differ from
those of the free proton and neutron. The off-shell nucleon structure functions depend on the
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nucleon virtuality p? as an additional variable. Therefore, the off-shell effects in the structure
functions are closely related to the target mass corrections. Target mass effects in the off-shell
nucleon can be of two different kinds. First, similarly to the on-shell nucleon, we have to take
into account the kinematical target mass dependence due to thepfrii@ ratio. We assume
that this effect is described by Egs. (11), where the nucleon mass squared is replaéethizy
leads in turn to the modification of the parameteand the variablé in the off-shell region).
Furthermore, the dependence ghappears already at leading twist (LT) at the PDF level as was
argued in [46,48,50,51]. Thus off-shell effects in the LT structure functions can be viewed as a
measure of the nucleon’s modification inside nuclear medium.

Since we treat nuclei as non-relativistic systems it would be enough to consider the off-shell
effect as a correction. We expand the nucleon LT structure functions in the vicinity of the mass
shell in series irp?—M?2. Keeping only the linear term we have {8

p2_M2>

2 (44)

Falx, 02 ?) = Fa(x, 0?) (1+ 572(x. 07)

_dInFa(x, 0% p?)
N d1n p2

5f2(x, 0%) , (45)
where the first term is the structure function of the on-mass-shell nucleon and the derivative is
evaluated ap? = M?2. Similar expressions can be written for the other structure functions.

The functions f> can be related to the corresponding off-shell functions for the nucleon parton
distributions. The necessary relation can be obtained by writinign terms of a convolution of
the parton distributions with the corresponding coefficient function according to the given order
in ag. In order to simplify discussion and illustrate this relation we can consider the simple
leading order expression @b

Fa=xY_elqi+q), (46)

wheree; andg; (g;) are the charge and the distribution of (anti)quarks of the tygoed the sum
is taken over different types of quarks. The off-shell function for the parton distribgtionis
defined similarly to Eq. (45)5f, =dIng/aIn p2. Then from Eq. (46) we have a relation

Fa(x)8f2(x) =x Y _ e3[q(x)8£,(x) + G(x)8f7(x)]. (47)

One can conclude from Eq. (47) that at largewhere the antiquark distributions can be ne-
glected,s f» is dominated by quarks. For simplicity we neglect the isospin effect and assume
8fu = 8fa = 8fy, thenéfo = 6f, at largex. At smallx both, the quark and the antiquark contri-
butions, have to be taken into account.

Off-shell effects in nucleon structure functions were discussed in [48,50] using the spectral
representation of the quark distributions in the nucleon with four-momeptum

Imax

q(x,pz) =fds/. dth/N(s,t,x,pz). (48)

The integration in Eq. (48) is taken over the mass spectrum of spectatorsstidshe quark
virtuality r = k2 with the kinematical maximunmiax = x[p2 —s/(1— x)] for the givens and p2.

The invariant spectral densify, ,y measures the probability to find in a nucleon with momentum
p, a quark with light-cone momentumand virtuality and the remnant system in a state with
invariant mass.
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We conclude from Eq. (48) that the? dependence of quark distributions can have two
sources: the? term in may (kinematical off-shell dependence), and e dependence of the
quark spectral functio®,,n (dynamical off-shell dependence). The kinematical off-shell effect
causes a hegative correction to the bound nucleon structure functions that results in an enhancec
EMC effect, as first noticed in [46,48]. However, if only the kinematical off-shell effects are taken
into account the number of valence quarks in the nucleon would changegithcan be seen
directly from Eq. (48) that the normalization of the quark distribution decrease$ decreases,
provided that the spectral density is positively defined. This observation indicates that off-shell
effect of dynamical origin must also be present. A method to estimate the dynamical off-shell
effects minimizing the model dependence was suggested in [48], in which the conservation of
the valence quark number in off-shell nucleon was used as a constraint. A partial cancellation
between the kinematical and dynamical off-shell effects was found in [48,50]. However, the
off-shell effect in the structure functions remains an important correction. In this paper we treat
the functions f> phenomenologically and fix it from nuclear data as discussed in more detail in
Section 5.

4.2. Coherent nuclear effects

Nuclear shadowing effect was extensively discussed in the literature. A recent paper [24]
provides a review of both data and theoretical models of nuclear shadowing.

It appears to be a common wisdom that nuclear shadowing is a result of coherent interaction
of hadronic component of virtual photon with target nucleus. The structure functions atxsmall
can be presented as a superposition of contributions from different hadronic states. We consider
the helicity structure function®¥y and W, as defined in Eg. (6), that will allow us to discuss
nuclear effects in charged-lepton and neutrino interactions on the same ground. We have

W= wyop(s), (49)

whereo; (s) is the total cross section of scattering of the hadronic statih the given helicity
h = 0, +1 off the target nucleon (or nucleus) with the center-of-mass enesg@?(1/x—1) +
M? and the quantities, describe the weight of different hadronic states.

Atlow Q2 the vector meson dominance model (VMD) was proved to be a good tool to eval-
uate nuclear corrections to the structure functions [58]. In this model the structure functions are
approximated by contributions from a few vector-meson states. The weights for the electromag-
netic current arev, = Q?/(£2)(1+ Q2/m?)~2 with £, the photon—meson coupling constants
andm, the vector meson mass. Usually only the lowest mass vector megbns( ¢) are
important at lowQ? < 1 Ge\2. The VMD structure functions have stromf dependence and
decrease a@ 2 at highQ. In the generalized versions of VMD, the higher-mass states including
continuum have also been considered that made it possible to apply the model atdbee,

e.g., [24)]).
In this paper we approximate the sum over hadronic states in Eq. (49) by a factorized form
Wi (x, 0%) = wi(x, Q)Gn(s), (50)

whereg), is aneffectivecross section corresponding to helicityaveraged over hadronic con-
figurations andw, is remaining normalization factor. At loWp? the quantitys;, corresponds

to the average over a few vector meson statesQAsncreases, the averaging in (50) involves
the rising number of active hadronic configurations. Since the relative weight of higher-mass
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states increases witB? and the cross section decreases with the mass, one can qualitatively
conclude thag;, should decrease wit@2. In the approach adopted in this paper we will trigat
phenomenologically.

In this paper we are concerned with the relative effect of nuclear interactions

SRu(x, Q% A/N) =W (x, 0%)/ W} (x, 0?), (51)

wheres W}j‘ is the nuclear structure function of helicitysubtracted incoherent contribution (cf.

Eq. (13)). Assuming that the weight factors are not affected by nuclear effects, from Eq. (50) we
conclude that the relative nuclear correction to the structure functions equals the corresponding
correction to the effective cross section

SRi(A/N) =385 /5), (52)

wheress 4, similar tosW4, is the nuclear cross section subtracted incoherent contribution. The
problem of calculation of nuclear corrections to structure functions at sntllls reduces to the
calculation of multiple scattering effects on effective hadronic cross section.

4.2.1. Application to the deuteron

We now consider this effect in application to the deuteron. In order to calculate the shad-
owing correction we consider hadron elastic scattering amplitislge) with s the center-of-
mass energy ankdthe momentum transfer. We choose the normalization of the amplitude such
that the optical theorem reads &y, 0) = o (s) /2 and parametrize the scattering amplitude as
a = (i +a)(0/2) exp(—Bk?/2), where the exponent describes the dependence on momentum
transfer? The hadron—deuteron scattering amplitude in forward direction can be written as [56]

al =a” +a" +8aP, 8aP =iaPa"CP, (53)

wherea? anda” are the scattering amplitudes off the proton and the neutrod@idhe double
scattering correctiorcé) can be written in terms of the deuteron wave function as

1 2
D_ d%k 1 Sp(k i, kp)e BKL 54
& (27{)2/ 18pky,kp)e ""L, (54)
Sp(k) = / & e |wp ). (55)

Note that Eqg. (53) is the scattering amplidude of an off-shell hadron with four-momentum
For this reason there appears a finite longitudinal momentum trahsterMx (1 + m?/Q2),
which accounts for a finite longitudinal correlation length of a virtual hadign=£ O for the
scattering of on-shell particles).

We apply Egs. (52) and (53) in order to calculate coherent nuclear effects for different struc-
ture functions. It should be remarked that helicity conserves in multiple scattering interactions
and the scattering matrix is diagonal in helicity basis. For this reason the multiple scattering cor-
rections involve the amplitudes with the same helicity. We also assume no isospin effect, i.e. the
effective scattering amplitudes of the given helicity are equal for the proton and the neutron. Let
us first discuss the transverse structure functign The relative shadowing correction to the
transverse structure function is

SR (x, 0%, D/N) = or(a? — 1)C2 /2, (56)

3 such dependence is confirmed experimentally and for low mass vector mesons the value of the p&ameter
between 4 and 10 GAtlepending orQ? (see, e.g., [58]).
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whereor andar are parameters of effective scattering amplitude of transversaly polarized vir-
tual photon. A particular model of the scattering amplitude used in our analysis is discussed in
Section 5.5.

Relation similar to Eq. (56) holds in the longitudinal channel. It follows from Eq. (50) that the
ratio R = F; /Fr equals the corresponding ratio of the cross sectigns provided that the
normalization factomw (x, Q?) is independent of helicity. This holds in the VMD for low-mass
mesons and we also assume that this is approximately true for the contribution from higher-mass
states. Thus using Eqg. (56) and assumipg= a7 we find that the relative shadowing corrections
for longitudinal and transverse structure functions is simply determine®l by

SRL(x, 0%, D/N) _
SRr(x, 02, D/N)

R(x, 0?), (57)

whereR (x, 0?) is calculated for the nucleon.
Egs. (56) and (57) allow us to compute the nuclear shadowing effect for the structure function
F> in terms of the corresponding correctionf@. Indeed, recalling Egs. (7) we have

SRr(D/N)+ RSRL(D/N)
1+R '

Taking into account (57) we find the fact¢t + R?)/(1 + R) difference between shadowing
effect for F» and Fr.

Let us discuss the shadowing effect for the structure functi&gf This structure function is
given by the left—right asymmetry in helicity structure functidiis — W_. Therefore, in this
case the problem reduces to computing the multiple scattering effect for the difference of the
corresponding scattering amplitudes. We denote= a, — a_. The non-zero differencaa is
generated because of vector—axial vector current transitions in the hadronic tensor. The double
scattering correction taa can readily be derived from Eq. (53)

sAaP =2iAa aTCé), (59)

SR2(D/N) =

(58)

where we denoter = (a4 + a-)/2. It follows from Eq. (59) that the relative shadowing effect
for the cross section asymmetry is determined by the cross segtidosing Egs. (53) and (59)
we find
OSRA(D/N) _ 1—apar
SRr(D/N) ~ 1-a2 °

(60)

We observe from this equation that the shadowing effect is enhanced for the cross section
asymmetry by the factor of 2 with respect to the shadowing effect for the cross segtidn
we neglect the effect of real part of the amplitudes [61]. To clarify the origin of this enhance-
ment we consider a somewhat simplified VMD model with the single vector megsaregon)
and the axial-vector mesom;( meson). In this model the structure functioAs and Fr in
charged-current scattering are determined by the diagonal vector—vector and axial vector—axial
vector transitiond/ N —- VN andAN — AN, while the structure functioirz is driven by the
off-diagonal transition N — AN andAN — V N. The cross section of the off-diagonal tran-
sitions is much smaller than the cross sections of the direct processes. For this réasenf»
at smallx. However, the nuclear multiple scattering corrections to off-diagonal prd¢essA
are determined by a strong cross section of the diagonal proc¥ssesd’ and A — A. This
becomes clear if we consider the double scattering term for the off-diagonal nuclear amplitude.
To this order the nuclear scattering proceeds via two steps: the off-diagonal scattering from one
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nucleon followed by the diagonal scattering from the second nucleon. The off-diagonal scatter-
ing can be interchanged with the diagonal scattering that leads to the factor of 2 enhancement,
which appears to have the combinatorial origin.

4.2.2. Application to complex nuclei

We now turn to the discussion of the shadowing effect in complex nuclei. We apply the
Glauber-Gribov multiple scattering theory to calculate the multiple scattering effect on effec-
tive cross sections. Let? be the nuclear scattering amplitude in forward direction. We will
assume no isospin dependence of the scattering amplitude” kea”. Thena? can be written
as (see, e.g., [58] and references therein)

a’ = Aa+sa?, sat = iaZC?(a), (61)

wherea is the corresponding nucleon amplitude afi incorporates the multiple scattering
effects and read as follows

22
C3 (a) = f d?b dz1 dzo pa(b. 21)pa (b 22) exp[i f dz’ (a pa(b, ') — kL)]. (62)
21<22 21

Here p,4 is the nucleon density distribution normalized to the number of nucleoasd the
integration is performed along the collision axis, which is chosen tedods, and over the trans-
verse positions of nucleons (impact paramé)eif only the double scattering approximation is
considered then the exponential factor in Eq. (62) should be omitted. The exponential factor in
Eq. (62) accounts for multiple scattering effects (see, e.g., [58]).

We note that Egs. (61) and (62) were derived assuming that the wave function factorizes into
the product of the single particle wave functions and neglecting short-range correlation effects
between bound nucleons (optical approximation). We comment in this respect that the corre-
lations are relevant only if the coherence lendgth= 1/k; is comparable to the short-range
repulsive part of the nucleon—nucleon force, which is about 0.5 fm. This takes place at relatively
largex, for which shadowing effect is small (see discussion in Ref. [24]).

The transverse momentum dependence of elastic scattering amplitudes was also neglected,
since the transverse size of the meson-nucleon amplitude in the impact parameter space is of
order B~1/2, much smaller than the radius of the nucleus.

We first discuss multiple scattering correction to the transverse structure function. The rel-
ative shadowing correction is determined by effective scattering amplitgdsf transversely
polarized virtual photon

SRT(A/N) = or Re(i +ar)?C4 (ar)/2. (63)

If the real part of the amplitude is small then multiple scattering correction is negative because of
destructive interference of forward scattering amplitudes on the upstream nucleons that causes
shadowingpf virtual hadron interactions. It should be also noted that if the real part is large then
the interference in the double scattering term is constructive that would lead to antishadowing
effect.

If the coherence length of hadronic fluctuation is small compared to average nuclear radius,
L. < Ry, then the oscillating factor in Eq. (62) suppresses multiple scattering effect. The onset
point of coherent nuclear effects can be estimated by comparing the coherence length of hadronic
fluctuation L. with the averaged distance between bound nucleons in the nugjeu$he co-
herent nuclear effects take place if the coherence length is large erdQughyn. Since for
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any massn? of intermediate hadronic stafe. < (Mx)~! the region of coherent nuclear effects
is limited to smallx for any 02, x < (Mrnn)~L. Nuclear shadowing saturates if the coherence
length L. exceeds average nuclear radius that happens at snaaltl the conditionL. ~ R4
defines the transition region with stromglependence of the shadowing correction.

The rate of multiple scattering interactions is controlled by mean free path of hadronic fluc-
tuation in a nucleugp40) L. If this is small enough compared with nuclear radius, which is the
case for heavy nuclei, then multiple scattering effects are important.

It can be easily seen from Egs. (61) and (62) that if the depender(ﬂ? ofi the scattering
amplitude can be neglected, then Eq. (57) generalizes to complex nuclei. This corresponds to
the case when the double scattering saturates the multiple scattering corrections. Generally, for
heavy nuclei Eq. (57) should be replaced by

SRL(x, 0% A/N) o RE(i + a1)?C (ar)]
5 = R(X, Q ) N A .
SRy (x, 02, A/N) Re[(i + ar)2C4 (ar)]

with a; andar the effective scattering amplitudes for longitudinally and transversely polarized
photons. The relation between the nuclear shadowing effedtf@nd Fr in heavy nuclei can
be derived from Egs. (58), (63) and (64).

We now discuss the multiple scattering corrections to the right—left asymmetry in the helicity
scattering amplitudes and the generalization of Eq. (60) to heavy nuclei. The multiple scattering
correction to the differencAa = a4+ — a_, as follows from Egs. (61) and (62), can be written as

§Aa* =i[a2Ch(ay) —a?Coa)], (65)

wherea. are the corresponding nucleon amplitudes. We now use the factAhakk |ar|,
wherear = %(aJr + a_) is the amplitude averaged over the transverse polarizations of the inter-
mediate boson, and expand Eg. (651 keeping only the linear term. We have

SAat =2iAa aTC§‘ (ar) — Aa a%Cé (ar), (66)

(64)

where
C4(a) = —idC4 (a)/da
= / d2b dz1dz2 dz3 pa (b, 21) pa (b, 22) pa (b, 23)

71<22<Z3
z3
X exp|:i / dz'(a pa(b,z) — kL)i|. (67)
a

The first term in the right side of Eq. (66) is similar to that in Eq. (59). This term is driven by
the double scattering term (the quadraiﬁ:term). However, the higher order multiple scattering
terms also contribute to (66) through non-linear effecté?nandcg‘. Note in this respect that
the expantion of the terrﬁé‘ in the multiple scattering series starts from the tripple scattering
term ,0:‘:’. The analytical expressions f6¢' andC2 calculated for uniform density distribution,
which is used in our analysis described in Section 5.7, are given in Appendix B.

Using Eg. (66) it is straightforward to compute the relative multiple scattering correction to
the cross section asymme#iR o (A/N) = §Ac4 /Ao that also determines the nuclear shadow-
ing effect for the structure functiofiz. The resulting expression féfR A (A/N) is somewhat
cumbersome in general case and we do not give it explicitly here. It should be noted that
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3R a(A/N) does not depend on the cross section asymmesryfor the nucleon but does de-
pend onaeax = ReAa/Im Aa. If we keep only the double scattering term th#RaA(A/N) is

given by Eq. (60) also in the case of complex nuclei. However, this relation is violated by higher
order scattering terms.

5. Description of the model

In the following we discuss in detail the model which is used to describe nuclear structure
functions. The model incorporates the treatment of both the coherent and incoherent processes
as described in Section 4. We use the model nuclear spectral function calculated in a many-body
approach (Section 5.2). The model pion distribution function is constrained by light-cone mo-
mentum conservation and equations of motion of pion field (Section 5.3). The nuclear shadowing
effect is described in terms of effective scattering amplitude of intermediate hadronic states of
virtual boson off the nucleon (see Section 4.2). In order to describe data on nuclear structure
functions we explicitly introduce an off-shell correction to the nucleon structure functions, which
provides a measure of the modification of the nucleon structure in the nuclear environment. This
effect and the effective scattering amplitude are treated phenomenologically in terms of few uni-
versal parameters, common for all nuclei, which are extracted from nuclear DIS data in a wide
kinematic range ok and Q2. The parameterizations of the off-shell effect and of the effective
amplitude are discussed in Sections 5.4 and 5.5. Sections 5.6 to 5.7.3 describe the analysis of
data and our main results.

5.1. Deuteron wave function

Nuclear spectral functio® describes the probability to find the nucleon with the momentum
p and the (non-relativistic) energy in the ground state of the nucleus. We first discuss the
deuteronfor which the spectral function is determined by the wave function (see Eq. (39)). The
deuteron wave function is the superpositiorsondd-wave states. In the momentum space it
can be written as follows

(68)

o
Wpm(p) =V 2n2(wo<p> () 2P ) Xim:

V8
whereyp andy, are respectively the- andd-wave function in the momentum spate; is the

projection of the total angular momentum on the spin quantization axjsis the spin 1 wave
function with S, = m, andS12(p) is the tensor operator

S12(p) =3(01- p)(02-p) —01-02, (69)

wherep = p/|p| andeo ;1 ando » are the Pauli matrices acting on the spin variables of the bound
proton and neutron, respectively. The momentum distribution in the deuteron is given by the
wave function squared

2
W () = ZnZ[wg(m 20 — 4L S12x1m (‘/’0(” Walp) | V3P )ﬂ

NG 1 (70)

4 In terms of the standard wave functions in the coordinate spageandw () the functionsyg andy» areyg(p) =
@/m)Y2 [ dr rjorp)u(r) andyra(p) = (2/m)Y? [ dr rja(rp)w(r), wherejo and j are the spherical Bessel functions.
Note also a different sign of thé&-wave term in Eq. (68) with respect to the wave function in the coordinate space.
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where the last term in the right side appears due to the tensor operator (69). This term vanishes
after averaging over the deuteron polarizations, which is the case for the present paper. The
normalization of the wave function is

/ dp p2(V2(p) + Y(p)) = 1. (71)
0

In order to study the sensitivity of our result to the choice of the deuteron wave function we
used the Bonn [62] and the Paris [63] wave functions.

5.2. Nuclear spectral function

The nuclear spectral function can formally be written as a sum over the set of excited residual
states. This can be seen directly from Eqg. (22) by inserting the complete set of intermediate states.
For simplicity we suppress the explicit notations for different isospin states and write

Ple.p) =21 |{(A— 1D, —p|ly(p)IA5(e + EF T+ Er — EG). (72)

Here the sum runs over the quantum numbers of the statds-ofl nucleons, which include

the bound states as well as the continuum stdtgs,! and E{ are respectively the energy of

the residual nucleus (in the recoil nucleus rest frame) and the ground state energy of the target
nucleus. The residual system balances momentum of the removed nucleon and acquires the recoi
energyEr = p2/2M4_1.

The nuclear spectral function determines the rate of nucleon removal reactions éuehas
that makes it possible to extract the spectral function from experimental data. For low separation
energies (forle| < e ~ 30-50 MeV) the experimentally observed spectrum is similar to that
predicted by the mean-field model [64]. The mean-field model spectral furfegigns given by
the wave functions and energies of the occupied levels in the mean field [65]. The mean-field pic-
ture gives a good approximation to experimentally observed spectriméip) reactions in the
vicinity of the Fermi level, where the excitation energies of the residual nucleus are small [64].
As nuclear excitation energy becomes higher the mean-field model becomes less accurate. The
peaks corresponding to the single-particle levels acquire a finite width (fragmentation of deep-
hole states). Furthermore, the high-energy and high-momentum components of nuclear spectrum
cannot be described in the mean-field model and driven by correlation effects in nuclear ground
state as withessed by numerous studies (for a review see [66]). We denote the contribution to the
spectral function which absorbs the correlation effect®ags, p).

In this paper we consider a phenomenological model of the spectral function which in-
corporates both the single particle nature of the spectrum at low energy and high-energy and
high-momentum components due to NN-correlations in the ground state. We first discuss the
isoscalar spectral function which we write as

Po(e, p) = Pume(e, p) + Peorle, p). (73)

The low-energy part is described by the mean-field spectral function for which we use an ap-
proximate expression motivated by closure, i.e. the sum over occupied levels is substituted by its
average value:

Pue(e, p) = 2 nve(p)8(e + EY + Er(p)), (74)
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with Eg(p) the recoil energy of residual nucleus¥ = EA~1 — E4 the nucleon separation
energy averaged over single-particle levels, apgd(p) the corresponding part of the nucleon
momentum distribution. Note th&yr is not normalized to the number of nucleons since a part
of the strength is taken by the correlation teRg,.

The correlated part of the spectral functiBgy is determined by excited states in (72) with
one or more nucleons in the continuum. Following [67] we assumeRgatat high momen-
tum and high separation energy is dominated by ground state configurations with a correlated
nucleon—nucleon pair and remainidg— 2 nucleons moving with low center-of-mass momen-
tum

IA—1,—p) ~ ¥ (pD](A— 2%, p)S(p1+ P2+ p). (75)

The corresponding matrix element in Eqg. (72) can thus be parametrized in terms of the wave
function of the nucleon—nucleon pair embeded into nuclear environment. We assume factoriza-
tion into relative and center-of-mass motion of the pair [67]

((A=2%, pol¥r (P (P)IA) = Cotrrel (k)Y > (Pm)S(P1+ P2+ D), (76)

wherere is the wave function of the relative motion in the nucleon—nucleon pair with relative
momentumk = (p — p1)/2 andycm is the wave function of center-of-mass (CM) motion of
the pair in the field ofA — 2 nucleonspcy = p1 + p- The CM wave function/cm generally
depends on the quantum numbers of the statd ef 2 nucleons, however the corresponding
dependence of thée is assumed to be weak. Both the wave functiofig; and ycv, are
assumed to be normalized to unity. The normalization factpdescribes the weight of the
two-nucleon correlated part in the full spectral function.

Using Eq. (76) we sum over the spectrum of statesiof 2 nucleons and obtain an ap-
proximate expression foPqo in terms of convolution of the relative and the CM momentum
distributions

Peor(e, p) = 21 C3 / d®p1 & ponreik)nem(p2)s (pr+ pa+ p)

I’% P% %)
sle+ Ly P2 | p@) 77
x <8+2M+2MA_2+ ) (77

Herenre andncy are the relative and the CM momentum distributions, respectivelyFafid=
EA—2 Ec’,‘ is the energy needed to separate two nucleons from the ground state averaged over
configurations ofA — 2 nucleons with low excitation energy. Note that the minimum two-nucleon
separation energg® = Eé“z — Ec’,‘ is of order 20 MeV for medium-range nuclei liRéFe.

We can further simplify Eq. (77) if the momentumis high enough andp| > |p,|. This
allows us to take the relative momentum distribution out of the integral over the CM momentum
at the pointt = p. Then we have

2 P’ pp P% @
P ,p)=2nC 1) — — 4+ F , 78

cor(€, P) T 2”re|(1’)< <8+ M + Vi + 2M, + >>CM (78)
where the averaging is done with respect to the CM motion of the correlated paiv/ard
M(A —2)/(A — 1) is effective mass of the system of the residual nucleug ef 2 nucleons
and the nucleon with momentumy. In this approximation the high momentum part of nu-
clear momentum distribution is determined by relative momentum distribution in the correlated
nucleon—nucleon pair embedded into nuclear environmegi(p) = anre|(p). The energy
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spectrum predicted by Eq. (78) is a broad peak with the maximum-at p2/2M and effective
width | p| pcm/M with pcy an average CM momentum.

We perform the averaging over the CM motion of the NN pair in the field of other2
nucleons assuming that the CM momentum distribution is given by a Gaussian

nem(pen) = (a/m)¥ 2 exp(—apéy)- (79)

The parameter is related to the averaged CM momentum of the nucleon—nucleon pair,
o= %(p%M)*l. The latter can be estimated from the balance of the overall nucleus momen-
tum [67], ((Y_ p,)%) = 0, where the sum is taken over all bound nucleons and the expecta-
tion value is performed with respect to the intrinsic wave function of the nucleus. This gives
(P2y) = 2(p®)(A — 2)/(A — 1), with (p?) the mean value of the squared single nucleon mo-
mentum. We consider configurations in which characteristic CM momenta are small. For this
reason we should also exclude the high-momentum part in estimgifigand we will assume
that this quantity is given by averaging over mean-field configurations.

Using Eq. (79) we integrate over the CM momentum in (78) and the result reads,

2M
Peorle, p) = ”cor(P)7\/ 0%/4 [eXp(_O‘pr%win) - EXp(—ozprznax)], (80)

wherep = |p|, pmin @nd pmax are respectively the minimum and the maximum CM momenta
allowed by the energy—momentum conservation in Eq. (77) for the giverd p,

Pmax= Myxp/M + pr, (81a)
Pmin = |Mxp/M — prl, (81b)

wherepr = (2M,(l¢| — Em))Y2 and Ey, = E@ + Eg(p). The latter is the threshold value of
the nucleon separation energy for discussed configurations. Note that in our notati@ns\Ve
also remark thapy has the meaning of the maximum CM momentum in the correlated NN-pair
in the direction transverse o for the givene and p [69].

In numerical evaluations we use the parameterizationsyg A, p) andnco (A, p) of [67]
which fit nicely the results of many-body calculation of nuclear momentum distribution. It
follows from this calculation that low-momentum part incorporates about 80% of the total nor-
malization of the spectral function while the other 20% are taken by the high-momentum part.
The momentum distributions are presented in [67] for a limited range of nuclei. In order to eval-
uate the momentum distributions for other values of the nucleus mass ndmierinterpolate
the values of the momentum distributions for each value of momempnFor the parame-
ter £@ we take the two-nucleon separation energy, i.e. the dil‘feréjg‘g‘c‘e2 — Ec’,‘ between the
ground state energies (note tha® > 0). The remaining paramet&? of Py is fixed us-
ing the Koltun sum rule [70], which is exact relation for non-relativistic systems with two-body
forces

(e) +(T) = 25, 82)

wheresg = Eé/A is nuclear binding energy per bound nucleon &jdand(T') are the nucleon
separation and kinetic energies averaged with the full spectral function

(e)=A"1 / [dp]P(e, p)e, (83a)

2
_ 41 14
(Try=A /[dp]P(s, p)—ZM- (83b)
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The function’P; describes the isovector component in a nucleus (see Egs. (42)). In calculat-
ing P1 we assume that the correlation part of the spectral fun@ghis mainly isoscalar and
cancels out in the — n difference. TherP?~" is determined by the difference of the mean-field
configurations for protons and neutrons. If we further neglect small differences between the en-
ergy levels of protons and neutrons tHefA~—" is determined by the difference in the occupation
numbers of single-particle levels for protons and neutrons. In a complex nucleus the deep levels
are usually occupied and their contribution cancel otinThe Fermi level has a large degener-
acy factor and the occupation numbers for protons and neutrons are different. We then conclude
that the differencé”~" is saturated by the Fermi level and

Pr=|pr(p)|*8(c — &), (84)

whereer and¢r are the energy and the wave function of the Fermi level (we have neglected the
recoil of theA — 1 nucleus).

The isovector correction is usually relevant for heavy-weight nuclei in which there exists a
considerable neutron excess over protons. For such nuclei the Fermi gas model is supposed to
be a reasonable approximation and we use this model in numerical applications. In this model
lpr (p)|% < 8(pr — p), wherepy is the Fermi momentum which is determined by average nu-
cleon densityp = 4p%/(6712). The normalization coefficient can be found from condition (23),
according to whichP; is normalized to unity. As a result we have

PEC=8(p — pr)d(e —er)/(4mpF). (85)
5.3. Nuclear pion distribution function

In calculating the pion effect in nuclear structure functions the relevant quantity is the distrib-
ution of pion excess in a nucleus since the nucleon pion cloud effect is taken into account in the
nucleon structure functions. The inspection of Egs. (37) and (38) suggests that the pion correc-
tion is located at small < pr/M, which is also confirmed by model calculations. In this region
a good approximation is to neglect/ 02 terms in Egs. (36) as well as target mass corrections to
structure functions. We also assume no off-shell dependence of pion structure function and base
our discussion on convolution approximation by Eqgs. (37) and (38).

Before doing model calculations it is important to realize that the pion distribution function is
constrained by a number of sum rules. The first moment of (38) gives an average pion light-cone
momentum

()r = / Ay y oy () = (67, )/ M. (86)

where 97, = (809)? + (3.9)? is the light-cone component of pion energy—momentum ten-
sor. In Eq. (86) we assume the sum over different pion states and the averaging{fieans
fd3r<A|O(r)|A)/(A|A) for any operatop. It is also useful to consider the average' which

is proportional tap? averaged over nuclear ground state:

1), =/dy Y frra(y) = Mg?). (87)

The pion and nucleon fractions of nuclear light-cone momentum are related by the momentum
balance equation
My

Mz +IN= M (88)



S.A. Kulagin, R. Petti / Nuclear Physics A 765 (2006) 126-187 153

Eq. (88), although being intuitively obvious, can formally be derived in a meson-nucleon field-
theoretic model of nuclear Hamiltonian [47]. Several constraints on nuclear pion distribution
Dr,4(k) can be obtained in this model using the equations of motion for pion and nucleon
operators and energy—momentum conservation condition. In particular, for a model nuclear
Hamiltonian with nucleons and pions with pseudo-scalar interaction we obtain the following
relations [47]

m2(p?) =ep +(T), (89a)
(Bop)?) =5 — 3((e) + (T)), (89b)
(V)2 = —3(e) — L(T). (89c)

A few comments are in order. Pion field in nuclei is mainly generated by nucleon sources. Time
variation of the pion field describes retardation effects in the nucleon—nucleon interaction. In a
non-relativistic system this effect is small since typical energy variations are small compared to
the pion mass. We, therefore, take the static approximagior= 0. Then Eq. (89b) is equivalent
to the Koltun sum rule (82). In the static approximation for the pion energy—momentum tensor we
have(9], ) = %((W)Z). Then using Eq. (31) we conclude that Egs. (89c) and (88) are equivalent.
For this reason only Eq. (89a) gives independent constraint.

We use the constraints on average pion light-cone momemntand 1/y which follow from
Egs. (89a) and (88) in order to evaluate the pion contribution to nuclear structure functions. It
should be remarked that in this approach by using momentum balance equation (88) we effec-
tively take into account the contributions from all mesons. In order to quantitatively evaluate the
pion effect in the structure functions we use a model distribution

fr/a(y) =Cy(L—y)", (90)

which is motivated by the asymptotics of pion distribution function at small and largéne
normalization constar@ and the exponent are fixed from Egs. (88) and (87) using Egs. (31)

and (89a). The nucleon average separation and kinetic energies are calculated with the spectral
function described in Section 5.2.

5.4. Parameterization of off-shell effects

The off-shell effect in the structure functid is described by Eq. (45). In the analysis of data,
described in detail in Section 5.7, we consider a phenomenological model of the off-shell func-
tion 8f2(x, Q2). In order to choose an appropriate model we first note that function (45) describes
the relative off-shell effect on the LT structure function and we expect@faindependens f»
is a good approximation. We also note that off-shell effects are constrained by the normalization
of nuclear valence quark distribution (see Section 6.1). For this reason we anticipatg that
should have at least one zero. Moreover, the analysis of nuclear pion correction as discussed in
Section 5.3 suggest thaf>(x) can have two zeros. These motivate us to choose the following
simple parameterization for the off-shell function:

8f2(x) = Cn(x —x1)(x — x0)(h —x), (91)

whereCy is an overall normalization constant anéOc; < xg < 1 andk > 1. The analysis of

data indicates that the parametérand.xg are fully correlated and suggests= 1 + xp. After
imposing such condition then expression (91) has only three independent parameters. We use
this model to describe off-shell effects in the analysis of Section 5.7.2.
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5.5. Effective scattering amplitude

As discussed in Section 4.2, the coherent multiple-scattering nuclear effects are determined
by effective (averaged over hadronic configurations of the intermediate boson) scattering am-
plidudesay, for different helicitiesh = +1,0. The amplitudesy, = 65,( + «y)/2 are para-
metrized in terms of effective cross sectiGnand the R¢Im ratio «. For the unpolarized
case, which is considered in this paper, the relevant amplitudes are the average transverse
ar = (a4 + a-)/2 and the longitudinak; amplitudes. One can qualitatively expect tivat
descreases witl®? since the relative weight of higher mass states increases@ftand the
cross section decreases with the meson mass (see Section 4.2). In order to parametrize effective
transverse cross section we use then the following expression

o0 — 01
1+ 0%/0%)

The parametet describes the cross section at sm@f, while o1 corresponds to higi@?

regime. The choice of both these parameters will be discussed in detail in Section 5.7.1. The free
parameterQ(Z) describes the transition between low- and hi@h+egions. We note that in the
discussed approach we only consider relative corrections to the effective cross section and for
this reason the analysis is not very sensitive to the detailed modelling of such cross section. The
presence of non-zero real part of the amplitude is required by both theoretical arguments and
phenomenology. The choice @f in our analysis will be discussed in Section 5.7.1.

In order to fix the effective amplitude in the longitudinal channel we use the relation =
R = Fp/Fr with R calculated using the PDFs and the structure functions of Ref. [39] as dis-
cussed in Section 3 (see also Section 4.2).

The C-odd asymmetryAa = a; — a_ in the scattering amplitude of left- and right-polarized
virtual boson does not affect the structure functidhsand F»>. However,Aa is relevant forFs
and affects the normalization of nuclear valence number as described in Section 6.1. It should be
noted that the relative nuclear shadowing correctiofif@oes not depend on the cross section
asymmetryAo but does depend arn, = ReAa/Im Aa as explained in Section 4.2.2. In order to
fix p we use the approach based on Regge phenomenology of high-energy hadronic amplitudes
and approximatéa by thew-reggeon pole, a simple proper contribution to¢hedd amplitude.

The energy dependence and /R ratio of the Regge pole is fully determined by its intercept
which is about 0.5 that leads ton = 1 [71]. We use this value in the calculation of nuclear
shadowing correction to the valence quark distribution in Section 6.1.

or =01+ (92)

5.6. Nuclear data

Table 1 summarizes the list of experimental data used in this paper. They include both muon
(EMC, NMC, BCDMS, FNAL E665) and electron (SLAC E139, E140) scattering on a variety
of targets:p, D, “He, "Li, °Be, 12C, ?7Al, 4°Ca,>%Fe,63Cu,108Ag, 1195n,197Au, 297Ph. For each
target and kinematic region, we select the most precise and recent data and we do not use earlier
results characterized by larger uncertainties, since their contribution to the present analysis would
be negligible> Most of the data come from NMC for the smalregion and SLAC E139 for the
regionx > 0.1.

5 Note also that the addition of unnecessary data points with large uncertainties can produce an artificial reduction of
the x 2 of fits.
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Experiment Targets # of points x range 02 range [GeV]
NMC [2] D/p 12 70 x 1073-0.70 40

NMC [4] 4He/D 18 35 x 1073-065 Q77-440
NMC [3] Li/D 24 14 x 1074-065 0034-390
NMC [5] 9Be/12C 15 125 x 1072-0.70 34-667
NMC [3] 12¢c/p 24 15 x 1074-065 0035-410
NMC [4] 12¢/Li 25 8.5 x 1073-0.60 08-170
NMC [5] 27p1/C 15 125x 1072-0.70 34-639
NMC [4] 40ca/D 18 35 x 1073-065 06-410
NMC [4] 40cq/7Lj 25 8.5 x 1073-0.60 08-170
NMC [4] 40cgy/12¢ 25 85 x 1073-0.60 08-170
NMC [5] S6Fg/12¢ 15 125x 1072-0,70 34-666
EMC [7] 83cu/D 10 15x 1072-061 33-464
NMC [6] 119gpy12¢ 161 125x 1072-0.70 13-1100
NMC [5] 207ppy12¢ 15 125x 1072-0.70 34-661
E139 [10] HeD 21 0125-088 20-1Q0
E139[10] 9Be/D 21 0125-088 20-100
E139 [10] 12¢c/p 17 0205-080 35-100
E139 [10] 27A1/D 21 0125-088 20-1Q0
E139[10] 40ca/D 17 0205-080 35-100
E139 [10] 56Fe/D 23 0084-088 20-100
E139 [10] 108pg/D 17 0205-080 35-1Q0
E139 [10] 197Au/D 22 0125-088 20-100
E140 [9] 56Fe/D 8 0.200-050 10-50
E140 [9] 197Au/D 1 0.200 10
BCDMS [8] 56Fe/D 10 007-065 170-1130
E665 [11] Dp 21 20x 107°-0.25 0005-356.0
E665 [12] 207cq/12¢ 10 12 x 1074-0.027 Q15-79
E665 [12] 207ppy/p 10 12 x 1074-0.027 Q15-79
E665 [12] 207pp/12c 10 12 x 1074-0.027 Q15-79

We note that, since all available nuclear data are provided by fixed-target experiments, there
is always an implicit correlation betweenand Q2 in data points. Usually low- regions also
correspond to low@? values. As described in the following, this reduces the possibility to test

the 02 dependence of the model in a complete way.

5.7. Extraction of parameters

The numerical values of the parameters in the model are determined from the data listed in
Table P with two main steps. Initially, we verify the consistency of our model wigtdata from
charged-lepton scattering, without imposing specific constraints. We then discuss in detail the
deconvolution of different physical effects which contribute to the overall nuclear modification
of the structure functions.

6 We note that Dp data were not used in our fits. We compare our predictions with these data in Section 6.5.
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It must be noted that the extraction of parameters responsible for nuclear effects is corre-
lated with the determination of PDFs (see Section 3.2), which requires both the proton and
deuterium data to obtain the distributionsdfindu quarks. Nuclear effects can significantly
affect extraction of parton densities. In principle, using our approach it would be possible to ex-
tract simultaneously the proton PDFs and the parameters responsible for nuclear effects (such
as off-shell correction and effective cross section) by applying QCD analysis to the extended
set of data including nuclear data. However, in order to limit correlations we follow a different
approach.

The parameters of the model are extracted only from the measured RioE/A) =
FZA’/FA, whereA’ and A are two different nuclei (usually the denominator corresponds to deu-
terium). The description of the nucleon structure functions largely cancels in the ratios, thus
effectively removing the correlation with PDFs. In order to verify this we applied an iterative
procedure. We first extracted the parameters using PDFs obtained without our nuclear correc-
tions. Then we repeated the procedure after updating the PDF extraction using the information
on nuclear effects in deuterium from the previous step (Section 3.2). Results indicated that the
fitted parameters were stable, demonstrating the absence of strong correlations.

Nuclear data are usually available in binsxofAx), while only the averag@? in each bin
is provided. We perform a fit to the experimental data with MINUIT [72] by minimizjfo=
Y (RFP — RIM2/62(RTP), wherea?(R5™®) represents the uncertainty on the measurements
and the sum includes all data points. For each experimental point, the model is evaluated at the
given averag&)? and integrated over the size of théin:’
Sans B Y

] il
[N FA, 02 dv

RY(x, 0%, A'/A) = (93)

Both the normalization and point-to-point uncorrelated uncertainties, as published by experi-
ments, are taken into account. We would like to emphasize that the lack of knowledge of the
experimentalQ? distribution in thex bins can potentially result in a mismatch between data
and predictions in the regions where a significaft dependence is present. As discussed in
the following, this increases the systematic uncertainties of the calculation from the measured
parameters at > 0.70 andx < 0.05.

As explained in Section 3.2, we use a phenomenological extrapolation of free nucleon struc-
ture functions forQ? < 1.0 Ge\? and, in general, nuclear corrections to structure functions can
be calculated at lov2. However, we restrict the fits to extract the free parameters of our model
to the data withQ? > 1.0 Ge\? in order to reduce systematic uncertainties on the parameters.
We then validate our predictions against the data points @fth: 1.0 Ge\2, which are included
in all comparisons shown in the following.

5.7.1. Choice of fixed parameters

We start our fits by treatingg ando, the asymptotic values of the effective transverse cross
section in Eq. (92), and the real part of the effective scattering ampligde Rear/Imar
(Section 4.2.1) as additional free parameters. This procedure allows a preliminary estimate of
their correlation with the remaining parameters and a consistency check with the expected values.

7 In a few cases, in which the explio@2 dependence is provided, the model is averaged over the corresp@aing
bins.
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The best fit value obtained fer is consistent with zero. By settirg # 0 we can still obtain
an acceptable description of data provided< 1.0 mb (at 90%CL), due to the (anti)correlation
of o1 with Q% in Eq. (92). After verifying that the correlation between and the off-shell
parameters in Eq. (91) is negligible, we thendix= 0 in all our fits.

We note that a non-vanishing shadowing correction at lapgeaffects the normalization
of the valence quark number per nucleon (Section 6.1). In this respect we have two possible
constraints at larg@?. The first condition is to require the conservation of the overall valence
number in nuclei through a balance between the shadowing and the off-shell corrections. As a
second choice, it is also possible to explicitly impose the off-shell effect to conserve the valence
qguark number of the off-shell nucleon. This implies that both the off-shell and the shadowing
effects conserve independently the normalization of valence quark distribution. In our approach,
initially we do not assume any specific normalization constraint. Instead, we verify a posteriori
the magnitude of the renormalization introduced by the off-shell effect (Section 6.1) and its
balance with the shadowing correction. We then use the normalization condition for nuclear
valence number to further bound some of the parameters. This procedure will be discussed in
more detail in Sections 5.7.2 and 6.1.

The fits to DIS data on nuclear targets show a strong (positive) correlation betwaado .

In addition, the value ofg is also correlated withg so that it is not possible to unambiguously
disentangle the three parameters from the fits. If wexfix= 0 we obtainog = 36 mb from

data. However, data clearly prefey # 0, with a somewhat lower value @fy. The best fit
solution corresponds te; = —0.1794+ 0.038(stad and A x2 ~ 29 with respect to the fit with

fixed ay = 0. This can be interpreted as the evidence for a sizeable real part in the effective
scattering amplitude. If we imposg) = 27 mb, as expected from VMD model by averaging
over p°, w and¢ vector mesons, we obtain; = —0.182+ 0.037(stad. Note that this is in a
good agreement with the analysisf photoproduction experiments [59] at lo@?. Since we
require our phenomenological model to correctly reproduce the photoproduction limit, we fix
oo =27 mb andxy = —0.20 according to [59].

In our model we use the pionic parton distributions extracted from real pion scattering
data [42] to approximate the structure functions of virtual pions in nuclei. To this end we perform
fits with and without the pionic sea distributions and we find a significantly better description of
data in the latter case. Therefore we only consider the valence contribution to the pionic structure
functions in the following.

5.7.2. Results

In our model we assume three main free parametgysxg and Q% (see Sections 5.4 and 5.5).
In addition, the off-shell functiod f2(x) is characterized by the presence of a second zgro,
This specific feature has important consequences, as it is discussed in Section 6.2. Since the
parameterc; turns out to be strongly correlated wiy and Q(z), we perform several fits with
different fixed values of1 in the range M30< x; < 0.065 and we evaluate the corresponding
effect on the normalization of the valence quarks at lapge Among the fits with comparable
x2 with respect to data, we choose a fixed vatye= 0.050, since this value provides a good
cancellation between off-shell and shadowing corrections in the normalization for all nuclei (see
Section 6.1 for details).

In order to test our hypothesis about the universality of parameters in Egs. (91) and (92), we
perform independent fits to different sub-sets of nuclei (fitfe to2°’Pb) and we compare the
corresponding values of the parameters with the ones obtained from a combined fit to all data. As
can be seen from Table 2, the results are compatible within uncertainties, thus allowing a unified
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Table 2

Values of the parameters extracted from independent fits to different sub-sets of dafwith.0 Ge\2. Uncertainties

are startistical only. The column on the right gives e from each fit and the corresponding number of degrees of
freedom. The last row shows the result of the global fit

Data set Cn X0 0% [GeV?] x2/d.o.f.
4He/D 6.17+1.29 0456+ 0.033 130+0.30 160/35
7Li/D; °Be/D 7.65+0.92 0435+ 0.022 080+ 0.30 351/35
12¢c/p 9.38+0.76 0449+ 0.012 120+0.21 238/31
27A1/D; 27A1 /12C 7.39+0.86 0470+ 0.016 360+ 241 151/33
40cg/D; 40ca/12C 7.09+0.79 0482+ 0.016 167+0.15 568/58
56Fe/D; 83cu/D; 26Fe/12C 828+ 053 0449+ 0.009 139+0.30 556/63
108pg/D; 1195/12¢ 961+1.29 0448+ 0.018 141+ 0.34 210/29
197au/D; 207pLyD; 207pp/i2c 852+ 0.87 0387+ 0.026 131+0.37 182/42
All data 810+ 0.30 0448+ 0.005 143+0.06 4589/556
Table 3

Correlation coefficients between the nuclear parameters from
the global combined fit

Cij j=Cy j=xo j=03
i=Cy 1.000 ~0.067 ~0.127
i=xg —0.067 1000 Q006
i=03 -0.127 Q006 1000

treatmeng The values of¢2/d.o.f. indicate an excellent consistency between the model and the
data points for all nuclei.

The final values of’y, xg and QS obtained from a global fit to nuclear data are given in the
last line of Table 2. The correlation between the parameters is small and mainly related to the
normalization constant, as can be seen from Table 3.

Figures 1 and 2 show the excellent overall agreement between the calculation and the data
points for many different nuclei. A few comments are in order. The region=a0.75 is char-
acterized by a significan®? dependence and therefore the calculation based upon the average
02 provided by the experiments is approximate. It must also be noted that in some cases the
data points from different experiments are not fully consistent. In particular, the data points
on 2C/D and*°Ca/D ratios from E665 experiment [12] at low seem to be systematically
above the corresponding NMC measurements, which have smaller uncertainties. Similarly, a
normalization problem could be present f8/Pb/D data from E665. Assuming the effect is
common to all heavy targets, in our fits we use instead the double r&tida/D)/(*2C/D) and
(?*°’PbyD)/(*?C/D) and the E665 measurement of the r&fiPb/D. The double ratios are in
good agreement with NMC data (noticed also in [5]) as well as with our predictions, while the
207pp/D points lie slightly above our calculations. Futhermore, the rdtigD shown in Fig. 1
indicates a small excess in the regioncdfetween 1 and 003, which produces corresponding
reductions in the ratio¥C/’Li and *°Ca/’Li. The effect is much larger than the quoted system-
atic uncertainties. For instance, the exclusion of three points=a.0125 0.0175 0.0250 from

8 Unfortunately it is not possible to have data points covering both the high and fegions for all nuclei. This can
result in a small sensitivity to some of the parameters for specific nuclei, as can be seen from the uncertainties in Table 2.
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Fig. 1. RatiosRo(x, A’/ A) for *He/D, 12C/D, 40Ca/D, 7Li /D and®Be/D (left to right and top to bottom). The curves

with open squares show the corresponding model calculations with the parameters specified in the last line of Table 2.
For data points the error bars correspond to the sum in quadrature of statistical and systematic uncertainties, while the
normalization uncertainty is not shown.

our fit leads to the reduction of overai?/d.o.f. for the ratio’Li/D from 1.95 to 0.72 We
also comment that the value of tR¥’Pb/12C ratio atx = 0.7 from NMC (Fig. 2) is marginally
compatible with the corresponding value'8fAu,/D ratio from E139 experiment.

It should be emphasized that at lavthere is an interplay between the off-shell function, the
pion contribution and the coherent nuclear effects. This results in significant correlations between
the corresponding parameterizations and does not allow an unambiguous extraction of individual
components without external constraints. In our approach the pion (meson) excess in nuclei is
calculated as described in Section 5.3. In order to disentangle the actual off-shell function from
the remaining coherent correction, we use additional information from photoproduction experi-
ments (Section 5.7.1). The agreement between our independent extraction of the average VMD
parameters and the photoproduction limit makes us confident in the deconvolution of different
components.

9 The comment is only intended to quantify the effect. We keep all data in our fits, regardless of the inconsistencies
described above.
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to bottom). The curves with open squares show the corresponding model calculations with the parameters specified in
the last line of Table 2. For data points the error bars correspond to the sum in quadrature of statistical and systematic
uncertainties, while the normalization uncertainty is not shown.

We further check the interplay between nuclear pion excess and off-shell effects in our analy-
sis by fitting our model without pion correction ®; data. In this case the effective off-shell
function éf; absorbs the nuclear pion contribution to nuclé&ar We use for this test a higher
order polynomial with respect to Eq. (91), without any fixed parameter. This is intended to avoid
biases from the functional form used to model the off-shell function. The results obtained for
the effectives f; are consistent with the following estimate which can be obtained by explicitly
separating the nuclear pion contribution to nucl&ar

5Fy* (%)

SFi=6 _—
2= 002 N Gy

(94)

wheres F;T/A is the nuclear pion correction calculated as described in Section 53 adenotes
the nucleon virtuality = (p2 — M?)/ M? averaged over the nuclear spectral function. Moreover,
the best fit corresponds to a value@g which is in agreement with our fit with explicit treatment
of nuclear pion correction.
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Fig. 3illustrates different nuclear corrections to the rati&’obf 1°’Au to that of the isoscalar
nucleoanN = %(sz + F3) calculated in our model using the final parameters shown in the
last line of Table 2. As follows from comparison of Fig. 3 and the results of our fit displayed in
Figs. 1 and 2 the standard Fermi motion and nuclear binding effect treated in impulse approxima-
tion does not quantitatively explain data at lasgel he off-shell effect is therefore an important
correction which modifies the structure functions of bound nucleon and affects the slope and
the magnitude of the rati®, at largex. As discussed above, we extract this correction from
inclusive nuclear DIS data. The disscussion of off-shell correction in terms of a scale charac-
terizing valence quark distribution and its modification in nuclear environment is presented in
Section 6.3.

5.7.3. Systematic uncertainties

Systematic uncertainties of the model are evaluated by varying each of the contributions from
the deuterium wave function, the spectral function, the parton distributions, the pion structure
function and the functional forms @ff>(x) andar (Q?). New fits are then performed and sys-
tematics are defined from the corresponding variation of the nuclear parameters and from the
global x2 values. Results are listed in Table 4.

Although we do not use directly deuterium data for the fits, most of the data points come from
the ratiosR of a heavy target to deuterium. In order to study the sensitivity of our result to the
choice of the deuteron wave function we performed independent fits with two different choices
of the deuteron wave function: the one which corresponds to the Bonn potential [62] and the
Paris wave function [63]. These two wave functions have different high-momentum component
and in this respect represent two extreme situations.
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Table 4
The estimate of systematic uncertainties on the extraction of nuclear parameters. See text for a de-
tailed explanation

Systematics sCy 8xQ 803 [GeV?]
Deuteron wave function 0.238 0.0016 0.026
Nuclear spectral function 0.451 0.0046 0.021
Parton distributions 0.005 0.0007 0.023
Pion structure function 0.050 0.0020 0.065
Functional form 0.120 0.0040 0.070
Cross sectionsg andoq 0.015 0.0005 0.165
Total 0.526 0.0067 0.195

Similarly, we modify the high-momentum component of the momentum distributigiip)
in nuclei by multiplying it by the ratio of the Bonn and Paris deuteron wave functions squared.
This is motivated by the observation [67,68] that the momentum distribution of finite nuclei
and nuclear matter at high momenta are proportional to that of the deuteron. We then repeat
our fits with modified spectral functions in order to estimate the corresponding variations of the
parameters of the model.

The systematic uncertainty related to the parton distributions is estimated by varying the PDFs
within their uncertainty £10). In addition, we also use different sets of parton distributions,
extracted from fits to different data samples, with differ@3tboundaries and different parame-
terization for the lowQ? extrapolation.

For the pion structure function, we repeat our fits by using both the LO and the NLO approx-
imations of the pionic parton distributions from [42]. We also arbitrarily change the parameteri-
zations [42] within£10%.

We tried different functional forms in Egs. (91) and (92) to parametetjzeand 7. In
particular, for the off-shell functiod f> we have tried a generic higher order polinomial para-
meterization in Eq. (91) and also used a parametrization with an additiértatrm, with free
parametek. In spite of the new parameters, all acceptable results (i.e. with the valyésom-
parable to our best fit solution) extracted from fits to data were very similar to the ones obtained
with parametrization (91). We emphasize that the behaviour of the fungfigm) for x < 0.70
is well constrained by data and only small variations on both the shape and the position of the
zeroxg are allowed. This observation in turn results in reduced systematic uncertainties of the
model.

For the coherent nuclear effects, we varigdwithin the uncertainty estimated by averaging
over p°, w and¢ mesons#3 mb (Section 5.5). As explained in Section 5.7.1, this parameter
is strongly correlated witler and Q(z). Similarly, we variedo within the 1o allowed range
(Section 5.7.1). We also tried to change the exponent contrallifhdependence in Eq. (92). We
obtained almost equally good fits with the dipole and monopole forms in Eq. (92). The monopole
form of Eq. (92) had lowe ?/d.o.f. for the overall data set.

Fig. 4 shows the off-shell functiodif2(x) and the effective cross sectién (Q2) obtained in
Section 5.7.2, together with the corresponding total uncertainty bands (including both statistical
and systematic uncertainties). We comment that in our analysis the off-shell correction is treated
as the first order correction in the parametet (p? — M?)/M?. At largex > 0.7 the off-shell
correction can be as large as 25% for heavy nuclei (see also Fig. 3) indicating that higher-order
terms inv might not be negligible. This can also be a source of systematic uncertainty. However,
going beyond the first order inrequires the consideration of higher-order relativistic corrections



S.A. Kulagin, R. Petti / Nuclear Physics A 765 (2006) 126-187 163

2 -
[ H C
L H "
1,
0 Ny >
X 0 01 02 03 04 05 06 07 08 09 1
B 27
1
of /
[ \g/
-3 -2
10 10 . 1
Bjorken x
o 30F
E |
o 20:
10} \
0 C ARt [ ETIT] NIt I EEET] M
-3 -2 -1 2
10 10 10 1 10 10
Q%[ GeV?]
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The effect of different functional forms is also included, as explained in Section 5.7.3.

to nuclear wave and spectral functions (see discussion in Section 4.1.1) that would also affect the
treatment of “standard” FMB effect. This goes beyond the scope of the present analysis. We
also note that our phenomenological functi®fi is extracted from nuclear data and hence it
effectively incorporates additional contributions from missing terms.

The final results are dominated by systematic uncertainties, as can be seen from Tables 2 and 4.
However, we note that the magnitude of systematic uncertainties is constrained by the value of
x? of a global fit to data, as explained above. Therefore, the availability of more accurate (or
with wider coverage of kinematics and nuclei) experimental measurements would significantly
improve our results.

6. Discussion

We now discuss the results obtained from our fit to nuclear data in Section 5.7. In Section 6.1
we address the problem of the normalization of the nuclear valence quark distribution and Sec-
tion 6.2 is focused on the implication of this constraint for our analysis. Section 6.4 is devoted to
the 02 and A dependence of nuclear effects predicted by our model. In Section 6.5 we discuss
nuclear effects on the deuteron structure functions.

6.1. Nuclear valence quark number

It is instructive to study the contributions due to different nuclear effects to the normalization
of valence quark distribution in a nucleus. Common wisdom is that this quantity should not be
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corrected by nuclear effects since it counts the baryon number of the system. Therefore, it is
important to verify if different nuclear effects cancel out in the normalization. In the impulse
approximation, i.e. if no shadowing and off-shell effects are taken into account, the cancellation
of nuclear binding and Fermi motion effects in the normalization is explicit and it is guaranteed
by the normalization of nucleon distribution function (30) to the number of nucleons. It should
be also noted that nuclear pions do not contribute to nuclear valence distribution. In the presence
of off-shell (OS) and nuclear shadowing (NS) effects different contributions to the valence quark
normalization per one nucleon can be written as

A
Nyayja = / dx galya (x) = Nyayn +SNOT + SNIT, (95)
0

whereNy, v = 3 is the number of valence quarks in the nucleon and

1
(SN%SZ (v)/dx Z (qi/N(x)qu(x) —éi//v(x)éfg(x)), (96)
0 i=u,d
1
SNy = [ dx gual/n ()8 Ryal(x). @7
0

Herequayy =u — it +d — d is the nucleon valence quark distributi@f, andéf; are off-shell
correction functions for quark and antiquark distributios#®,5(x) is the shadowing correction
to the valence quark distribution ard) = (p?—M?2)/M? is the bound nucleon off-shellness
averaged over nuclear spectral function (for more details see Sectiot? 7.1).

In general, the off-shell correctioldg, andsf; could be different. Since we phenomenologi-
cally extract the off-shell correctiady, from a study ofR, data it is difficult to unambiguously
disentangle off-shell effects for quark and antiquark distributions. The analysis of additional data
from either Drell-Yan production or neutrino scattering would be therefore important. While
we defer a detailed analysis of the existing Drell-Yan data from nuclear targets [14] to a future
publication, no sensitive neutrino data about nuclear effects on structure functions are currently
available (see also the discussion in Section 7.2). In this paper we rather try to use simple consid-
erations on the nuclear valence quark number in order to test the hypothesis of a single universal
off-shell correction for all partons in the bound nucleon against the case of different correc-
tions§f, andésf;. For this purpose it is enough to focus on the high region, where we can
use Eq. (47).

Let us first assumeéf, (x) = §f;(x). From Eq. (47) we then also hadg (x) = §f, (x), that
implies that we have a universal off-shell function for both quark (valence) and antiquark (sea)
distributions. We evalua‘néN\%lS by Eq. (96) as a function af? using the parameters 6§ (x)
from Table 2 and the nucleon valence distribution of [39]. The results for iron and lead are re-
ported in Fig. 5, indicating a positive off-shell correction of about 1.5-2% that decrease@4with
We then compute the shadowing correcmq'l\gls by Eq. (106b) using the effective cross section

10 Note that the normalization of valence quark distribution is not affected by the order of perturbation theory analysis
and therefore Eq. (95) holds to any orderdg), unlike the Gross—Llewellyn-Smith sum rule [90] which is corrected by
both perturbative [91] and non-perturbative effects.
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Fig. 5. Relative off-shell {NO7/3) and nuclear shadowing §\\3/3) corrections to the normalization of the valence

quark distribution forP®Fe and?9’Pb nuclei (left and right panel, respectively) computed as described in Section 6.1.
The solid curve shows the sum of the off-shell and the nuclear shadowing corrections.

extracted from our fits (see Section 5.5). The results are shown in Fig. 5. It is important to observe
thatzSN\',“alS is negative and there is large cancellation between off-shell and shadowing effects in
the normalization over a wide range of.

Let us now test a different hypothesis, namely no off-shell effect in the sea of bound nucleon
8f; = 0. From Eq. (47) we then have for the isoscalar nucleo# d)sf, = 1—58F28f2. In this
case the off-shell correction to valence quark number is dominated by the smeglon and
even becomes divergehtTherefore, this assumption leads to unphysical results and we have to
rule out this case.

6.2. Normalization constraints

In the following we will favor the assumption of a single universal off-shell functigfx),
according to the discussion of the previous section. This is supported by the efstidgta
we used to extract the phenomenological off-shell function. The universality(af should be
further verified with both Drell-Yan data and future precise neutrino data. In our analysis we use
the normalization condition in order to fix parameters of the funajofx), in particular the pa-
rameterx;. As explained in Section 5.7.2, within all possible valuespproviding comparable
descriptions of datay?) we selected the one minimizing the overall correcﬁw\%s+ SN\gls.

The functiondf (x) measures the change in the quark—gluon structure of the nucleon in nu-
clear environment. This function is not accessible in experiments with isolated proton and/or
neutron but can generally be probed in nuclear reactions. The results described in Section 5.7.2
demonstrate that inclusive DIS data have a good sensitivity to off-shell effects, allowing a precise
determination of this correction.

The phenomenological cross section in Eq. (92) effectively incorporates contributions to struc-
ture functions due to all twists since it is extracted from data. Higher twists are known to be
important at low and intermediat@? and for this reason we should not expect an exact cancella-
tion betweers NQ7 ands N5 calculated with phenomenological cross section. Nevertheless, we
observe from Fig. 5 that the cancellation becomes more accurate at kil§tiedicating transi-

11 we 0btain8N3§/3 ~ —0.5 for iron if we cut off the contribution of the region < 10°. Changing the lower limit
to x = 10~8 increases the magnitude of this correction by about factor of 2.
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Fig. 6. Phenomenological cross sectiop extracted from our fits (solid curve) and effective LT cross section (dashed
curves) computed for iron and lead nuclei as described in Section 6.1.

tion to the leading twist regime. In particular, the exact cancellation takes plafeatl5 Ge\.
We performed similar calculation for several nuclei and we thus verified that this effect is inde-
pendent of the choice of the nucleus.

It should be noted that the nuclear data available in the shadowing region are limited to rela-
tively low Q2 and for this reason the phenomenological cross section (92) is not constrained at
high Q2. In this work we evaluate the effective cross section at kiigtby treating the condition
SNQP+ 8NN = 0 as an equation on the cross section. We solve this equation numerically using
the off-shell functior$ f>(x) from Section 5.7.2. The resulting cross section is presented in Fig. 6
together with phenomenological cross section extracted from our fits. In this paper we use the
following simple model for the effective cross section. Er below the crossing point in Fig. 6
we use phenomenological cross section (92) extracted form the fits, and for @givee use
the cross section calculated from the normalization condition. The difference between the two
curves in Fig. 6 below the crossing point is attributed to high-twist effects.

The functionsf (x) is positive forx < x1 (see Fig. 4). This implies a negative off-shell correc-
tion to the structure functions at small Bjorkerbecause the offshellnessf a bound nucleon
is negative. Thus the off-shell correction at sma#ippears as a leading twist shadowing correc-
tion. Therefore, in this region there is a certain interplay between nuclear effects due to coherent
nuclear interactions and off-shell effect. In the regian< x < xg the functions f (x) is negative
that provides an enhancement of bound nucleon structure functions. Thus in our approach the
antishadowing at ~ 0.1 is linked to off-shell effects. It is important to note that for the valence
distributions there is additional antishadowing mechanism due to coherent nuclear interactions.
Indeed, the presence of substantial real part inGhedd channeld¢, = 1) results in the con-
structive interference of multiple scattering interactions at 0.1 for valence distributions as
will be discussed in more detail in Section 7.1.

6.3. Off-shell effect and modification of the nucleon size in nuclei

From our analysis we obtain a positive off-shell correction at largexg. Since the virtuality
p? — M? of the bound nucleon is negative this leads to the suppression of valence distribution in
the bound nucleon at large In order to give a qualitative interpretation to this result we consider
a simple model of the valence distribution in the nucleon and we argue that the behajer of
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at largex observed in data can be related to the increase of the nucleon core radius in nuclear
environment.

Let us consider the valence quark distribution in terms of spectral representation Eq. (48).
We will consider a simple model in which the spectrum of spectator states is approximated by a
single mass [48,50]

Dy =8(s —5)®(1, p?), (98)

where the functiord (¢, p2) describes the distribution of valence quarks averk? in the nu-

cleon with the invariant mass?. For the on-shell nucleon the distributidn(t) is characterized

by a scaleA%. In configuration space this scale should be related to the size of the valence quark
confinement region. ~ Av‘1 (the nucleon core radius). From dimensional analysis one can write
D(t) = CUA;2¢(t/A§) where¢ and C, are dimensionless profile function and normalization
constant. We found that a simple pole mogdét) = (1 —z) ™" results in a reasonable description

of the nucleon valence distribution at largeand highQ?. In particular, we obtain a reason-
able fit to valence distribution of [39] a2 = 15 Ge\? andx > 0.2 by takings = 2.1 Ge\?,
A2=12GeV andn =4.4.

In order to model off-shell dependence of parton distributions we assume that the normaliza-
tion constantC, and the scalel, become functions op? while the profile functionp and the
average mass of spectator statek not change off-shell. We use Eq. (48) in order to calculate
the off-shell modification of the quark distributidif,. The §-function in Eq. (98) allows us to
integrate over the spectrum of residual system. Inspecting the resulting expression we observe a
relation between the derivatives of the quark distribution with respectaod p2. After some
algebra we obtain

8fy = c+ [INguai(x)] @ = x)h (), (99)
h) = (L—2)(A—x)+Ar5/M?
VT T a2 =5/ M2

wherec = 3InC,/dIn p? andr = dIn A2/3In p? taken atp? = M?. It should be noted that
Eq. (99) is independent of the specific choice of the profile funeapion

We use Eq. (99) in order to reproduce phenomenological funéfipat largex. In particular,
we fix the parameters andx in order to reproduce the zero &f; at largex (xg) and the slope
8f5(x0). Usings = 2.1 Ge\? we obtaim. = 1.03 ande = —2.31. The functiors f, (x) by Eq. (99)
is shown in Fig. 7 together with the phenomenological funclgi(x). One observes that this
simple model agrees with phenomenology at largeut not at smallk at which effect of the
nucleon sea is important.

The positive sign of the parametesuggests that the scale parametgrdecreases in nuclear
environment sincg? < M? for bound nucleon. This in turn indicates the increase in the nucleon
corer. in nuclear environment (“swelling” of bound nucleon). In order to quantitatively esti-
mate this effect we consider the relative change in the nucleon rélits.. We havesr,./r. ~
—38A2/A2. The relative change in the scalg can be estimated d@s12/A2 = A(p? — M?)/M?,
where averaging is taken over bound nucleons. We evaluate this quantity using our model spectral
function for iron and obtain- 9% increase im..

To conclude this section we remark that the swelling of bound nucleons was discussed in the
context of quenching of nuclear longitudinal response function in [73]. The change of confine-
ment scale in nuclei in terms of a different approach was discussed in the context of the EMC
effectin [27,74]. The swelling effect was experimentally constrained 8% from the analysis
of Coulomb sum in [75].

: (100)
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Fig. 7. Phenomenological off-shell functiérf,(x) (solid) in comparison witls f, (x) (dashed) computed using Eq. (99)
as described in text.
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The calculation takes into account the non-isoscalarity correction for iron by Eq. (43).

6.4. TheQ? and A dependence

In order to illustrate the?? dependence oR calculated in our approach, in Fig. 8 we plot
the ratioR2(Fe/N), whereN is isoscalar nucleofip + n)/2, as a function ok for a few fixed
Q2. We observe from Fig. 8 significant variations of the rafip with 0 at smallx < 0.1 and
largex > 0.65. ThisQ? dependence can be attributed to several effects. In the nuclear shadowing
region at smalk the 02 dependence of the ratiB; is due to the corresponding dependence of
effective cross sectioéi;y (see Eq. (92) and Fig. 4). It must be also noted that in the regian of
between 1 and 01 the 02 dependence ok is affected by the?? dependence of longitudinal
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Fig. 9. TheQ? dependence of the ratiRo(Srn/C) for different values ofc as measured by the NMC [5]. The curves
with open squares show the corresponding model calculations. For data points the error bars correspond to the sum in
quadrature of statistical and systematic uncertainties, while the normalization uncertainty is not shown.

correlation length 1k; (see Section 4.2 and Egs. (53) and (62)). Fdr© x < 0.65 the 02
dependence dR; is negligible. At larger the 02 dependence is due to the target mass correction
effect by Eq. (11) in convolution equations.

In Fig. 9 we compare the NMC data a@? dependence of the rati®,(Srn/C) with our
calculations. We observe an overall good agreement between data and model calculations for all
values ofx within available region of22. However, it should be remarked that available data on
02 dependence of nuclear effects are still too scarce to make thorough phenomenological studies
of this effect. In particular, the correlation betweerand Q2 for fixed target experiments and
the lack of information about th@? distributions of data in each of thebins used (typically
only the average?? is provided) can potentially bias the calculations where a signifiggnt
dependence is expected.
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Figs. 1 and 2 show that the model reproduces correctly the ratjogver a wide range of
nuclei and kinematic regions. Thiedependence of the rat®; is illustrated in Fig. 10 for a few
fixed values ofc. At smallx the A dependence is related to the multiple scattering coefficients
in Egs. (62) and (67), through the nucleon number density distributions. The increase in the
nuclear shadowing effect with has “geometrical” origin and can be attributed to the rising size
of heavy nuclei. At large: the A dependence of the rati®; is determined by the corresponding
dependence of parameters of nuclear spectral function. The sloRe aé a function ofx at
intermediatex = 0.5-0.6 increases withd because of the corresponding increase in the average
separation and kinetic energy of bound nucleons. It is interesting to note that @3 the ratio
R> depends on neithet nor Q2.

6.5. Nuclear effects in deuterium

Understanding of nuclear effects in deuterium is an important issue since deuterium data
are often used as the source of information on the neutron structure functions. As explained in
Section 5.7, the determination @éfandu parton distributions is sensitive to nuclear corrections
to deuterium data (Section 3.2). In this section we apply our model with the parameters fixed
from fit to data from heavy nuclei (see Table 2) in order to calculate nuclear modifications in
deuterium and compare our predictions with data. We take into account nuclear binding, Fermi
motion, off-shell, nuclear pion and shadowing corrections as explained in Section 4. It should be
emphasized that our approach does not require any extrapolation from heavy nuclei to deuterium.

The ratio of the deuteron and the proton structure functi@ped/p) = FZD/Fé’ was mea-
sured by the E665 and NMC collaborations [2,11] in a wide kinematical regionasfd Q2.
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Fig. 11. Comparison of E665 and NMC data to our calculations (curve with open squares) for tHRsatid/p).
For data points the error bars correspond to the sum in quadrature of statistical and systematic uncertainties, while the
normalization uncertainty is not shown.

A comparison with these data provide a good test of the applicability of our model to D, since
these data were not used in the fits described in Section 5.7. In Fig. 11 we show the E665 and
NMC data together with the results of our calculations. A good agreement is found between data
and the model described in this paper. In particular, our prediction of a small shadowing effect
in D seems to be supported by the measured valuésd/p) at small values ok. We note

that the ratioR »(D/ p) also provides a test of the parton distributions used in our calculation and

in particular of the difference betweehandu quark contents. This was not the case for all the
remaining data listed in Table 1 which were corrected by experiments for the neutron excess,
thus providing an effective cancellation of PDFs in the raftagA’/A) (Section 5.7).

Unlike the ratioR,(D/p) the ratioR2(D/N) = FZD/F2”+” cannot be measured directly be-
cause a free neutron target is not available. The extractidd¢b/N) from SLAC data was
discussed in Ref. [10] in terms of a phenomenological model of the EMC effect in the deuterium.
In Ref. [10] the ratioR2(D/N) was extracted by extrapolating the measured raig&A /D)
using the nuclear density model of Ref. [27]. The key assumption was made that the quantity
R2(A/N) — 1 scales as nuclear number density and it was also assumed that this ratio is inde-
pendent ofQ?. The values ofR2(D/N) were given in [10] forx corresponding to the bins of
SLAC data. The results are shown in Fig. 12 together with our calculation of theiRatd/N)
for the same kinematics of the points presented in }#ah Fig. 13 we show our prediction
for the ratioR»(D/N) at fixed 02 = 10 Ge\? and the corresponding uncertainty bagel§),
including model systematics.

12 The theoretical uncertainties of such extrapolation were not estimated in [10]. See also discussion of these points in
[53].
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7. Applications

In this section we apply our results to evaluate nuclear parton distributions (Section 7.1) and
make the predictions of nuclear effects for neutrino structure functions (Section 7.2).

7.1. Nuclear parton distributions

The parton distributions are process-independent characteristics of the target in high-energy
processes. Different phenomenological approaches to the extraction of nuclear PDFs (nPDFs)
can be found in Refs. [76—79]. It should be remarked at this point that physics observables are
the cross sections and the structure functions, which include contributions from all twists. The
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higher-twist terms are generally process-dependent, can be essential in the region of relatively
low Q2, and, furthermore, can be substantially affected by nuclear environment. Therefore, the
applicability of the leading twist approximation must be considered in comparison with data as
well as in any attempt to extract nPDFs. In our approach we derive nPDFs from the analysis of
nuclear structure functions (Sections 5.7.2 and 6.2) that allows us to determine both nPDFs and
their uncertainties from existing data. However, this paper is not aimed at the full nPDF analysis,
which will be published elsewhere [80]. We rather want to discuss a few different effects which
cause modifications of nuclear quark distributions. The numerical results shown in this section
were obtained using the NNLO proton and neutron PDFs described in Section 3.2.

7.1.1. Nuclear convolution

As discussed in Section 4, in the region of high and largex the nuclear structure functions
can be approximated by incoherent contributions from different nuclear constituents which can
be presented in a convolution form (see Egs. (29) and (37)). The convolution formulas look
similar for all type of nuclear structure functions suggesting that the convolution equations hold
for the parton distributions. We denajg 7 (x, 02) the distribution of quarks of typein a target
T. Then the quark distribution in a nucleus can be written as

Qa/A(xv QZ) = Z fc/A ®qa/cs (101)

c=p,n,w

where the functionf., 4 (y, v) can be interpreted as the distribution of particles of tyde a
nucleus over light-cone momentumand invariant mass (virtuality) (for bound nucleons and
nuclear pions see Eqs. (30) and (38), respectively). The operatidg denotes the convolution

dyd
f®q= / yT”f(y,wq(x/y, 0% v). (102)

x<y

Equations similar to (101) can be written for antiquark and gluon distributions in nuclei. Note
also that the distribution functions are independen@éfand, therefore, the? evolution of
nuclear PDFs is goverened by the evolution of PDFs of nuclear constituents.

In view of applications to complex nuclei with different number of protons and neutrons,
it is usefull to sort out the contributions to the convolution equation accordingp&pin Let
us consider the isoscalar and isovector quark distributigns; u +d andgy = u — d. We
first address the contributions from bound protons and neutrons to nuclear quark distributions.
Assuming exact isospin invariance of PDFs in the proton and neutron we have simple relations
between the isoscalar and the isovector distributions in the proton and the neutron

QO/p(x, QZ) = 610/n(x, QZ), (103a)
q1/p(x. 0%) = —qu/u(x. Q). (103b)

Using these relations we observe that the quark distributions with different isospin decouple in
the convolution equation. In particular, for the isoscaigy () and the isovectorgg,4) nuclear
quark distributions we have
qo/a(x. Q%) = A fo® qo/p. (104a)
qya(x, Q%) =(Z=N) f1®aqyp, (104b)
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Fig. 14. Nuclear effects for the isoscalar and the isovector quark distributi®¥&& The ratioskg andRR1 (see text)
were calculated for the valence quark distributiongat= 20 Ge\2. Nuclear shadowing and pion corrections are also
included for the isoscalar distribution.

where fp and f1 are the isoscalar and the isovector nucleon distributions in a nucleus. These
distributions are given by Eq. (30) with the spectral functiGisand P, defined by Eq. (42).
Note that the distributiongg and f1 are normalized to unity.

Let us now discuss the pion contribution to Eq. (101). Similar to the nucleon case, we assume
the isospin relations for quark distributions in the piggj,+ = qo/x- = qo/z0 andqy/+ =
—q1/=- andqy 0 = 0. Using these relations we have for the pion correction to the isoscalar and
isovector nuclear quark distributions

484 (x. Q%) = fr/a ® 4o/, (105a)
a7/, 0%) = (fra+/a — fa—ya) ® q/x. (105b)

Here in the first equatiorf;, 4 is the sum of the distributions over all pion states. It should be
emphasized that in Egs. (105) the pion distributions refer to nuclear pion excess, since scattering
off virtual pions emitted and absorbed by same nucleon (nucleon pion cloud) are accounted in
the proton and neutron PDFs. For the calculation of nuclear pion distributions in our model see
Section 5.3.

The isovector component should vanish in isoscalar nuclei ®ite N.13 However, for
a generic nucleus with different number of protons and neutrons both the isoscalar and the
isovector distributions are present. Heavy nuclei typically have a small excess of neutrons over
the protons and the distributiong and f; are quite different in such nuclei, as discussed
in Section 4.1.5. For this reason nuclear corrections depend on the isospin (quark flavour).
In order to illustrate this statement we calculate the raftas= go/a(x)/(Aqo/p(x)) and
R1=q14(x)/[(Z — N)q1/,(x)] for the iron nucleus using the proton PDFs of Ref. [39]. The
results are shown in Fig. 14. We note that the full nuclear correction is shown in cagg of
i.e. the calculation includes effect of nuclear spectral function, off-shell correction, nuclear pion

13 |t should be remarked that this statement applies to nuclear states with the total nuclear isospin 0. If higher-isospin
states are present fora= N nucleus, then the isovector distributign, 4 may be non-zero. The discussion of these
issues is postponed for future studies.
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and shadowing effects. However, for the isovector quark distributipn we neglect possible
nuclear pion and shadowing effects.

7.1.2. Nuclear shadowing

In this section we discuss coherent nuclear effects in the context of parton distributions. To
this end we want to apply the approach discusses in Section 4.2.2. The multiple scattering ef-
fects are generally different for different PDFs. We specify this statement by considering nuclear
effects for quark distributions of differeut parity, ¢ (x) = ¢ (x) & g(x). In order to simplify
discussion we consider the isoscalar (anti)quark distributiprs,u + d andg = it + d. The
C-odd distribution is in fact the valence quark distribution in the tagdet = gya. The C-even
distribution at smalk describes the target quark sea.

In order to bridge between Section 4.2 and the present discussion we recall that the struc-
ture functionFy in the LT approximation is given by -even distributiong). The structure
function F1 is transverse helicity structure function (more precise, the average over left- and
right-polarized transverse helicity structure function, see Eq. (9)). At smalk discussed in
Section 4.2, nuclear effects are described by the propagation of hadronic component of virtual
boson with the proper helicity state in nuclear environment. Eq. (63) applies in the cgge.of

Similarly, the structure functiorFs in the LT approximation is given by'-odd (valence)
distribution ¢(. In terms of helicity structure functions this is the asymmetry between left-
and right-polarized states. Therefore, nuclear correctiog$tbat smallx can be described by
Eq. (66). We have for coherent nuclear correctiongtd andg (™ quark distributions

8q45" (x)

SR = poreds Re(a2C4)/Imar, (1062)
N
bqy (x)
SR = =4 =[2Re(AaarC}) — Im(AaafC)]/Im Aa, (106b)
gy (x)

whereCé4 andcg‘ are given by Egs. (62) and (67) with effective transverse scattering amplitude
ar = (i + ar)or /2. EQ. (106b) determines the nuclear shadowing effect for valence quark dis-
tribution §Rya = 8R ™). The amplitudeAa describes the left—right asymmetry in the transverse
amplitude. In other termAa can be interpreted as the difference betwg®nandg N scattering
amplitudes [61]. As discussed in Section 4.2.2 the correétiT) does not depend on the spe-
cific value of the cross section asymmetyy but does depend armm = ReAa/Im Aa. The rate

of nuclear effects for botlF-even andC-odd distributions is determined by transverse amplitude
ar. Nuclear shadowing effect for antiquark distributions can readily be derived from Egs. (106a)
and (106b) and we have

8gA(x) —sRM & Gval/N (x)
gn(x) 2gN (x)
The results of calculation of nuclear effects for valence quark and antiquark distributions are
reported in Fig. 15. The calculations account of the effects of smearing with nuclear spectral
function (FMB), off-shell corrections (OS), nuclear shadowing (NS), and nuclear pion (PI) cor-
rections. The FMB, OS, and PI corrections have been computed as discussed in Section 7.1.1
using our model spectral function, pion distribution function and off-shell correction described
in Section 5. The NS correction for valence and sea distributions are computed by Egs. (106b)
and (107) using the parameters of effective scattering amplitude derived from our fits (see Sec-
tions 5.7.2 and 6.2).

8Rsea= (R —sR)). (107)
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Fig. 15. Nuclear effects for isoscalar valence and sea quark distributions calculated for iron nugiéus 20 Ge\?

(see text). The left panel displays different contributionsRgy: the dot-dashed curve if only the effect of nuclear
spectral function (FMB) and off-shell (OS) corrections are taken into account, the full curve is overall nuclear correction
including nuclear shadowing effect (NS). The right panel displays similar contributiof&éa The full curve also
includes the nuclear pion effect (PI), which is absent for the valence quark distribution.

A few remarks are in order. At small < 0.01 the NS effect for valence quark distribution is
enhanced relative to that for nuclear sea. The underlying reason for that is the enhancement of
multiple scattering corrections for the cross section asymmetry as discussed in Section 4.2.2. If
we keep only the double scattering correction then the BRigy/6Rseais given by Eq. (60).

The OS correction is negative in this region. However, the combined effect of FMB and OS is
somewhat different for valence and sea distributions as displayed in Fig. 15. This is attributed to
differentx dependence of valence and sea in the nucleon which affect the result of the averaging
with nuclear spectral function. Nevertheless, in spite of these differences, the overall nuclear
corrections are similar for valence and seaxer 0.0114

One observes that nuclear corrections for valence and sea distributions are different in the
antishadowing region. The antishadowing effect for valence (i.e. positive nuclear correction) is
a joint effect of two corrections both of which are positive: (1) the FMB and OS corrections
and (2) the constructive interference in the multiple scattering effect which is due to a finite real
partaa of the effective scattering amplitude in tiieodd channel (for this reason shadowing
becomes antishadowing, see the left panel of Fig. 15). For sea-quark distribution in the antishad-
owing region we observe a cancellation between different effects. In this respect we remark that
the contribution of the last term in Eq. (107) becomes increasingly important-ad.05, be-
cause of the ratigval/n (x)/gn (x). This term is negative in this region and cancels a positive
nuclear pion contribution. As a result the overall nuclear correction to antiquark distribution is
small for Q02 < x < 0.2. Note that this agrees with the results of E772 experiment, in which no
enhancement of nuclear sea was observed in DY nuclear processes [14].

It should be noted that the calculation of the relative nuclear correction for valence quark dis-
tribution is stable with respect to the choice of the PDF set for entire regiorisefe also Fig. 14
for nuclear correction to valence distributions). Nuclear effects for sea quarks also depend weakly
on the particular choice of PDF for small However, at highx the calculation of nuclear effects
for antiquark distributions has larger uncertainties and the result is sensitive to both the shape
and the magnitude of the nucleon antiquark distribution (note thesealratio in Eq. (107)).

14 Note that this discussion refers to a higf ~ 20 Ge\2. At lower Q2 the balance between different nuclear effects
change.
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Fig. 16. Our predictions for the ratid8, (left plots) andRR3 (right plots) for neutrino scattering ofC and>®Fe (see
text). The curves are drawn f@? =5, 10, 20 Ge}.

7.2. Neutrino interactions with nuclei

In this section we calculate nuclear effects for neutrino charged-current structure functions
using the approach developed in the previous sections. The study of neutrino interactions is
particularly interesting to this end since they are flavour sensitive and they are strongly influenced
by the structure functiorfs, which is not present in the electromagnetic case. We also note
that due to the low interaction probability in practice the detection of neutrinos always requires
heavy nuclear targets. Therefore, the knowledge of nuclear effects is crucial for understanding of
neutrino cross sections.

In order to compute corrections #, and F3 related to the averaging with nuclear spectral
function (FMB and OS effects) we apply Egs. (27) and (28) and use the off-shell fudghien-
tracted from the analysis of Section 5.7.2 for béthand F3. Nuclear shadowing/antishadowing
corrections are computed as discussed in Section 4.2.

We focus here on the region of relatively high momentum trangfer 5 Ge\? and assume
that coherent nuclear interactions driven by axial current are similar to those of vector current at
large 02 and that they can be described by the effective amplitude extracted from the analysis of
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Fig. 17. Our predictions for the ratid®, (left plots) andR3 (right plots) for neutrino scattering #9Ar and298pb (see

text). The curves are drawn f@? =5, 10, 20 Ge}.

Sections 5.5 t0 5.7.% A detailed study of nuclear effects in (anti)neutrino interactions including

the low Q2 region will be the subject of a future publication [80].
We calculate the ratioR} = Fy4/(AFyN) andR} = x F4 /(Ax F3V), whereN denotes the

isoscalar nucleon (averaged over proton and neutron), for the most common nuclear targets used

by recent neutrino experiments$’C (NOMAD [81]), *5Fe (NuTeV [82], MINOS [83]),*CAr

(ICARUS [84]) and?°’Pb (OPERA [85], CHORUS [89]). Our results for boHa andx F3 are

shown in Figs. 16 and 17 for different values@?f. We briefly comment on the main features that

distinguish the nuclear corrections in neutrino DIS from the ones in charged—leptom’p)SXy

comparing Figs. 8 and 16 we observe that nuclear effects fand Fé‘ in the coherent region

are similar (note that we restrict the present discussion to relatively@fyhHowever, at large

x nuclear effects for”, and Fé‘ are somewhat different. In particular, we note tRgjt> R’Z‘ in

the dip region ofc ~ 0.6-08. This is because the neutron excess correction is positive;for

while it is negative forF)'. From Figs. 16 and 17 one can also observe that nuclear effects at

15 Note that the interactions of the axial-vector current at lof are essentially different from those of the vector
current. This region requires a special analysis which goes beyond the scope of the present paper.
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Fig. 18. Comparison of different nuclear effects calculated for neutrifig at 02 = 10 Ge\? for 207Pb target. The

labels on the curves correspond to the effects included in turn: the averaging with nuclear spectral function (FMB),
off-shell correction (OS), nuclear pion excess (Pl) and coherent multiple-scattering correction (NS). The calculation
takes into account the target mass and the neutron excess corrections. NatBstighot corrected for pion excess
effect (overlapping dashed and dashed-dotted curves).

largex are similar for neutrind®, andx F3. However, at smalk the nuclear shadowing effect
for x F3 is systematically larger as follows from Eq. (60).

Fig. 18 illustrates different nuclear correctionsisy for 2°7Pb target computed at fixe@?.

The enhancement at intermediat@alues is a joined effect of all considered nuclear correction
(see also Fig. 15 and discussion in Section 7.1.2). In the cagetbé “antishadowing” at ~ 0.1

is due to off-shell and nuclear pion correctidd\ote that the nuclear pion excess effect can be
neglected in the case afF3, in contrast to the case df. Indeed, in the isoscalar nucleus the
pion correction depends on pion structure functions averaged over different pion stat€$ and
vanishes after such averaging. A small isovector correction which is proportiondl to 7~
asymmetry in the nuclear pion distribution functions (see Eg. (105)) is also neglected.

The study ofx F3 is particularly important since it allows to test the normalization of nuclear
valence quark number. As discussed in Sections 6.1 and 6.2 the conservation of the nuclear
valence quark number was used in our analysis in order to test the balance between nuclear
shadowing and off-shell effects. The valence quark (baryon) number of the target is related to
the integral of neutrino and antineutrino averaged the Gross—Llewellyn-Smith (GLS) sum
rule [90]. We remark, however, that in QCD this relation is not exact and only holds in the leading
twist and the leading order g and is corrected by both the radiative [91] and the higher-twist
effects. It would be interesting to experimentally address the question of nuclear modification
of the GLS sum rule. New measurementst@ from neutrino and antineutrino scattering off

16 see also Fig. 3 foFé‘. Note, however, that the neutron excess correction has a different sig?i’“fand F; that
explains the differences between the magnitude of nuclear effects in Figs. 3 and 17.
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Table 5
List of recent nuclear data which can be used to study nuclear effects on neutrino structure functions
Experiment Targets CC statistics 10°) Data taking Reference
NOMAD 12¢ 1.3(0.06) v(v) 1995-1998 [81]

27p1 1.5(0.07) v(D)

56Fe 125(0.6) v(v)
CHORUS 207pp 13(0.3) v(¥) 1998 [89]
NuTeV 56Fe 27(1.2) v(D) 1996-1997 [82]

different nuclei would help to clarify this issue, provided they can reach a precision comparable
to the size of the effects we observe in our analysis (typically 1%, see Fig. 5).

We conclude this section by remarking that in spite of the major interest of neutrinos as a
probe for nuclear effects, virtually no precise experimental information is available so far in DIS
region. The only direct measurements of nuclear effects on neutrino DIS cross sections were
performed by BEBC [86]1°Ne/D) and CDHSW [87] t°Fe/ p). However, these results are af-
fected by large statistical and systematic uncertainties. It should be emphasized that neutrino DIS
provides information complementary to that of the charged-lepton scattering and, therefore, the
completion of new high-statistics measurements would have a large impact on our understanding
of nuclear effects. The NOMAD experiment [81] collected large neutrino samplé&m’Al
and®8Fe targets allowing a study of nuclear effects fréfl /12C and®®Fe/12C ratios [19]. The
recent NuTeV cross section data [88] also provide information on nuclear effé¥¥Bdnin ad-
dition, the CHORUS experiment [89] is extracting neutrino cross sections from the interactions
collected orf%’Pb. Table 5 summarizes the various (anti)neutrino data samples.

8. Summary

We presented a detailed phenomenological study of unpolarized nuclear structure functions
for a wide kinematical region of and Q2. A general approach was developed which, on one
side, includes the main nuclear corrections and, on the other side, provides a good description
of data on nuclear structure functions. We take into account the QCD treatment of the nucleon
structure functions and address a number of nuclear effects including nuclear shadowing, Fermi
motion and nuclear binding, nuclear pions and off-shell corrections to bound nucleon structure
functions.

Starting from a relativistic approach in the description of nuclear DIS we then exploited the
fact that characteristic energy and momentum of bound nucleon are small compared to the nu-
cleon mass. This allowed us to compute nuclear corrections in terms of non-relativistic nuclear
spectral function, the quantity which is well constrained by data at low- and intermediate-energy
regions. Our analysis suggested that data cannot be quantitatively explained in impulse approx-
imation by applying “standard” Fermi motion and nuclear binding corrections even atidarge
This motivated us to address the off-shell effect in bound nucleon structure functions. This cor-
rection was parametrized in terms of a few parameters which were extracted from data, together
with their uncertainties. The effective scattering amplitude which determines the magnitude of
nuclear shadowing effect was also addressed phenomenologically.

It should be emphasized that the phenomenological parameters of our model refer to the nu-
cleon structure and for this reason they are common to all nuclei. We verified this hypothesis by
extracting them from different subsets of nuclei. Overall, we obtained an excellent agreement
between our calculations and data by using only three independent parameters. Our results show
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that inclusive nuclear DIS data have a good sensitivity to off-shell effects, allowing a precise
determination of this correction. We also note that the study of semi-inclusive nuclear DIS in
which the kinematics of the active nucleon can be controlled by selecting certain final states
would provide additional information on the off-shell effect.

The off-shell effect is related to the modification of the nucleon structure in nuclear environ-
ment. This relation was discussed in terms of a simple model in which the off-shell effect at large
x was linked to the modification of the bound nucleon core radius. We found that the off-shell
correction derived from our analysis favours the increase in the nucleon core radius in nuclear
environment.

We studied in detail the?? and A dependencies of nuclear corrections. One important ap-
plication was the calculation of nuclear effects for deuterium, which is of primary interest for
the problem of the extraction of the neutron structure functions. We also applied our model to
study nuclear valence and sea quark distributions, as well as the flavour (isospin) dependence of
nuclear effects.

Another important application was the calculation of nuclear structure functions for neutrino
scattering. In the present paper we evaluated nuclear corrections for charged-current neutrino
structure functions for relatively higi®2, which are relevant for the analysis of existing DIS
neutrino data. More detailed studies of neutrino and antineutrino interactions for both charged-
current and neutral-current scattering are planned in future publications.
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Appendix A. Integration in nuclear convolution

The integration in convolution formulas is constrained by the requirement that the invariant
mass of bound nucleon and the virtual photon is high enough for producing physical final states.
In particular, for the region of invariant masses of final states larger than a givenMiatise
required relation is

W2 > M2, (A.1)

whereW? = (p +¢)? andp the four-momentum of the bound nucleon. The threshold of inelastic
channels corresponds to pion production &g = M + m, and by settinglx = M we include

the elastic channel. Here we discuss in detail the constraints on the integration region in the
convolution formulas due to Eq. (A.1). Note that Eq. (A.1) is equivalent to

po+qo > Ex, (A.2)

whereEx = (M2 + (p +¢)*Y? andpo = M + ¢. Using this equation we can write the integral
over the bound nucleon four-momentum in convolution formulas as

fd4p9(W2—M§)=/d3p f de. (A.3)

Ex—qo—M
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This equation should be applied together with the nuclear spectral function and other functions
in the convolution formulas. The energy integration in Eq. (A.3) corresponds to the integration
over the excitation energies of the residual nucleus.

We first consider the spectral function

P(e, p) =218(s — ep)n(p), (A.4)
ep =0 — p°/(2mo). (A5)

This is the relevant case for the deuterium, for whigh= ¢p andmo = M (see Eg. (39)), and
also for the model spectral functiohyr with mg = M4_1 the mass of the residual nucleus
andeg = —ED the nucleon separation energy averaged over mean-field configurations of the
residual nucleus (see Eg. (74) and the discussion thereafter).

The energy integration in Eq. (A.3) can easily be performed and inequality (A.2) then becomes

go+M+ep > Ex. (A.6)

This inequality provides the constraints on the momentum space in Eq. (A.3). In order to solve it
explicitly we chose the coordinate system such that the momentum transfer has only longitudinal
componeny = (qo, 01, —|q|). Then after some algebra (A.6) can be written as (we retain only
the terms linear i p)

p%/(2my) — p; — p« <0, (A7)
where the notations are
A £0Y2
VP*=M|:l—x<l+@)+—M :|, (A.82)
molq| (A.8b)

my= —" -,
mo+qo+ M

andA = M3 — M2,y =1ql/qo, andyz = 1+ M /qo.
Inequality (A.7) is most easily solved in terms lohgitudinal and transverse coordinates
p=(p,, pz). Inthis case, the solution to (A.7) can be written as

{pzépz<p§”, 9)

0< p? <712,

whereT? = mf + 2m, p, IS maximum transverse momentum squared of the bound nucleon (for
the given kinematical conditions) amifE correspond to those longitudinal momenta at which
the left side of (A.7) is O,

1/2

pE=m, £ (1% p?) (A.10)

The momentum integral in Eq. (A.3) in terms of these variables is

72 T
/ d3p=n0(T)/dpifdpz- (A.11)
12

W2>M)2( 0
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The requirement’? > 0 gives the constraint on possibteand Q2 in inelastic scattering off
bound nucleonr/

In spherical coordinatew/e introduce the azimuthal anglébetween the-axis and the direc-
tion of the momentunp, = p cosd (herep = |p|). The solution to (A.7) splits into two different
regions with respect to the sign pf and the momentum integral in convolution formula can be
written as

/ o { 27 [ dcog [+ dp p2, if p, >0, A1)
Widn2 271] d cosy f’”((ccoossf)) dp p2,  if =% < p. <0,
wherepy (cosf) are the values gp at which the left side of (A.7) is 0
p+(COSH) = m,, COSH =+ \/(m* C0S0)2 + 2m, ps (A.13)

andc, = (2|ps|/m+)Y/2. The first case in (A.12) applies if < 1 as can be readily seen from
Egs. (A.8), while the last case concerns the regionsl andx > 1.

We now consider generic spectrum in Eq. (A.3). The upper limit of energy integration is
determined by the threshold separation eneggyWe recall that in our notations the separation
energye = Ef — EA~1, whereE§ is the ground state energy of the target nucleus Bfid*
is the energy of the residual nucleus including the recoil energy. Therefore, for the given recoil
momentumeg = go — p2/(2mg), Wheregg = Eg‘ — Eé‘l is the difference of the ground state
energies of the target and the residual nucleusiang M4 _1 is the mass of the residual nucleus.
The constraints on the momentum space in Eq. (A.3) directly follow from

Ex —qo— M < ¢th. (A.14)

This inequality, written in terms ofy andmy, is equivalent to (A.6). Therefore, the discussion of
(A.6) can be taken over (A.14). In particular, the solutions to (A.14) in terms of the longitudinal
and transverse momentum are given by Egs. (A.9) and (A.10). The integration in (A.3) in terms
of these variables can be written as

/d4p=n9 /dpL/de / de, (A.15)

W2z M2 pr Ex—qo—M

where the limits of integration are similar to those in Eq. (A.11) and given by (A.8)—(A.10).
The integration in spherical coordinates is

. 2 [ dcow [IH O dp p? [ de, if p.>0,
/ d'p= J pi(cos) 4 o g if _m_* (A.16)
2 f o [ cosn) pp? Ex—qo—M ! sp«<0,

w2>M2

where the notations are similar to those in Eq. (A.12).

17 The equaltiorT2 = 0 determines the maximum possiblevhich can be achieved in DIS from bound nucleon. In
application to the deuteron this gives= 3/2 (neglectingQ 2 terms ands;/M corrections in Eq. (A.8)). This is
different from the kinematical maximum= Mp/M ~ 2, which corresponds to elastic scattering from the deuteron as
a whole. We comment that the limit= 3/2 was derived keeping linear terms&dpM. However, the events with such
large x are due to high-momentum configuratiops~ M in the wave function and, therefore, require fully relativistic
description.
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Appendix B. Multiple scattering coefficients for uniform nuclear density

The magnitude of coherent nuclear effects in heven andC-odd structure functiong»
and F3 is determined by the tern@ andCé* (see Egs. (62) and (67)). These quantities can be
computed analytically for uniform density distribution with a sharp edge (square well model),
pa(r) = pofd (R4 — |r]), which is a reasonable approximation for large nuclei [65]. The nuclear
radius R, in this model is related to the r.m.s. nuclear radiusR%s: %(rz) and the central
nuclear density igo = A/(%£ R3) with A the number of nucleons. The coefficiedts andC4
are

Cs = ApoRa o3V (y), (B.1a)
C4 = A(poRa)’e3™(y). (B.1b)
wherewg\gv are the functions of dimensionless and complex variglte2i (oga — k1) R4
o3V (y) = [6—3y? — 2%+ 6(y — 1) exp(y)]/y*, (B.2a)
03V (y) =124+ y? +y%/3+ (2— y)?exp(y)]/y°. (B.2b)

If the real part of the amplitude andk; can be neglected (which is a reasonable approximation
forx « 0.1), theny = Ry /17 with [y = (poo)~1 the mean free path of the particle in a nucleus.
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