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bINFN, Sezione di Pavia

Via A. Bassi, 6 - 27100 Pavia, Italy

Abstract

An improved QED Parton Shower algorithm to calculate photonic radiative correc-
tions to QED processes at flavour factories is described. We consider the possibility
of performing photon generation in order to take into account also the effects due to
interference between initial and final state radiation. Comparisons with exact order
α results are shown and commented.
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1 Introduction

The precise luminosity monitoring and data analysis at e+e− flavour factories
(DAΦNE, PEP-II, KEKB, CESR) require that cross section calculations for
QED final state processes (e+e− → e+e−, µ+µ−, γγ) have theoretical error
below the 1% level. Also Monte Carlo simulations with the same accuracy
are strongly demanded for data analysis. This implies to include the relevant
radiative corrections, in particular the large effects due to multiple photon
emission.

Aiming at providing a useful tool for data analysis, a Monte Carlo event gener-
ator (BABAYAGA) for QED processes at flavour factories has been developed.
An exhaustive description of its main features and its basic theoretical ingre-
dient, the QED Parton Shower (PS), can be found in [1]. Here, we remind
only of the basics of the theoretical approach which the generator is based
on, in order to describe recent improvements introduced in the code to give a
more precise simulation also for exclusive radiative events (i.e. with observed
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photons in the final state). They concern the inclusion of the effects due to in-
terference between initial state and final state radiation, which are not present
in a pure PS framework.

The outline of the paper is the following: in the next section, the main theo-
retical framework is summarized and the Parton Shower in QED is presented.
In section 3, the generation of photons kinematics is revised and a new gener-
ation, inspired to the Yennie-Frautchi-Suura formula, is introduced. In section
4, the results obtained by the PS are compared to known perturbative results
and the improvements due to the new generation are shown. The accuracy of
the approach is also estimated. In the concluding section, the present study is
summarized and the open issues and possible developments are discussed.

2 The Parton Shower algorithm in QED

A widely used theoretical tool, to take into account the bulk of the photonic
radiative corrections, consists in the calculation of the corrected cross section
following the master formula [2]

σ(s) =
∫

dx−dx+dy−dy+

∫

dΩcmD(x−, Q2)D(x+, Q2)×

D(y−, Q2)D(y+, Q2)
dσ0

dΩcm

(

x−x+s, ϑcm

)

Θ(cuts) , (1)

which is based on the factorization theorems of universal infrared and collinear
singularities. In the previous formula, dσ0/dΩ represents the Born-like differ-
ential cross section for the process under consideration and D(x, Q2) are the
electron structure functions (SF) for initial and final state radiation. Equation
(1) is also suited for the Monte Carlo generation of unweighted events.

The SF’s describe the effects of multiple emission of soft and hard photons in
the collinear limit to all orders of perturbation theory. The SF is the solution
of the QED Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equation [3] in the non-singlet channel

Q2 ∂

∂Q2
D(x, Q2) =

α

2π

∫ 1

x

dy

y
P+(y)D(

x

y
, Q2) , (2)

where P+(x) is the regularized e → e + γ splitting function. The electron
SF has a clear and intuitive meaning: it represents the probability density of
finding “inside” a parent electron an electron with momentum fraction x and
virtuality Q2.

In the literature (see for example [4] and references therein) several solutions of
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DGLAP equation are available, but we focus our attention on its Monte Carlo
solution, known as the Parton Shower algorithm [5–7]. The advantages of the
PS are mainly two: it is an exact numerical solution of the DGLAP equation
and it allows an approximate generation of the photons momenta. The steps
of the algorithm can be extracted introducing the Sudakov form factor [8]
and, using it, getting an iterative solution of DGLAP equation. Namely, the
solution is

D(x, Q2)= Π(Q2, m2)δ(1 − x) +

+
∫ Q2

m2

Π(Q2, s′)
ds′

s′
Π(s′, m2)

α

2π

∫ x+

0

dyP (y)δ(x− y) +

+
∫ Q2

m2

Π(Q2, s′)
ds′

s′

∫ s′

m2

Π(s′, s′′)
ds′′

s′′
Π(s′′, m2) ×

(

α

2π

)2
∫ x+

0

dx1

∫ x+

0

dx2P (x1)P (x2)δ(x − x1x2) +

(

α

2π

)3

· · ·(3)

where Π(s1, s2) = exp[−α/2π
∫ s1

s2
ds′/s′

∫ x+

0 dzP (z)] is the Sudakov form fac-
tor, which represents the probability that the electron evolves from virtuality
s2 to virtuality s1 with no emission of photons of energy fraction greater than
(an infrared regulator) ǫ = 1 − x+. Note that the eq. (3) accounts for soft
+ virtual and real photons radiation up to all order of perturbation theory,
in the leading logarithmic approximation. Concerning the soft + virtual cross
section, it is worth noticing that, by setting the scale Q2 to be equal to st/u,
the Sudakov form factor exponentiates the leading logarithmic contribution
of the O(α) soft + virtual cross section as well as the dominant contribution
coming from the infrared cancellation between the virtual box and the initial-
final state interference of the bremsstrahlung diagrams. For a more detailed
discussion on this topic, we refer to [1].

For the steps of our implementation of the PS algorithm, they can be found
in [1]. For the scope of this paper, it is sufficient to notice that the algorithm
simulates a shower of photons emitted by the electron following the solution
of eq. (3). When the algorithm stops, we are left with the energy fraction zi of
each photon (distributed according to the Altarelli-Parisi splitting function),
the virtualities of the electron at each branching and the remaining energy
fraction x of the electron after the showering. The x variable is distributed ac-
cording to D(x, Q2). By means of these quantities, an approximate branching
kinematics can be obtained, as discussed below.

It is worth stressing that, when an event sample has been generated following
equations (1) and (3), the sharing of the sample in elastic events (which corre-
spond to soft + virtual cross section), one-photon events, two-photons events
and so on, is automatic and built-in in the method itself. On the event sample,
any experimental cut can be imposed, by means of the Θ function which is
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present in eq. (1).

The reliability of the PS method to simulate and generate events can be
checked by a systematic comparison of its results with known perturbative
results, in particular with exact O(α) matrix element (as discussed in section
4). The comparison allows to keep under control the approximations intrinsic
into the PS approach and to estimate its theoretical accuracy. In order to
perform such tests, an up to O(α) PS algorithm has been developed as well.
It allows to calculate the corrected cross section of eq. (1) up to O(α). Such a
calculation is strongly required for fully consistent comparisons between the
PS predictions and the exact O(α) ones. The steps required for the O(α) PS,
which are described in [1], can be obtained by using eq. (3) and expanding
up to O(α) the product D(x−, Q2)D(x+, Q2)D(y+, Q2)D(y−, Q2) present in
eq. (1).

3 Branching kinematics

The main advantage of the PS algorithm with respect to the collinear treat-
ment of the electron evolution is the possibility of going beyond the strictly
collinear approximation and generating transverse momentum p⊥ of electrons
and photons at each branching. In fact, the kinematics of the branching pro-
cess e(p) → e′(p′) + γ(q) can be written as

p = (E,~0, pz) , p′ = (zE, ~p⊥, p′z) , q = ((1 − z)E,−~p⊥, qz) . (4)

Once the variables p2, p′2 and z are generated by the PS algorithm, the on-
shell condition q2 = 0, together with the longitudinal momentum conservation,
allows to obtain an expression for the p⊥ variable:

p2

⊥
= (1 − z)(zp2 − p′2) (5)

at first order in p2/E2 ≪ 1, p2
⊥
/E2 ≪ 1. From now on, we will refer to eq. (5)

as the “PS prescription”.

Some not correct behaviours of the exclusive photon kinematics reconstruction
are connected with this PS picture, due to the approximations intrinsic in
eq. (5). First of all, since within the PS algorithm the generation of p′2 and
z are independent, it can happen that in some branching the p2

⊥
as given

by eq. (5) is negative. In order to avoid this problem, the introduction of
any kinematical cut on p2 or z generation (or the regeneration of the whole
event) would mean a not correct reconstruction of the SF x distribution, which
is important for a precise cross section calculation. Furthermore, in the PS
scheme, each fermion produces its photons cascade independently from the
other ones, missing the effects due to the interference of radiation coming
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from different charged particles. As far as inclusive cross sections (i.e., no
cuts are imposed on the generated photons) are considered, these effects are
integrated out and we do not expect them to be large, but when exclusive
photon variables distributions are looked at, they may be important.

Concerning the first problem, it can be overcome choosing a generation of
photons p⊥ different from eq. (5). For example, we can choose to extract the
photon cos ϑγ according to the universal leading poles 1/p · k present in the
matrix element for photon emission (in the following referred to as the “LL
prescription”), as done for example in [7]. Namely, we can generate cos ϑγ as

cos ϑγ ∝ 1

1 − β cos ϑγ

, (6)

where β is the speed of the emitting particle. In this way, photon energy and
angle are generated independently, differently from eq. (5). The nice feature
of this prescription is that p2

⊥
= E2

γ sin2 ϑγ is always well defined and the x
distribution reproduces exactly the SF, because we do not need to impose
further kinematical cuts to avoid unphysical events. At this stage, the PS is
used only to generate photons energies and photons multiplicity. The problem
of including the radiation interference is still unsolved, because the variables
of photons emitted by a fermion are still not correlated to the other charged
particles. The phenomenological comparison between PS and LL prescriptions
will be shown in the next section.

The issue of including photon interference can be successfully worked out
looking at the Yennie-Frautschi-Suura (YFS) formula [9,10]:

dσn ≈ dσ0

e2n

n!

n
∏

l=1

d3kl

(2π)32k0
l

N
∑

i,j=1

ηiηj

−pi · pj

(pi · kl)(pj · kl)
. (7)

It is a very general formula which gives the differential cross section dσn for the
emission of n photons, whose momenta are k1, · · · , kn, from a kernel process
described by dσ0 and involving N fermions, whose momenta are p1, · · · , pN . In
eq. (7), ηi is a charge factor, which is +1 for incoming e− or outgoing e+ and
−1 for incoming e+ or outgoing e−. Note that eq. (7) is valid in the soft limit
(ki → 0). The important point is that it also accounts for coherence effects.
From YFS formula, it is straightforward to read out the angular spectrum of
the lth photon (“YFS prescription”):

cos ϑl ∝ −
N
∑

i,j=1

ηiηj

1 − βiβj cos ϑij

(1 − βi cos ϑil)(1 − βj cos ϑjl)
. (8)
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It is worth noticing that in the LL prescription, the same quantity writes as

cos ϑl ∝
N
∑

i=1

1

1 − βi cos ϑil

(9)

whose terms are of course contained in eq. (8).

In order to consider also coherence effects in the angular distribution of the
photons, we may generate cosϑγ according to eq. (8), rather than eq. (9). We
expect that the improvements on photon angular distribution will be sizable,
as discussed in the next section.

For the sake of clearness, it is worth stressing that we are not exploiting the so
called “YFS exclusive exponentiation” procedure; we are simply considering
the photons angular spectrum implied by equation (7) and we are generating
the photons angular variables according to the distribution (8). Following such
a procedure, we are embedding the more accurate angular spectrum (8) in the
framework of the PS algorithm. If the reader is interested in the different ap-
proach of the YFS exclusive exponentiation, it is extensively and exhaustively
treated in the papers of reference [11].

4 Comparisons and results

In this section, we deal with the application of the PS, mainly in its O(α)
realization, to the Bhabha and radiative Bhabha process at large angle, as
implemented in BABAYAGA. To test the theoretical accuracy of the PS ap-
proach in total cross section calculation as well as in event generation, an
exact O(α) calculation has been carried out in the program LABSPV, used
as a benchmark calculation. The code is described in [1,12] and it is based on
the formulae given in [13,14].

As first comparison, we consider the results of PS and LL prescriptions on
photon distributions. They are obtained by means of the PS algorithm trun-
cated at O(α). We generated a sample of radiative Bhabha events at a typ-
ical DAΦNE energy (

√
s = MΦ) and requiring the final state e+ and e− to

lie within 20◦ and 160◦, with at least 0.4 GeV of energy and a maximum
acollinearity between them of 10◦. Furthermore, we require that the photon
has at least 10 MeV of energy. For those unphysical p2

⊥
< 0 events generated

in the pure PS prescription, we arranged to set the photon collinear to the
emitting particle (p2

⊥
= 0), without regenerating the event. In fig. 1, the en-

ergy and angular distributions of the photon are plotted. We note that, except
some details, the two angular generation schemes give roughly the same an-
swer: this is consistent with the PS picture, based on the leading logarithmic
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Fig. 1. Comparison of energetic (on the left) and angular (on the right) photon
spectrum given by O(α) PS with PS and LL prescription for photon p⊥ generation.

Fig. 2. Comparison of the angular (on the left) and energetic (on the right) photon
spectra obtained from LL and YFS prescriptions and exact O(α) matrix element.

treatment of the branching kinematics.

Next, we consider how the distributions change if we weight photon angle by
eq. (8) and we compare the results to the exact O(α) distributions. On the
left, fig. 2 shows the angular distribution of the photon, imposing the same
event selection criteria of the previous plots: the open circles represent the LL
prescription, the stars represent the YFS prescription and the solid histogram
is the exact O(α) distribution. The improvement due to the inclusion of radia-
tion coherence by means of YFS formula is evident: the YFS-PS spectrum fits
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Fig. 3. Comparison of electron energy (on the left) and acollinearity (on the right)
distributions obtained from LL and YFS prescriptions and exact O(α) matrix ele-
ment.

perfectly to the exact O(α) one. On the right, the photon energy distributions
are compared: we note that the result of LL description is very good by itself
(except close to the distribution end, where anyway the statistics is very poor),
as a consequence of the good approximation of the Altarelli-Parisi splitting
function to reproduce the correct energy spectrum. Nevertheless, the YFS-PS
fits better to the exact distribution, even at its end. The same comments apply
to fig. 3, where variables referring to final state fermions are plotted for the
same sample of events: electron energy (on the left) and acollinearity (on the
right) distributions are shown.

Up to now, we presented the results of the O(α) PS, but the YFS prescription
of eq. (8) has been applied to the all orders PS as well. As an example, we
considered a sample of Bhabha events generated by means of the PS to all
orders, imposing the same cuts as before and requiring that the most energetic
photon of each event has at least 10 MeV of energy. The differences (due to
coherence) on the angular distribution of the most energetic photon as given
by the LL PS and the YFS PS are evident in fig. 4 (on the left). In the same
figure, on the right, the effects of higher order photon emission are shown. The
distribution of the energy lost because of radiation is plotted, comparing the
O(α) and the up to all order PS distribution. In this case, no cut is applied
to the photon(s).

Finally, we give an estimate of the theoretical accuracy of the PS approach
in inclusive cross section calculation. The bulk of the terms missed in the PS
scheme in its all orders implementation can be estimated, up to very negligible
uncertainty at next to leading O(α2) level [1], by means of the relative differ-
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Fig. 4. On the left, the angular distributions of the most energetic photon as obtained
with the LL PS and YFS PS to all orders are compared for a sample of radiative
Bhabha events. On the right, the radiation energy distributions as obtained with the
O(α) PS and all orders PS are compared for a sample of inclusive Bhabha events.

Fig. 5. Relative difference between O(α) corrected Bhabha cross section at
√

s = 1
GeV, as given by the exact matrix element and the O(α) PS (in the LL and YFS
prescriptions). Two different angular acceptance regions are considered and the
difference is plotted as a function of the acollinearity cut.

ence between the exact O(α) corrected cross section and the O(α) PS one. In
figure (5), such a difference is plotted, as a function of the acollinearity cut, for
inclusive Bhabha cross section at

√
s = MΦ, requiring the final state e+ and

e− to have at least 0.4 GeV of energy and considering 20◦ < ϑ± < 160◦ and
50◦ < ϑ± < 130◦ acceptance region. For the “best” prescription, the YFS one,
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the amount of O(α) missing contributions is contained within the 0.4% and
they could be further reduced, by an ad hoc and tuned choice of the Q2 scale
present in the electron SF. This topic is widely discussed in [1]. It is worth
noticing that the exact versus PS difference is less dependent on the acollinear-
ity cut when the YFS-improved PS is considered. The next step toward the
reduction of the theoretical error (and the complete independence from ad hoc

recipes) would be the real merging of the exact O(α) matrix element into the
PS. Work is in progress in this direction.

5 Conclusions

The QED Parton Shower algorithm has been applied to QED processes event
generation at e+e− flavour factories, in order to simulate the phenomenologi-
cally relevant radiative corrections to all orders of perturbation theory and to
provide a useful Monte Carlo event generator (BABAYAGA) for data analysis.
The theoretical accuracy of the event generator is estimated to be within the
0.5% level for Bhabha scattering, in typical event selection criteria for data
analysis at flavour factories. After a brief sketch of the theoretical framework
which the PS algorithm is based on, in this paper the photons kinematics
generation is critically revised. We introduced three different schemes for gen-
erating photons angles, named the pure PS, the LL and the YFS prescrip-
tion. In particular, the last one is inspired to the YFS formula [9,10] of eq.
(7). By means of an O(α) PS, the results from the three prescriptions have
been systematically compared to the exact O(α) ones. We pointed out and
showed that the YFS-PS has the best behaviour to simulate and generate
also radiative events, fitting very well to all the exact O(α) distributions. The
new release of the BABAYAGA event generator is built on this theoretical
background. The code is available and can be downloaded from the web site
http://www.pv.infn.it/~nicrosi/programs.html.

The open issue for the next future is the merging of the exact O(α) matrix
element with the PS, which is an interesting task also for QCD simulations at
high energies, as documented in [15]. The merging would make the PS indepen-
dent from ad hoc recipes and would actually shift the theoretical uncertainty
to the next to leading order α2 corrections.
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