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Domain walls (DWs), as interfaces separating different magnetic domains, are widely regarded as classical
objects, even though the underlying constituents, namely, electron spins and spin-spin exchange interaction,
are intrinsically of quantum nature. One intriguing question is, how do DWs behave when the size of the
magnetic domains is shrunk to the atomistic level? Would quantum fluctuations destroy the stability of the
DWs? These questions are partly addressed for ferromagnets, but seldom studied for antiferromagnets. Here we
present a microscopic quantum spin model of antiferromagnets where the ground states not only share several
common properties with the classical domain walls, but also exhibit nontrivial quantum properties. Specifically,
the magnetization profile highly resembles its classical counterparts, even though the spins inside the domain
walls are highly entangled. Furthermore, a nonzero spin angular momentum of a quantum DW emerges and it
does not depend on the system size. Finally, we show that quantum DWs can be generated through a quantum
phase transition from a quantum domain and the critical point can be characterized by the global entanglement.
These results provide additional physical insights on the quantum effects in spintronics, and can be experimentally
verified within the current technologies in superconducting circuits and trapped ions.
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Introduction. In magnetic systems, spins can form various
stable topologically nontrivial structures through an exchange
interaction, such as domain walls (DWs) [1–3], vortices [4–7],
and skyrmions [8–13]. At the macroscopic scale, it is often
sufficient to approximate DWs as a classical object consisting
of a collection of classical spin angular momentum [1,2].
This classical picture can be justified when the DW size
is much wider than the exchange length [14,15]; in this
way, the quantum fluctuations of spin orientations become
negligible, and the average quantum spins follows the classical
spin dynamics. Such a classical approximation is invalid as
the DW size shrinks to the atomistic scale. To understand
the physical behaviors of the DWs at the atomistic scale, a
fully quantum-mechanical approach should be considered; this
direction points to an overlapping area between the classical
spintronics and quantum information science, which is largely
unexplored.

At the atomistic scale, the states of quantum systems can
be characterized by various quantum correlations, in particular,
quantum entanglement [16,17], which can be regarded as a pre-
cious computation and information resource. So far, entangling
tens of particles have been realized in experiments [18–26].
Furthermore, with the state-of-the-art technologies, such as
those in superconducting circuits [18–20] and trapped ions
[21–24], it is possible to control the spin-spin interaction
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from ferromagnetic to antiferromagnetic, and vice versa. These
recent developments open intriguing possibilities for studying
quantum properties of magnetic structures, such as DWs,
vortices, and even skyrmions with a finite controllable number
of spins in the laboratory. In this interdisciplinary area, there
are many questions that remain unanswered, including the
following: (i) In what physical systems does a quantum DW
exist? (ii) What is the physical structure of the quantum DW?
(iii) How can we detect the emergence of such quantum
DW? These problems are partly studied in the anisotropic
Heisenberg chain with ferromagnetic exchange interaction
[27,28] and the phase transition in this model was mentioned in
a follow-up work [29]. However, these questions are seldom
studied in antiferromagnets that are fundamentally different
from ferromagnets in quantum mechanics since one cannot
map one to the other by a unitary transformation.

In this Rapid Communication, we focus on an antiferromag-
netic quantum spin chain sandwiched between two magnetic
domains, pinned at the boundary by strong fields. The ground
state of the system defines a quantum DW, since the spatial
variations of the expectation values of stagger magnetization
are similar to those of its classical counterpart. Moreover, the
spins inside the DW are highly entangled, while the average
spin-spin entanglement naturally recovers the global entan-
glement of the quantum DW. Around the quantum transition
point of DWs and domains, the scaling behavior of global
entanglement suggests that it is a good indicator of phase
transition.

Model of quantum DWs. Let us consider the Hamiltonian H
of the transverse Ising model, where N spin-1/2 particles are
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FIG. 1. (a) Spatial variation of mz (open symbols) and nz (filled
symbols) for a spin chain with N = 12 (triangles), 16 (circles),
and 20 (squares), respectively. The top-right inset shows the net
magnetization as a function of N . pos = i/N is the scaled position of
the ith site, g = 0.2. (b) Scheme of the five degenerated low-energy
excitation states for N = 6. The blue (orange) background represents
the net magnetization of the corresponding state to be S = 1 (S = 0).

localized on a one-dimensional lattice, subject to the boundary
fields h,

H = J
∑
〈ij〉

σ z
i σ z

j − g

N∑
i=1

σx
i − h

(
σ z

1 + σ z
N

)
, (1)

where σx
i , σ z

i are the Pauli matrices on the ith site, J is the
exchange coupling, and g is the anisotropy constant. Here 〈ij 〉
denotes nearest-neighbor spins. The ground-state energy E0

and the corresponding ground state |0〉 is calculated using
the standard Lancoz algorithm [30–32]. In the following,
we shall focus on the antiferromagnetic (AFM) coupling
(J > 0), but the results can be readily generalized to the
ferromagnetic case as well. Here the magnetization mz

i and
staggered magnetization [33] nz

i are given by

mz
i = 1

2 〈0|σ z
i + σ z

i+1|0〉, nz
i = 1

2 〈0|σ z
i − σ z

i+1|0〉, (2)

where i = 1, 3, 5, . . . , N − 1.
Properties of quantum DWs. In the regime with weak

anisotropy g � J , the profiles of the quantum DWs are similar
to those of classical AFM DWs [see Fig. 1(a)]. (i) The staggered
order nz has a typical classical DW profile; it varies from 1 on
the left-hand side of the chain to −1 on the right-hand side.
(ii) The magnetization order mz is zero near the boundary and
reaches its maximum at the DW center. (iii) As the system
becomes larger, the magnetic moments near the center become

smaller, but, by summing all the magnetic moments in the
DW, the total magnetic moment is numerically found to be a
constant, i.e., mz

t = ∑
i m

z
i =1/2, independent of the system

size N .
Proof of conserved total magnetic moment. In the fol-

lowing, we shall analytically prove the result of mz
t = 1/2.

Given the condition g � J , the AFM exchange interaction
dominates the Hamiltonian (1). Thus, the lowest energy states
include only one pair of neighboring spins aligned parallel
[see Fig. 1(b)], while the other nearest-neighboring spins are
antiparallel with each other. For example, for N = 6, there
are five such configurations of same energy as sketched in
Fig. 1(b). In general, there are N − 1 such states of energy
−(N − 3)J . These states can be further classified into |ϕS=1

i 〉
for S = 1 and |ϕS=0

i 〉 for S = 0, N/2 for S = 1, and the
remaining for S = 0, where S is the net magnetization of the
system. The ground state under the boundary conditions is the
linear combination of these states, |0th〉 = ∑N/2

i=1 ai |ϕS=1
i 〉 +∑N/2−1

i=1 bi |ϕS=0
i 〉, where ai, bi are the superposition coeffi-

cients. By rearranging the basis states such that S = 1 and
S = 0 states are ordered alternatively, the Hamiltonian (1) can
be recast as a tridiagonal-Toeplitz matrix, where the ground-
state energy is found to be E0 = −(N − 3)J − 2g cos (π/N ),

and |0th〉 =
√

2
N

(sin π
N

, sin 2π
N

, . . . , sin (N−1)π
N

) [34]. Note that
the anisotropy term g only gives a first-order correction of the
ground-state energy. As a result, the magnetic moments dis-
tribution is given by mz

i = 〈0th|σ z
i + σ z

i+1|0th〉/2 = ui , where
ui = 2/N sin2 iπ/N . The net magnetization can therefore be
calculated as

mz
t =

N−1∑
odd i

ui = 1

2
, (3)

independent of N .
Purity of quantum DWs. In quantum information science,

the purity of the ith spin is defined as Pi = tr(ρ2
i ) where ρi is

the reduced density matrix of the ith spin; it takes the value 1 for
a separable pure state, but 1/2 for maximally entangled states
such as Bell states and Greenberg-Horne-Zelinger states [35].
Furthermore, it can be experimentally measured [36] using
standard techniques in quantum information science.

For the quantum DW, the purity of the ith spin is given by

P th
i =

(
i−1∑
k=1

uk

)2

+
(

N−1∑
k=i

uk

)2

+ 2uiui−1, (4)

where i = 1, 2, . . . , N . The third term uiui−1 is of the order
O(1/N2), which is much smaller than the first two terms.
Considering

∑
ui = 1, Pi reaches its minimum value (1/2) at

i = N/2, i.e., the chain center, where mz
i = ui ∝ sin2(iπ/N )

reaches its maximum value.
Numerically, we found that the purity is close to 1 near

the boundary of the spin chain and then decreases to form
a symmetric dip around the chain center at i/N = 1/2,
regardless of the system size [see Fig. 2(a)]. Moreover, the
magnetization distribution of DWs takes on a peak centered at
the dip position and its space dependence is strongly correlated
with the purity. For the spins near the boundary, their directions
are strongly bounded by the fixed orientations of the boundary
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FIG. 2. (a) Distribution of the magnetic moments of DWs for N =
12 (triangles), 16 (circles), and 20 (squares), respectively. The solid
lines are the theoretical results given by mz

i = ui . The colored strips
represent the distribution of purity at the corresponding N . (b),(c)
Density of states tomography for a clockwise/counterclockwise DW
state in a spin chain with N = 6. The values of vertical/horizontal
axis represents the value of the basis vector by treating up spin as bit
0 and down spin as bit 1. The inset sketches the DW profile.

spins and have a larger probability to be in Néel-state-like
configurations. Consequently, the magnetization is close to
zero and these spins are not entangled with the others (i.e.,
close to a pure state). The spins near the center are influenced
lightly by the boundary spins and their directions become
much more uncertain, hence the purity of these spins become
smaller. The purity of spins is close to 1/2 at the wire center,
which suggests that the spins inside the DW are strongly
entangled.

A typical tomography of the density matrix for a clock-
wise/counterclockwise DW is shown in Figs. 2(b) and 2(c). The
distinguishable distributions of the density matrix allow us to
classify clockwise and counterclockwise DWs in the atomistic
scale.

Global entanglement of quantum DWs. Compared with
classical DWs, the key distinctive feature of quantum DWs
is that the local spins are highly entangled. In quantum
information science, the global entanglement, Eg , of a pure
quantum state can be quantified by the total purity [36,37]:
Eg ≡ 2

N

∑N
i=1(1 − Pi ). To the leading order of 1/N , the global

FIG. 3. (a) The distribution of net magnetization of the spin
chain (|mz|) in the h-g phase space. The ± signs represent clock-
wise and counterclockwise DWs, respectively. N = 12. (b) Simu-
lated global entanglement (Eg) distribution in the h-g phase space.
(c) Global entanglement (Eg) as a function of boundary field (h).
J = 1.0, g = 0.2. Left inset: dEg/dh as a function of external field
for N = 8, 10, 12, 14, 16, respectively. Right inset: scaling behavior
of the global entanglement around the critical point hc.

entanglement can be determined by the following:

Eg = 2 − 2

N

N∑
k=1

⎡
⎣(

k−1∑
i=1

ui

)2

+
(

N−1∑
i=k

ui

)2
⎤
⎦. (5)

The sum increases as N increases and saturates numerically
when N > 20. The limiting value for N � 1 is found to be
Eg = 2/3 − 5/2π2 ≈ 0.41. This indicates that the spins in the
quantum DW is still highly entangled in the macroscopic scale.

As an example, let us consider the case where h = 0 in
the Hamiltonian H; the ground state is a superposition of two
degenerated Néel states,

|0th〉 = 1√
2

(| ↑↓↑↓ · · · ↑↓〉+| ↓↑↓↑ · · · ↓↑〉), (6)

which is referred to as the quantum domain state, as both
magnetization and stagger order are zero. The global entangle-
ment is Eg = 1, but its net magnetization is zero. Therefore, it
becomes possible to distinguish quantum domain and quantum
DW states by probing the global entanglement, which is
analyzed qualitatively below.

Quantum phase transition. Here we consider the zero-
temperature phase diagram of the quantum spin model; the
exchange coupling J remains unchanged, but the anisotropy g

and boundary fields h are varied (see Fig. 3). Guided by the red
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line, we found that the ground state changes from the domain
state to a quantum DW at the critical field of hc = J for g = 0.

The critical field has a nontrivial dependence on g and h. In
the regime g � 1, the ground state depends on the competition
of exchange interaction and Zeeman interaction. The global
entanglement (Eg) drops abruptly from 1.0 to a small value,
as shown in Fig. 3(c). Physically, when h < hc, the exchange
interaction dominates the Hamiltonian and the ground state is
a superposition of two degenerated Néel states, Eq. (6), with
Eg = 1. The numerical value of Eg is a little smaller than the
theoretical value 1, as shown in Fig. 3(c), due to the small
anisotropy g term, whose tendency is to align all the spins
to the x direction and reduce the entanglement. As the field
increases above hc, the ground state becomes a DW state with
a finite value of global entanglement.

Numerically, the global entanglement and its first derivative
is continuous with h near the critical field, but its second-order
derivative seems to be discontinuous, as shown in the left inset
of Fig. 3(c). We shall show that discontinuity of the global
entanglement is a good indicator of the phase transition. First,
let us plot the first derivative of Eg versus h in the left inset of
Fig. 3(c) for system size ranging from N = 8, 10, 12, 14, 16.
As N increases, dEg/dh shows a clear divergence tendency at
the critical field.

To eliminate the finite-size effect, we perform a scaling
analysis for finite systems using the scaling ansatz [38],

dEg

dh
= ln Nν |h − hc|, (7)

where ν is the critical exponent. As shown in the right inset of
Fig. 3(c), ν = 0.54 gives perfect scaling results for the finite
systems. These results suggest that global entanglement is a
suitable measure of quantum DW/domain phase transition.

Discussions and conclusions. In this work, we have the-
oretically justified the existence of a quantum version of
magnetic DWs, which has an intrinsic magnetization of 1/2
independent of size. The global entanglement of such a DW
is nonzero and even exists at a macroscopic scale. Moreover,
the magnetization profile is closely related to the local purity
of spins, where the DW width can be extracted from the purity
profile and experimentally verified. Specifically, the typical
energy gap of the ground state and first excited state in our
model is 44 μeV (∼528 mK) for N = 20 (J = 10 meV and
g = 0.6 meV) [39]. Then the mixture of excited states and

ground state can be neglected at a temperature below 527 mK,
which leaves sufficient room to experimentally verify our
theoretical prediction in platforms working in low temperature.
Alternatively, it is promising to test our prediction of quantum
DWs in a trapped ions system, where the transverse Ising model
with tunable spin-spin coupling has been realized [24,40].

Secondly, the stability of quantum DWs may be influenced
by temperature-induced decoherence, defects, field gradi-
ents, and dipolar interaction. (1) We estimate [41–43] the
occupation probability of the excited states, i.e., P = 1 −
exp(−E0/kBT )/Z ∼ 5 × 10−5, where kB is the Boltzmann
constant and Z is the partition function of the system at T =
53 mK. Therefore, the decoherence should be considerably
slow at low temperature. (2) The random defects and field
gradient cannot demolish the quantum DWs if their effective
strength is far from the phase boundary shown in Fig. 3(a)
[44–46]. One interesting observation is that the quantum DW
center shifts under a field gradient, which may lead to DW
motion under inhomogeneous field [33]. (3) The influence of
dipolar interaction on the antiferromagnetic DW is negligible
due to the cancellable response of the internal sublattices. This
is widely viewed as an advantage of antiferromagnets over
ferromagnets [47].

Finally, our results are applicable to chiral DWs due to
competition between the Dzyaloshinskii-Moriya interaction
(DMI) [48–50] and the normal exchange interaction. By
generalizing our conclusions to two dimensions, the magnetic
quantum skyrmion is expected to exist. This type of skyrmion
has nonzero entanglement that is different from the classical
skyrmions. A promising platform to observe this chiral struc-
ture is a superconducting circuit, where the effective DMI has
been synthesized in a 5-qubit system [51].
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