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1. Introduction

One of the biggest challenges in physics is developing efficient methods for simulating
Hamiltonians: there is a well-developed understanding of the basic laws of quantum
mechanics, but the crucial understanding of the collective behaviour of interacting
elementary particles and of emerging phenomena relies on our ability to approximate or
simulate the corresponding equations. Simulation is particularly relevant in the context of
strongly interacting quantum systems, where conventional perturbation theory fails.
Popular methods to simulate such systems are the numerical renormalization group
(NRG) algorithms by Wilson [1] and White [2,3] (see also [4,5]) and quantumMonte Carlo
methods. Both of these have been used with great success, but they also have severe
limitations: the NRG and density matrix renormalization group (DMRG) algorithms only
work in cases where the original Hamiltonian can be mapped to a local Hamiltonian
defined on a one-dimensional chain, while Monte Carlo methods suffer from the so-called
sign problem [6] which makes them inappropriate for the description of fermionic and
frustrated quantum systems. Very recently, however, new insights coming from the field of
quantum information and entanglement theory have shown how those NRG
methods can be generalized to higher dimensions, to finite temperature, to random
systems, etc. [7–16]. These developments have the potential to revolutionize the way
quantum many-body systems can be simulated and understood, which will prove essential
in light of the ongoing miniaturization of electronic devices and of fundamental problems
such as the study of the role of the Hubbard model in high Tc superconductivity.
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We focus on those new developments in this review. In particular, we focus on the

simulation of quantum lattice systems of spins and/or fermions. The Hamiltonians arising

in this context can be thought of as effective Hamiltonians of more complicated systems

that capture the physics for the relevant low-energy degrees of freedom. Studying quantum

spin systems has a long and very interesting history, starting with Dirac and Heisenberg in

the 1920s, who proposed the so-called Heisenberg model [17,18] as being illustrative of the

basic mechanism giving rise to magnetism. The simulation of quantum spin systems and

fermionic systems on a lattice, however, has turned out to be extremely complicated.

Consider, for example, the Hubbard model in two dimensions which represents the

simplest possible model of fermions hopping on a lattice and exhibiting on-site

interactions: despite considerable efforts because of the connection with high Tc

superconductivity, it is absolutely unclear how the low-energy wavefunctions look in the

relevant parameter range. This is the most notable illustration of the biggest bottleneck in

condensed matter theory: numerical simulation of effective simple Hamiltonians. The new

tools described in this review can be seen as a step towards filling that gap.
This review is organized as follows. In the first, rather technical, Section, we review the

basic properties of quantum spin systems and provide intuitive justification for the

numerical tools used later. This Section can be skipped by those who are more interested in

the variational numerical renormalization methods and less interested in the underlying

theory; however, one of the major advantages of the methods is precisely that there is a solid

theoretical justification for using them. In Section 2, we review the NRG method as

introduced by Wilson, and show how this gives rise to the concept of matrix product states

(MPSs). Section 3 discusses the features of MPSs, and goes on to applications on spin

chains such as a reformulation of the DMRG and generalizations that allow us to treat

excited states. Section 4 is devoted to the issue of real and imaginary time evolution of one-

dimensional quantum spin systems, and Section 5 is devoted to the concept of matrix

product operators (MPOs) leading to extensions of DMRG to finite-temperature systems,

to random spin chains and to the simulation of two-dimensional classical partition

functions. In Section 6, we show how all of these ideas can be generalized to the two-

dimensional case by introducing the class of projected entangled pair states (PEPSs), and

we discuss the applicability and limitations of these methods. Finally, we discuss the convex

set of reduced density operators of translational-invariant states in Appendix A, the

relation between block entropy and the accuracy of a MPS approximation in Appendix B,

and we include some explicit Matlab programs of MPS algorithms in Appendix C.
At this point, we would like to warn the reader that this is not a review of DMRG

methods and possible extensions. In fact, there already exist very good reviews on that

topic (see, for example [4,5]), where the important progress experienced by DMRG-like

methods is discussed extensively. Here we offer a review of the new methods that have

been introduced during the last few years, and that have evolved from ideas in the context

of quantum information theory. To make the review self-contained and uniform, we focus

mainly on the methods introduced by ourselves and collaborators, and also touch upon

the approach advocated by Vidal. The main reason is that these approaches can be viewed

as (generalized) variational techniques over sets of entangled states, and thus we can

present the vast variety of algorithms, whose description is thus-far scattered in several

publications, in a unified form. Furthermore, we also discuss some issues which have not

been published so far.
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2. Spin systems: general features

One of the main characteristics of quantum mechanics is that the underlying Hilbert space
is endowed with a tensor product structure: the Hilbert space of two interacting systems is

given by the tensor product space of the two individual ones. This structure of the Hilbert

space is a direct consequence of the superposition principle, and opens up the possibility of

entanglement and new phases of matter. This simple tensor product structure, however,
makes it very clear what the main obstacle is in developing a general theory of many-body

quantum systems: the size of the Hilbert space grows exponentially in the number of basis

constituents, and hence we would, in principle, need exponentially many variables to

specify the wavefunction of a N-particle system. However, it is a priori not clear whether
nature can fully exploit and explore these vast territories of Hilbert space, because another

main characteristic of quantum mechanics is that interactions always seem to happen

locally and only between a few bodies.
As it turns out, all physical states live on a tiny submanifold of Hilbert space.

For example, consider a quantum system of N spin-1/2s on a cubic lattice and all spins

polarized in the z-direction, and let us pick a random state in the 2N-dimensional Hilbert

space according to the unitarily invariant Haar measure. Let us furthermore address the

problem of finding a lower bound on the time it would take to evolve the polarized state
into a state that has an overlap with the random one that is not exponentially small, and

this with local interactions. Using tools developed in the context of quantum information

theory, one can show that this lower bound scales exponentially in the number of
spins [19]: any evolution over a time that scales only polynomially in the number of spins

would only allow us to obtain an exponentially small overlap with the chosen random

state. If we were, for example, to consider a system of a few hundred spins and assume

realistic units for the norm of local Hamiltonian terms, it would already take much longer
than the lifetime of the universe to come close to any random point in its Hilbert space.

This shows that almost all points in the Hilbert space of a many-body quantum system are

unphysical as they are inaccessible: all physical states, that is, all states that can ever be

created, live on a tiny submanifold of measure zero.
This concept opens up a very interesting perspective in the context of the description of

quantum many-body systems, as there might exist an efficient parametrization of such a

submanifold that would provide the natural language for describing those systems. In the

context of many-body quantum physics, one is furthermore mainly interested in describing
the low-energy sector of local Hamiltonians, and as we discuss later, this puts many extra

constraints on the allowed wavefunctions.
As a trivial example of such a submanifold, let us consider a system of N!1 spins

that all interact with each other via a permutation invariant two-body Hamiltonian such as
the Heisenberg interaction [17,18]. Note that there is always a ground state that exhibits

the same symmetry as the Hamiltonian. As a consequence of the quantum de-Finnetti

theorem [20] one can show that the manifold of all reduced density operators with

permutation symmetry is exactly the set of all separable states � ¼
P

i pi�
�N
i when N!1.

Ground states correspond to the extreme points of this set, which are exactly the product

states that have no entanglement. All ground states of permutational-invariant systems

therefore lie on the submanifold of separable states which indeed have an efficient

representation (only N vectors, one for each individual spin, have to be specified); this
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statement is equivalent to saying that mean-field theory becomes exact in the

thermodynamic limit. This can also be understood in the context of the monogamy

property of entanglement [21,22]: a spin has only a finite entanglement susceptibility, and

if it has to share the entanglement with infinitely many other spins, then the amount of

entanglement between two spins will go to zero. (In the case of a translational- and

rotational-invariant system on a regular lattice, the finite versions of the de-Finnetti

theorem [23,24] allow one to find lower bounds on the distance of the reduced two-body

density operators to the separable operators; a scaling of the form 1/c is obtained where c

is the coordination number. See also Appendix A.)
In the more general situation when no permutation symmetry is present, only a smaller

symmetry group such as the group of translations, the characterization of the relevant

manifold is much harder. In contrast to the case of permutation symmetry, where every

pure state of N spin s systems can be written as a linear combination of at most N2s/(2s)!

Dicke states (Dicke states are well studied in the context of quantum optics, and are

obtained by taking the linear superposition of all permutations of a pure separable state in

the standard basis: in the case of spin-1/2, you can label them by their expectation value

of
P

i S
z
i ; see, e.g. [25] for an extensive discussion of their entanglement properties), the size

of a complete basis of translational-invariant states is exponentially increasing as (2sþ 1)N/

N, and hence the manifold of interest has exponentially many parameters. However,

ground states of local Hamiltonians have many more non-generic properties, most notably

the fact that they have extremal local properties such as the minimization of the energy:

as the energy is only dependent on the local properties, and the ground state is determined

by the condition that its energy is extremal, ground states have extremal local properties

and the global properties only emerge to allow for these local properties to be extremal.

As an example, let us consider a spin-1/2 antiferromagnetic chain with an associated

Hamiltonian

HHeis ¼
X
hi;ji

~Si
~Sj

where the notation hi, ji denotes the sum over nearest neighbours. Each individual term

in the Hamiltonian corresponds to an exchange interaction and would be minimized

if spins i and j are in the singlet state

j i ¼
1ffiffiffi
2
p j01i � j10ið Þ;

however, due to the monogamy or frustration properties of entanglement, a spin-1/2

cannot be in a singlet state with more than one neighbour. As a result, the ground state

becomes a complicated superposition of all possible singlet coverings, and as an interesting

by-product quasi-long-range order may arise. The important point, however, is that this

wavefunction arises from the condition that its local properties are extremal: finding

ground states of local translational-invariant two-body Hamiltonians is equivalent to

characterizing the convex set of two-body density operators compatible with the fact that

they originate from a state with the right symmetry (see Appendix A).
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Clearly, we would like to parameterize the manifold of states fj exig with extremal
local properties. In practice, it is enough to parameterize a manifold of states fj apprig such
that there always exist a large overlap with the exact states fj exig: for all j exi, there exists
j appri : jk exi � j apprik� �. Let us consider any local Hamiltonian of N spins that
exhibits the property that there is a unique ground state j exi and that the gap is �(N). Let
us furthermore consider the case when �(N) decays no faster than an inverse polynomial
in N (this condition is satisfied for all gapped systems and for all known critical
translational-invariant systems in one dimension). Then let us assume that there exists
a state j appri that reproduces well the local properties of all nearest-neighbour
reduced density operators: k�appr� �exk� �. Then it follows that the global overlap is
bounded by

kj exi � j apprik
2 �

N�

�ðNÞ
:

This is remarkable as it shows that it is enough to reproduce the local properties well to
guarantee that the global properties are also reproduced accurately: for a constant global
accuracy �, it is enough to reproduce the local properties well to an accuracy � that scales
as an inverse polynomial (as opposed to exponential) in the number of spins. This is very
relevant in the context of variational simulation methods: if the energy is well reproduced
and if the computational effort to obtain a better accuracy in the energy only scales
polynomially in the number of spins, then a scalable numerical method can be constructed
that reproduces all global properties well (here scalable means essentially a polynomial
method).

The central question is thus: is it possible to find an efficient parametrization of
a manifold of states whose local properties approximate well all possible local properties?
A very interesting new development, inspired a great deal by developments in the field of
quantum information and entanglement theory, has shown that this is indeed possible.
The main idea is to come up with a class of variational wavefunctions that captures the
physics of the low-energy sector of local quantum spin Hamiltonians.

So what other properties do ground states of local quantum Hamiltonians exhibit
besides the fact that all global properties follow from their local properties? The key
concept to understand their structure is to look at the amount of entanglement present in
those states [26]: entanglement is the crucial ingredient that forces quantum systems to
behave differently to classical systems, and it is precisely the existence of entanglement that
is responsible for such exotic phenomena a quantum phase transitions and topological
quantum order [27,28]. It is also the central resource that gives rise to the power of
quantum computing [29], and it is known that a lot of entanglement is needed between the
different qubits as otherwise the quantum computation can be simulated on a
classical computer [7,30]. This is because the amount of entanglement effectively
quantifies the relevant number of degrees of freedom that have to be taken into account,
and if this is small, then the quantum computation could be efficiently simulated
on a classical computer. In the case of ground states of strongly correlated quantum
many-body systems, there is also a lot of entanglement (in the case of pure states, the
connected correlation functions can be non-zero if an only if there is entanglement), but
the key question is obviously to ask how much entanglement is present there: perhaps the
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amount of entanglement is not too big such that those systems can still be simulated

classically.
For example, let us consider a quantum spin system on a n-dimensional infinite

lattice, and look at the reduced density operator �L of a block of spins in an

L� L� � � � � L hypercube (Figure 1). The von-Neumann entropy of �L is a coarse-

grained measure that quantifies the number of modes in that block that are entangled

with the outside [29], and the relevant quantity is to study how this entropy scales with

the size of the cube. This question was first studied in the context of black-hole entropy

[31–35] and has recently attracted a lot of attention [26,36,37]. Ground states of local

Hamiltonians of spins seem to have the property that the entropy is not an extensive

property but that the leading term in the entropy only scales as the boundary of the

block (hence the name area law):

Sð�LÞ ’ cLn�1: ð1Þ

This has a very interesting physical meaning: it shows that most of the entanglement

must be concentrated around the boundary, and therefore there is much less entanglement

than would be present in a random quantum state (where the entropy would be extensive

and scale as Ln). This is very encouraging, as it indicates that the wavefunctions involved

exhibit some form of locality, and we might be able to exploit this to come up with efficient

local parameterizations of those ground states.

Figure 1. A quantum spin system on a lattice: the lattice is divided into two regions, A and B, with
borders @A and @B, respectively. In the case of ground states of local Hamiltonians, the entanglement
entropy between the two regions A and B scales as the area @A as opposed to the volume.

Advances in Physics 149



The area law (14) is mildly violated in the case of one-dimensional critical spin systems
where the entropy of a block of spins scales as [26,37]

Sð�LÞ ’
cþ �c

6
logL;

but even in that case the amount of entanglement is still exponentially smaller then the
amount present in a random state. It is at present not clear to what extent such a
logarithmic correction will occur in the case of higher dimensional systems: the block-
entropy of a critical two-dimensional system of free fermions scales as L logL [38–41],
while critical two-dimensional spin systems were reported where no such logarithmic
corrections are present [42], but in any case the amount of entanglement will be much
smaller than for a random state. It is interesting to note that this violation of an area law is
a pure quantum phenomenon as it occurs solely at zero temperature: in a recent paper [43],
it has been shown that the block entropy, as measured by the mutual information (which is
the natural measure of correlations for mixed states), obeys an exact area law for all local
classical and quantum Hamiltonians. The logarithmic corrections therefore solely arise
due to the zero-temperature quantum fluctuations. From the practical point of view, that
might indicate that thermal states at low temperature are simpler to simulate than exact
ground states.

The existence of an area law for the scaling of entropy is intimately connected to
the fact that typical quantum spin systems exhibit a finite correlation length. In fact,
Hastings has recently proven that all connected correlation functions between two blocks
in a gapped system have to decay exponentially as a function of the distance of the blocks
[44]. Let us therefore consider a one-dimensional gapped quantum spin system with
correlation length �corr. Owing to the finite correlation length, the reduced density
operator �AB obtained when tracing out a block C of length lAB� �corr (see Figure 2) will
be equal to

�AB ’ �A � �B ð2Þ

up to exponentially small corrections. (From a purely mathematical point of view, this is
not correct as, surprisingly, there exist states for which all connected correlations
functions are negligible while they are very far from being tensor product states [45,46]:
examples exist with negligible correlation functions but with the mutual information in the
order of the number of qubits in every block. To remedy this, we pointed out in a recent
paper that a more sensible way of defining a correlation length is by using the concept

xcorr

xcorr

BABA

lABOOOO exp≈ −−
A B

lAB >>

C

Figure 2. A one-dimensional spin chain with finite correlation length �corr; lAB denotes the distance
between the block A (left) and B (right). As lAB is much larger than the correlation length �corr, the
state �AB is essentially a product state.
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of mutual information, and when there is an exponential decay of mutual information,

then the state �AB is guaranteed to be close to a tensor product state [43].) The original

ground state j ABCi is a purification (a purification of a density operator �X is any pure

state j XYi on the bigger Hilbert space X,Y such that its reduced density operator

TrYj XYih XYj ¼ �X) of this mixed state, but it is of course also possible to find another

purification of the form j ACl
i�j BCr

i (up to exponentially small corrections) with no

correlations whatsoever between A and B; here Cl and Cr together span the original block

C. It is, however, well known that all possible purifications of a mixed state are equivalent

to each other up to local unitaries on the ancillary Hilbert space. This automatically

implies that there exists a unitary operation UC on the block C (see Figure 2) that

completely disentangles the left from the right part:

IA �UC � IBj ABCi ’ j ACl
i � j BCr

i:

This implies that there exists a tensor Ai
�;� with indices 1� �, �, i�D (where D is the

dimension of the Hilbert space of C) and states j A
� i; j 

C
i i; j 

B
� i defined on the Hilbert

spaces belonging to A, B, C such that

j ABCi ’
X
�;�;i

Ai
�;�

�� A
�

��� C
i

��� B
�

�
:

Applying this argument recursively leads to a MPS description of the state (we define those

MPSs later) and gives a strong hint that ground states of gapped Hamiltonians are well

represented by MPSs. It turns out that this is even true for critical systems [47]; a proof of

this is presented in Appendix B.
A remarkable feature of any gapped spin chain is thus that one could imagine dividing

the whole chain into segments of size l� �corr, and then apply a disentangling operation on

all blocks in parallel. This would then lead to a product state of many parts, and as such

gives a procedure of how such a ground state could be prepared using a quantum circuit

with a logical depth that is only dependent on the correlation length (and independent of

the number of spins).
In the case of critical systems, we do not expect this disentangling procedure to work as

correlations on all length scales appear. However, Vidal showed how this can be remedied

by introducing some more advanced disentangling scheme that acts on many different

length scales [48]. Basically, the idea is follow up a disentangling step with a coarse-

graining step, and do this recursively until there is only one spin left. The procedure for

doing this is called the multiscale entanglement renormalization ansatz (MERA), and may

lead to alternative methods for simulating quantum spin systems.
It is interesting to note that the situation can again be very different in two dimensions:

in that case, gapped quantum spin systems can exhibit topological quantum order, and

in [49] it was proven that the depth of any quantum circuit preparing such a topological

state has to scale linearly in the size of the system. In other words, it is impossible to device

a scheme or pattern by which one could disentangle such states in a parallel way as can be

done in one dimension. However, in this two-dimensional case it is also possible to come

up with a variational class of states, the so-called PEPSs [12,13], that captures the essential

physics for describing those systems. By a recent argument of Hastings [46,50], it can again

be proven that basically every ground state of a local Hamiltonian can be well represented

by a state within this class.
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3. Wilson’s NRG method

The exact description of strongly correlated condensed matter systems poses formidable
difficulties due to the exponentially large dimension of the associated Hilbert space.
However, Wilson was the first to understand that the locality of the interactions between
particles or modes enforces ground states to be of a very specific form and could be
exploited to simulate them. This insight led to the development of NRG algorithms [1].
The reason for the remarkable accuracy of NRG if applied to quantum impurity problems
(e.g. the Kondo and Anderson Hamiltonians [51,52]) can be traced back to the ability to
map the related Hamiltonians to momentum space such that they become inhomogeneous
one-dimensional quantum lattice Hamiltonians with nearest-neighbour interactions.
(The basic reason why a one-dimensional model is obtained even though the original
model is concerned with a magnetic impurity in a three-dimensional system is that the
Kondo Hamiltonian only affects the s-wave part of the wavefunction; the s-wave modes
are therefore dominant at low energies). NRG is then a recursive method for finding the
low-energy spectrum of such Hamiltonians, and yields very accurate results when there is
a clear separation of energies, reflected by, for example, an exponential decay of the
couplings within the one-dimensional hopping Hamiltonian. The NRG method then
recursively diagonalizes the Hamiltonian from large to small energies: at each iteration,
a tensor product of the larger energy modes with lower energy modes is made and then
projected on a subspace of the lower energy modes of the combined system. Thereafter the
Hamiltonian is rescaled. Hence, the basic assumption is that the low-energy modes are
affected by their high-energy counterparts, but not vice-versa.

Let us illustrate Wilson’s method using the NRG treatment of the single-impurity
Anderson model (SIAM). This model can be mapped to a hopping Hamiltonian after
a logarithmic discretization of the conduction band [52]:

H¼
XN
n¼0

�n
�
f yn� fðnþ1Þ�þ h:c:

�
þ

1

D
�dþ

U

2

� �
c yd�cd�þ

ffiffiffiffiffiffiffi
2�

�D

r �
f y0�cd�þ h:c:

�
þ

U

2D

�
c yd�cd�� 1

�2
;

ð3Þ

�n ¼
��n=2

2

ð1þ ��1Þð1� ��n�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ��2n�1Þð1� ��2n�3Þ

p : ð4Þ

Here, � can take the values #,", cd� denotes the annihilation operator of the impurity and
fn� of the nth fermion with spin �, summation over � has been assumed, and N!1.
As the dimension of the associated Hilbert space is 22N, an exact diagonalization is
impossible, and approximations must be made. The hopping terms are decaying
exponentially in n, and the basic idea of NRG is to treat the largest n0 terms first which
involves the diagonalization of a 22n0 matrix. Next we specify a control parameter D� 22n0,
retain only the eigenvectors

fj n0
� ig�¼1...D

corresponding to the D lowest eigenvalues, and project the first n0 terms of the
Hamiltonian onto that subspace using the projector

P½n0� ¼
X
�

j�i
�
 n0
�

��
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yielding the D � D matrix Hn0 . In the first step of the iteration, the extra term involving

the coupling between the n0th and the (n0þ 1)th fermions is considered, and an exact

diagonalization in the corresponding 4D-dimensional Hilbert space is performed yielding

the eigenvectors. To avoid that the dimensions of the effective Hamiltonian blow up,

we project the Hamiltonian onto the new D-dimensional eigenspace corresponding to the

lowest eigenvalues

P½n0þ1� ¼
X
�

j�i
�
 n0þ1
�

��
yielding Hn0þ1. Note that P[n0þ 1] is a D� 4D matrix, and for later reference we write its

coefficients in tensor form as Pi ½n0þ1�
�;� , 1��,��D, 1� i� 4. Now we iterate this procedure

N� n0 times, and NRG is typically said to have converged when �HN�1 ¼ HN þ cst up to

a unitary transformation. Note that the computational complexity of the NRG procedure

scales as ND3.
Let us now consider the subspace on which we projected the original Hamiltonian

more closely. The D states fj N
�N
ig at the end of the iterations can be written as

�� N
�N

�
¼

X
�n0 ...�nN�1

X
in0 in0þ1...iN

P
in0 ½n0�
�n0

P
in0þ1½n0þ1�
�n0�n0þ1

. . .PiN½N�
�N�1�N

jin0ijin0þ1i . . . jiNi: ð5Þ

These states are of exactly the same form as those mentioned in the introduction, and

due to the feature that they are defined as a product of matrices, these are called MPSs

[53–57] and were originally introduced in the mathematical physics community under the

name of finitely correlated states [58,59] (a precursor of this appeared in the context of

quantum Markov chains [60]). The energies calculated using NRG are thus energies of an

effective Hamiltonian which is the original one projected onto a subspace of MPS.

In practice, the NRG method is highly successful for problems where the different terms in

the Hamiltonian act on a different scale of energy, and in that case results up to essentially

machine precision can be obtained; this can only be true if the class of the MPSs

indeed captures all of the physics needed to describe the low-energy physics of these

Hamiltonians.
However, by looking at NRG by means of MPSs, it is already clear that it can in

principle be formulated as a variational method within the set of MPS. It turns out

that this is exactly what White did by introducing the DMRG [2,3], but the way of

looking at both methods from that point of view of MPS was only discovered much

later [61].

4. MPSs and ground states of spin chains

4.1. Construction and calculus of MPSs

4.1.1. The AKLT model

The notion of MPSs already appeared naturally in Section 2 describing spin chains with

finite correlation length and in the context of NRG. They were first studied in the work of

Affleck, Kennedy, Lieb and Tasaki (AKLT) [62], where it was proven that the exact
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ground state of the spin-1 spin chain with the Hamiltonian

HAKLT ¼
X
hi;ji

~Si: ~Sj þ
1

3
ð ~Si: ~SjÞ

2
þ
2

3

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Pij

can be parameterized exactly as a MPS. To see this, they observed that the terms Pij are

projectors (Pij)
2
¼Pij onto the five-dimensional spin-2 subspace of two spin-1s,

and proceeded by constructing the unique ground state j AKLTi which is annihilated by

all projectors Pij acting on nearest neighbours. This state j AKLTi can be constructed

as follows.

. Imagine that the three-dimensional Hilbert space of a spin-1 particle is effectively

the low-energy subspace of the Hilbert space spanned by two spin-1/2 particles,

that is, the three-dimensional Hilbert space is the symmetric subspace of two

spin-1/2 particles.
. To ensure that the global state defined on the spin chain has spin zero, let us

imagine that each one of the spin-1/2s is in a singlet state with a spin-1/2 of its

neighbours (see Figure 3).
. The AKLT state can now be represented by locally projecting the pair of spin-1/2s

in the symmetric subspace onto the spin-1 basis fj1i, j0i, j � 1ig:

P ¼ j � 1i
h00j � h11jffiffiffi

2
p

� �
þ j0i

h01j þ h10jffiffiffi
2
p

� �
þ j1i

h00j þ h11jffiffiffi
2
p

� �
�

X
�¼x;y;z

j�i
h00j þ h11jffiffiffi

2
p

� �
	� � 	y;

where 	x¼ 
x, 	y¼ i
y, 	z¼ 
z with f
�g the Pauli matrices and where we identified

j�1i¼ jxi, j0i¼ jzi, j1i¼ jyi.

Historically, the AKLT state was very important as it shed new light on the conjecture

due to Haldane [63,64] that integer spin Heisenberg chains give rise to a gap in the

spectrum. That is a feature shared by all generic MPSs: they are always ground states of

local gapped quantum Hamiltonians.
Let us first try to rewrite j AKLTi in the MPS representation. Let us assume that we

have an AKLT system of N spins with periodic boundary conditions (PBCs); projecting

the wavefunction in the computational basis leads to the following identity:

h�1; �2, . . . ,�Nj AKLTi ¼ Trð	�1 :	y:	�2 :	y . . . 	�N :	yÞ:

The different weights can therefore be calculated as a trace of a product of matrices.

The complete AKLT state can therefore be represented as

j AKLTi ¼
X

�1;�2,..., �N

Trð	�1 :	y:	�2 :	y . . . 	�N :	yÞj�1ij�2i . . . j�Ni

Figure 3. Building up the AKLT state by partial projections on bipartite singlets.
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which is of almost exactly the same form as the MPSs introduced in 5. The only

difference between them is the occurrence of the matrices 	y between the different

products. This is, however, only a consequence of the fact that we connected the

different nodes with singlets, and we could as well have used maximally entangled states

of the form

jIi ¼
X2
i¼1

jiii

and absorbing 	y into the projector; this way we recover the standard notation for MPSs.
So what did we learn from this AKLT example? Basically, that there is a way of

parameterizing the exact ground state of a particular strongly correlated quantum spin

chain using a construction involving virtual bipartite entanglement and projections.

From the point of view of quantum information theory, this parametrization is very

appealing, as it gives an explicit way of constructing a highly entangled multipartite

quantum state out of bipartite building blocks. More importantly, it is immediately clear

how this picture can be generalized [10,65]: instead of taking spin D¼ 2 bonds

corresponding to spin-1/2s, we can take much larger D for the virtual spins, and

furthermore it is obvious that the projectors can be replaced with any linear map. What

is really exciting in doing so is the fact that the states arising from this are translational

invariant by construction [58]; this is highly relevant as there does not seem to be

another simple way of parameterizing translational-invariant states. Recalling the

discussion in Section 1, it is now obvious that this class of translational-invariant MPSs,

originally introduced in the literature under the name of finitely correlated states [58],

would form a very good ansatz for parameterizing ground states. Indeed, ground states

of local Hamiltonians are characterized by extremal local properties that are still

compatible with the global translational symmetry, and as the MPSs are built up by

projecting the underlying maximally entangled states with extremal local correlations, it

is very plausible that the MPSs are perfectly suited for this. In addition to the AKLT

model, many variations of that Hamiltonian have been studied with exact MPSs as

ground states [66–68]; this is particularly interesting because analytical solutions of spin

chains are very rare.
Note that the number of parameters that we have to our disposal in these translational-

invariant MPSs scales as dD2 with d the physical dimension of the spins (indeed, we have

to parameterize d matrices A� of dimension D�D), and hence the natural question now is

how does the convex set of all local reduced density operators so obtained compare with

the exact convex set of all possible translational-invariant systems. This problem is

considered in appendices A and B, and it is found that the number of parameters needed

has to scale as a constant or at most polynomially in the number of spins.

4.1.2. MPSs

As already explained in the previous Section, the obvious generalization of the AKLT

states is obtained by making the dimensions of the virtual spins D larger and considering

general linear maps A� instead of projectors, but we can make a further generalization by

making D (the dimension of the virtual subsystems) and those maps site-dependent and
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writing them as Di and Ai
�. The most general form of a MPS on N spins of dimension d is

then given by

j i ¼
Xd

�1;�2,..., �N

Tr
�
A1
�1
A2
�2

. . .AN
�N

�
j�1ij�2i . . . j�Ni: ð6Þ

The matrices Ai have dimension Di�Diþ 1 (here we take the convention that DNþ 1¼D1),

and a system with open boundary conditions (OBCs) is obtained by choosing D1¼ 1

(i.e. no ‘singlet’ between the endpoints). A pictorial representation is given in Figure 4.

Before continuing, let us remark that every state of N spins has an exact representation as

a MPS if we let D grow exponentially in the number of spins; this can easily be shown by

making use of the tool of quantum teleportation as shown in [10]. However, the whole

point of MPSs is that ground states can typically be represented by MPSs where the

dimension D is small and scales at most polynomially in the number of spins; this is the

basic reason why renormalization group methods are exponentially more efficient than

exact diagonalization.

4.1.3. Calculus of MPSs

Next, let us explain the calculus of those MPSs. A crucial aspect of those MPSs is indeed

the fact that the expectation value of a large class of observables can be calculated

efficiently. More specifically, this holds for all observables that are a tensor product of

local observables, such as 
ix � 

j
x. The easiest way to understand this is by considering

a so-called tensor network, in which connected bonds correspond to contracted indices

and open bonds to uncontracted indices (see Figure 5). More specifically, the tensor

network in Figure 5(a) corresponds to the quantity

A1
�1
:A2

�2
. . .AN

�N

as the ‘virtual’ indices are all contracted (corresponding to taking products of matrices)

and the physical ones are left open. To calculate expectation values of observables, it is

clear that we also have to contract those physical indices, after sandwiching in the

observables, and hence expectation values can be represented by a completely contracted

network. The relevant thing of course is now to quantify the computational complexity of

actually doing those contractions. Naively, one expects that the calculation of the

expectation value of a quantum state consisting of, say, N spin-1/2s would

involve a number of operations of the order of the size of the Hilbert space and, hence,

exponential in N. This strategy would correspond to contracting the tensor network

Figure 4. A general MPS.
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from top to bottom. However, we can be smarter and contract the tensor network from

left to right such that we never have to store more than Di � Di variables during the

computation (i.e. Di from the upper row and Di from then lower row). Furthermore, the

contraction of tensors from left to right can be done in a smart way. Let us, for example,

assume that all virtual bonds have dimension D and physical bonds dimension d; the

leftmost contraction corresponds to contracting the physical bond, leaving a tensor with

two indices i, j of dimension D and D. Next we contract one of those with a tensor Ai, and

thereafter with �Ai. The total number of multiplications that had to be performed in that

procedure is given by d2D3, and this computational cost of contracting the whole network

is therefore Nd2D3 as we have to repeat the previous step N times. If D is not too big (i.e.

D5 1000), this can still be performed efficiently on present-day computers. (Calculations

up to D¼ 10,000 have been performed in cases where very high precision was needed, but

such cases are only tractable when explicitly making use of quantum numbers [4].) Note

that it is also obvious how to calculate the expectation value of any observable that is

defined as a tensor product over local observables; this is useful when calculating, for

example, the decay of correlations.
In the case of PBCs, the network to contract is very similar (Figure 5(c)) but one has to

keep track of more variables (namely those going to the left and to the right), and the total

computational cost amounts to Nd2D5; the extra factor of D2 is responsible for the fact

that simulations with PBCs are considerably slower than with OBCs [2,3,10], but one has

to note that the scaling is still only polynomial and that a D of the order of 100 is still

achievable in principle, which is more than enough to obtain a good accuracy in actual

calculations.
The rest this subsection is pretty technical and can be skipped for a reader who

is not really interested in technical details that are relevant for actually implementing

Figure 5. (a) An MPS with OBCs as a tensor network. The open bonds correspond to the
uncontracted physical indices and the closed bonds to contracted indices arising from taking the
products. (b) Calculating the expectation value of an nearest-neighbour operator over a MPS with
OBCs by contracting the tensor network completely. (c) An extra bond has to be contracted in the
case of PBCs.
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NRG methods. Let us first show how to efficiently calculate expectation values of generic
Hamiltonians with only terms that act on nearest-neighbour spins:

H ¼
XN
k¼1

Ok þ
XN�1
k¼1

X
�

Bk
� � Bkþ1

� :

Instead of calculating the expectation value of each term in the sum separately, one can be
a bit smarter and store the information of the result of the contraction from left to right
and arrange everything such that the total computational cost is basically still Nd2D3,
which in practice means a huge gain in computation time. See Appendix C for an actual
implementation of this in Matlab.

Another technical tool that is of great practical value is the fact that a MPS does not
have a unique representation in terms of tensors Ai but that so-called gauge
transformation on the virtual level leaves the physical state invariant. This follows from
the fact that a multiplication of two matrices is left invariant when a non-trivial resolution
of the identity is inserted between them:

AB ¼ AXX�1B ¼ A0B0;

A0 ¼ AX;

B0 ¼ X�1B:

It happens that those gauge degrees of freedom can be exploited to make the forthcoming
numerical optimization methods better conditioned. In the particular case of a MPS with
OBCs, we would like them to have some orthonormality properties. For example, consider
again the NRG of Wilson that was sketched in Section 2. There, one obtained collections
of MPSs fj k

�k
ig at each step of the recursion such that they were all orthonormal to each

other. It is easy to see that a gauge transformation can always be found such that this is
fulfilled in the case of MPS with OBCs. Consider therefore a MPS with tensors
A1,A2, . . . ,AN, and let us look at the two collections of Dk MPS defined on the left and
right parts of the qubits, respectively, by opening the kth contracted bonds�� k

n

�
¼

X
�1�2...�k

A�1A�2 . . .A�k :enj�1ij�2i . . . j�ki ð7Þ���kn� ¼ X
�kþ1eTn �kþ2...�N

A�kþ1A�kþ2 . . .A�N j�kþ1ij�kþ2i . . . j�Ni ð8Þ

where en denote the different unit vectors in a Dk-dimensional vector space. Let us
furthermore consider the matrices

Ann 0 ¼
�
 k
n 0 j 

k
n

�
ð9Þ

Bnn 0 ¼
�
�kn 0 j�

k
n

�
ð10Þ

and take their respective square roots A ¼ XX y and B ¼ YY y. It is clear that if we were
now to perform the gauge transformation Ak

i ! Ak
i X
�1 and repeat the procedure

described above, we would see that the set fj 
0k
n ig would form an orthonormal set as A 0

would be equal to the identity. Similarly, we could make the MPS on the right-hand side
orthonormal.
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It is interesting to note that the Schmidt coefficients obtained by considering the

bipartite cut over the kth bond are precisely given by the singular values of the matrix

XYT; indeed, the matrices X�1 and Y�T were used to make the left- and right-hand side

orthonormal, and the original MPS can of course be written as

j i ¼
XDk

n¼1

�� k
n

����kn�:
Writing out the singular value decomposition (SVD) of XYT

¼U�VT explicitly, a natural

gauge transformation to represent the MPS with OBCs would then be obtained by
implementing the gauge-transformation

Ak
i ! Ak

i X
�1U Akþ1

i ! VTY�TAkþ1
i

for all k¼ 1. . .N and by writing out the MPS in such a form that the Schmidt coefficients

are appearing explicitly:

j i ¼
X

�1�2...�N

A1
�1

�1A
2
�2

�2 . . .AN
�N
j�1i . . . j�Ni:

Here, the �i are the diagonal matrices containing the Schmidt coefficients.

This parametrization of MPS with OBCs coincides exactly with the definition of the

family of states introduced by Vidal in the context of the simulation of real-time evolution

of quantum many-body systems [69], and we have just shown that every MPS with OBCs

can be written like that.
It would be very appealing to have a similar parametrization in the case of MPS with

PBCs. However, it is clear that no notion of singular values or orthonormality can exist in

that case as the left-hand side is always connected to the right-hand side. However, in a

quantum spin system defined on a ring with a correlation length much shorter than the

length of the ring, the boundary effects are not expected to be too pronounced, and an

approximate orthonormalization can still be carried out [10]. This is discussed in a later
Section. Related to this issue, let us suppose that we have a MPS with PBCs for which we

know that there exists a MPS description with all tensors Ai equal to each other (the state

is hence obviously translational invariant). However, let us assume that we have a MPS

description of that state with all tensors Ai different from each other (i.e. the symmetry has

been spoiled by site-dependent gauge transformations), for example, as the result of a
variational optimization. Is there a way to recover the symmetric description? For this,

we have to find the gauge transformation ~Ai
� ¼ XiA

i
�X
�1
iþ1, i¼ 1. . .N, such that

~A1
� ¼

~A2
� ¼ � � � ¼

~AN
� �

~A�:

Without loss of generality, we can assume that X1 is equal to the identity (indeed, we still
have the freedom of a global gauge transformation). However, then we can find X2 and XN

as the equations A1
�X
�1
2 ¼ XNA

N
� , �¼ 1. . . d has at least as many equations as unknowns

(in practice, this should be done using a least squares algorithm). This can then be iterated

until all gauge transformations Xi have been determined. Alternatively, the new matrices
~A� can be found by considering the gauge-invariant normal form of the MPS: in terms of
Ai
�, the norm is expressed as TrðE1 � � �ENÞ, with Ei ¼

Pd
�¼1 A

i
� �

�Ai
�. This expression is

equal to the norm expressed in terms of ~A�, namely ~EN, with ~E ¼
Pd

�¼1
~A� � ~A�.
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Therefore, the ~A� are obtained by taking the Nth root of E1 � � �EN and performing

a Schmidt decomposition of the result.
To summarize, we have shown that MPSs are very appealing from the computational

point of view as all correlations functions and the expectation value of local Hamiltonians
can be calculated efficiently. Moreover, we have shown how gauge transformations can be

used to bring a MPS with OBCs into a normal form.
A relevant observation is that we can also efficiently calculate the overlap between

two different MPS. This makes the MPS approach a very nice tool to detect quantum
phase transitions, because small changes in the Hamiltonian led to big changes in the

ground state around those transition points, and those changes can be detected by
calculating the overlap between the different MPS approximations of the respective
ground states [70].

A final remark is that it is also simple to calculate expectation values of Hamiltonians

with long-range terms. This allows us to easily generalize the methods introduced in later
Sections to situations of long-range Hamiltonians.

4.1.4. Generalization of MPSs

The valence bond state representation can readily be generalized to trees or higher
dimensions. The generalization to higher dimensions is discussed in Section 6, and there it

will become clear that the calculation of expectation values is much more involved than in
the one-dimensional case and can only be done approximately. In contrast to this, it is easy
to see that the generalization of MPSs to tree networks without loops leads to a family of

states from whom all expectation values can be calculated efficiently without having to
make approximations [71].

Let us illustrate this for the particular case of a MPS on a Cayley tree with
coordination number 3 (see Figure 6). To calculate expectation values of such a state

h jOj i, we start contracting the indices from the boundary inwards. As there are no
loops, it is easy to see that the number of variables to keep track of does not explode

exponentially but remains bounded just like in the case of MPSs. For simplicity, let us
assume that all projectors P are equal to each other. At any point of the contraction when
going from the outside to the inside, we have two incoming and one outgoing vertices; as

the earlier contractions of the incoming vertices did never entangle with each other,
their joint state is in a product �k� �k. Analogously to the MPS case, the role of the

projector P is to apply a completely positive map on this product state: if we define the set
of Kraus operators Ai

�;�� ¼ Pi
��� , then

�kþ1 ¼
Xd
i¼1

Ai�k � �kA
y

i

and yields the input for the next level of contractions. As the map from �k!�kþ1 is clearly
a non-linear completely positive map, its structure is much richer than in the case of MPSs

and associated completely positive linear maps [72]: it happens that such non-linear maps
have multiple fixed points with different basins of attractions, and hence the boundary

terms can affect the expectation values in the bulk of the system (note that this seems to be
a consequence of the fact that we work with a Cayley tree, where the number of vertices
increases exponentially as a function of the distance to the centre of the tree).
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Anyway, the important point to make is that expectation values of any product
observable can be readily calculated efficiently by multiplying matrices with each other: in
the case of a tree with coordination number c, the computational cost is Dcþ1 with D the
dimension of the bonds (note that this yields D3 for c¼ 2 (i.e. MPS) and D4 for the Cayley
tree with c¼ 3). Note also that it is straightforward to obtain a canonical normal form for
the tree in the same way as for the MPS by making use of the SVD [73]. Most of the
simulation techniques described in the following Sections can therefore also immediately
be generalized to this setting of trees.

It can be seen that it is also possible to contract the tensor network exactly and
efficiently if there are loops, but not too many of them. A clear demonstration of this is of
course the one-dimensional case of MPSs with PBCs: numbering the d-dimensional spins
from 1 to 2N in the case of a ring with an even number of sites, one can define N new spins
by merging spins i and 2N� iþ 1 into composite pairs. The corresponding MPS with
OBCs has spin dimension d2 and bond dimension D2, which can still be contracted
efficiently. Similarly, we will be able to contract a generic tree with loops efficiently if it can
be mapped onto a different tree without loops by merging collections of spins together;
this procedure will still lead to a polynomial computational complexity if and only if the
local dimension of the new spins is bounded by a polynomial in the size of the system.
This condition is equivalent to the requirement that the maximal amount of spins that has
been merged into a new superspin scales at most logarithmic in the size of the system
(which guarantees a complexity poly(D,N)). It turns out that this notion of transforming
an arbitrary graph into a tree by merging vertices together is a well-studied problem

Figure 6. A MPS in the form of a Cayley tree with coordination number 3: just as in the case of spin
chains, the big open circles represent projections of three virtual spins to one physical spin.
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in graph theory, and that the tree width of a graph follows from the optimal way of doing
this such as minimizing the maximal number of vertices that has to be merged [74] over all
possible mappings from a graph to a tree: the tree width is then the maximal number of
vertices that are merged in this optimal solution. Although calculating the tree width of a
general graph seems to be NP-hard, efficient (i.e. P) approximation algorithms exist that
approximate the tree width to within a constant. The connection between tree width and
MPSs was pointed out in [75].

One can also formulate a variant of the tree network case, in which the nodes of the
tree do not carry any physical spins but only the endpoints of the branches do; in other
words, we start from a collection of virtual singlets, order them in the form of a tree, and
put a projector on all of the vertices that maps the Dc-dimensional Hilbert space to a one-
dimensional Hilbert space. Contraction of such a tensor network can again be done in an
efficient way by starting the contraction at the leaves and working oneself inwards.
An interesting observation is the fact that every MPS with a given D can be expressed as
such a Cayley tree with coordination number c¼ 3 and bond dimension D2 (this is true
both for the case of OBCs and PBCs). Note that the opposite situation is different: if we
want to represent a generic state on the Cayley tree of bond dimension D as a MPS, the
MPS will have a site-dependent bond dimension bounded above by Dlog2ðNÞ ¼ Nlog2ðDÞ

(which is still polynomial). This can easily be seen from the construction depicted in
Figure 7. Such a description was used to develop a formalism in which one can perform
successive renormalization group transformations on quantum states as opposed on the
usual level of Hamiltonians [76].

As a further extension, Vidal observed that more general types of tensor networks can
be contracted efficiently: if all tensors appearing in the tree (with only physical spins at the
bottom) are isometries, then one can additionally put a collection of so-called
disentangling unitaries between the different branches. The reason why expectation
values of local observables (or more generally observables that act non-trivially only on a
constant number of spins) can still be calculated exactly is that in the expression h jOj i
most of those unitaries that disappear cancel each other out and hence play no role: one
only has to keep track of the unitaries within the lightcone of the local observable, and it
can be shown that the cost of this is still polynomial (albeit with a very large power,
especially if one considers the two-dimensional variants of this construction). This
approach is called the MERA [48,77], and has a particularly nice interpretation as
successive rescaling transformations in the sense of the renormalization group. Due to the
presence of the tree network, the Schmidt number in the one-dimensional setting can grow
logarithmically with the system size, and the method is therefore very promising for
describing critical systems. As opposed to the class of MPSs, however, there does not seem
to be a straightforward well-conditioned way of performing a variational optimization
over the class of MERA to find the MERA with minimal energy. Several promising
approaches have been described in [48,77,78]; the simplest approach is to parameterize the
unitaries and isometries as exponentials of anti-Hermitian operators, and implement the
steepest descent optimization algorithm on those parameters. (Such optimization
techniques over the manifold of unitaries have been studied in great detail in the context
of control theory and are called flow equations; they were also used in the context of
entanglement theory [79] and first implemented on the level of MERA in [80].) Further
extensions are possible, and there is currently an effort in trying to identify the broadest
class of quantum states for which all local properties can be calculated efficiently
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(i.e. polynomial complexity). As an example, one can make use of the concept of MPOs to

show that an efficient contraction is still possible when one acts with a quantum circuit of

arbitrary depth but consisting only of commuting gates (e.g. expði�
iz � 

j
zÞ) between any

two spins (even those that are very far apart) of an arbitrary MPS; such states can violate

the area law in an extreme sense because they might lead to volume laws, and such states

might be relevant in simulations of systems very far from equilibrium.

4.2. Reformulating NRG methods as variational methods in the class of MPSs

Let us now look back at the NRG, and reformulate it as a variational method within the

class of MPSs. To start with, let us aim to find the best possible description of the ground

state of, for example, the Heisenberg model within the space of all MPSs of the form (19),

using the matrix elements of the matrices fAn
g as variational parameters to minimize

the energy (note that we no longer impose the condition that the An are projectors).

Figure 7. Every MPS can be represented in the form of a tree network in which the vertices are
projectors onto a one-dimensional subspace (depicted as square boxes as opposed to ellipses for the
case of projectors to physical spins); in the last step, it is understood that the original matrices Ai

��
are absorbed into the square blocks on the lowest level which are tensors with six D-dimensional
indices.
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Using a Lagrange multiplier to ensure normalization, this leads to the following
optimization problem:

min
j Ni2fMPSDg

½h NjHNj Ni � 
h Nj Ni�:

This cost function is multiquadratic in the dN matrices {Ak} with a multiquadratic
constraint; indeed, every matrix appears only once in the bra and once in the ket, and so

this problem is basically equivalent to a cost function of the form

min
x1;x2;...

X
k1;k2;...l1;l2;...

x1k1 �x1l1x
2
k2

�x2l2 � � �Qk1;k2,..., l1;l2;...;

where the xk are vectors with d�Dk�Dkþ 1 elements and the big tensor Q contains the
information of the Hamiltonian. The Lagrange constraint is of a similar form, and it that

case Qk1,k2,. . .¼ �k1l2�k2l2. . .. There is a standard way of solving such an optimization
problem which is called alternating least squares (ALS). (Multiquadratic optimization
problems can in principle be NP-hard to solve [81], and so there is no guarantee that the

ALS method will converge to the global optimum. However, in practice this does not seem
to occur. See also [82].) This ALS is an iterative method that works as follows: after
making an initial guess of the vectors xk, we keep x2, . . . , xN fixed and optimize over x1.

That subproblem is of the form

min
x1

x1yHeffx
1 � 
x1yNeffx

1

(note that Heff and Neff depend on all of the other xk) and is exactly solvable as it is a
quadratic problem with quadratic constraints. The solution is that we have to choose x

equal to the smallest eigenvalue of the generalized eigenvalue problem Heffx¼ 
Neffx.
A crucial point in all of this is that there is an efficient way of calculating Heff and Neff

given an MPS and the Hamiltonian: these are obtained by contracting tensor networks of

the type discussed in 3.1.3, and an important point in the actual implementation of this is
to store the relevant matrices for later use. In the next step, we fix x1,x3,x4,. . . and repeat
the same procedure, until we reach N and repeat the procedure again by going from N to 1

and so on until convergence. Note that at each step of this procedure, the energy is going
down and we are hence guaranteed to converge to some value that is hopefully close to the

minimal energy of the Hamiltonian [10]. We call this procedure the variational MPS
(VMPS) method.

And what about excitations? Within the framework discussed up to this point, this can
easily be done variationally [83]. Suppose we found the MPS j 0i with lowest energy, the

variational problem is then to find the MPS j 1i with the lowest energy that is orthogonal
to the j 0i. This amounts to taking another Lagrange constraint in the optimization
problem:

min
j 1i2fMPSDg

½h 1jH
Nj 1i � 
h 1j 1i � �h 1j 0i�

and this can still be solved iteratively in a very similar way. Basically, at every step we have

a subproblem of the form

min
x

x yHeffx� 
x
yNeffx� �y

yx

whose solution is given by the solution to the generalized eigenvalue problem
PHeffPx¼ 
PNeffPx with P the projector on the subspace orthogonal to the vector y.
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Doing this iteratively, this will again converge to a state j 1i that is the best possible

approximation of the first excited state using a MPS. Of course, a similar procedure can

now be used to construct more excited states.
Let us now look back at the NRG method of Wilson. In essence, the goal is to find the

low-energy spectrum of the Hamiltonian. NRG can be understood as a different way of

performing the optimization discussed above, but the NRG method is suboptimal and is

only applicable in the particular case where there is a clear separation of energies (such as

for a Kondo impurity or SIAM). Basically, the steps done in the case of NRG are

equivalent to the steps one would do using the variational method discussed above during

the first sweep from left to right. However, the NRG method is stopped after that first

sweep, which effectively means that one never takes into account the influence of the low-

energy modes on the larger energy modes. (This feedback may be small in practice, but it is

not strictly zero, and its importance increases as the logarithmic discretization is refined by

taking �! 1.) This is clearly suboptimal, and a better result can be obtained by sweeping

back and forth a few more times until complete convergence is obtained [61]. The

computational complexity of this is no greater than that of the original NRG method. The

method so obtained is then basically equivalent to the DMRG introduced by White [2,3],

and it is indeed well known that DMRG has a much wider range of applicability than

NRG. Note, however, that NRG and DMRG were always considered to be rather

different, and it is only by reformulating everything in terms of MPSs that the many

similarities become apparent.
Let us now come back to the variational method explained above for doing NRG. The

effective Hamiltonian at chain length n, the central object in NRG, is given by
~Hn
�� ¼ h

~ n
�jH

nj ~ n
�i, and can hence also easily be recovered. Let us now illustrate the above

by applying them to the SIAM given in equation (9). The following example is taken out of

the paper [61]. Since the Hamiltonian couples " and # band electrons only via the

impurity, it is possible (see also [84]) to ‘‘unfold’’ the semi-infinite Wilson chain into an

infinite one, with " band states to the left of the impurity and # states to the right, and

hopping amplitudes decreasing in both directions as �� jnj/2. Since the left and right end

regions of the chain, which describe the model’s low-energy properties, are far apart and

hence interact only weakly with each other, the effective Hamiltonian for these low

energies will be of the form Heff
" � 1# þ 1" � H

eff
# . This is illustrated by the black and blue

lines in Figure 8(a). Since Heff
" and Heff

# can be calculated separately, instead of

simultaneously as in typical NRG programs, the dimensions of the effective Hilbert spaces

needed in the VMPS approach and NRG approaches to capture the low-energy properties

with the same precision are related by DMPS ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DNRG

p
, implying significant computa-

tional gain with VMPS (i.e. a square root speed-up).
Figure 8 compares the energy level flows calculated using NRG and VMPS. They agree

remarkably well, even though we used DMPS ¼ 32 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DNRG

p
. The accuracy can still be

improved significantly by using larger D and smaller � (and exploiting symmetries, not

done here for VMPS).

4.3. DMRG

As discussed in the previous Section, DMRG can effectively be understood as the

more advanced version of NRG in the sense that one also sweeps back and forth.

Advances in Physics 165



Historically, the discovery of the DMRG algorithm had an enormous impact on the field
of strongly correlated quantum spin systems as it led to the first algorithm for finding the
low-energy spectrum of generic spin chains with local or quasi-local interactions. One of
the first checks of the accuracy of the method was the calculation of the ground state
energy of the critical spin-1/2 Heisenberg chain, and a dazzling precision was obtained
when D was taken to be of the order of a few hundred. The DMRG method also allows
one to calculate gaps and gave very strong evidence for the existence of the so-called
Haldane gap in the case of the spin-1 Heisenberg spin chain.

Still, the VMPS approach discussed in the previous Section and the traditional DMRG
differ in crucial details, and when looking back at the way DMRG has been understood
and derived, it is not completely obvious to see the parallels with the VMPS approach. We
will not explain here how DMRG works, but we refer to the many good review papers on
the subject [4,5]. One important difference is that the VMPS approach also works in the
case of open as well as PBCs, whereas DMRG uses an ansatz that is specifically tailored
for systems with OBCs: the basic reason for this is that DMRG implicitly uses the
orthonormalized normal form of MPS discussed in Section 3.1.3, but such a normal form
does not exist in the case of PBCs [10]. In practice, simulations of spin chains with PBCs
have been done using DMRG, but this is precisely done in the way that was discussed in
Section 3.1.4 by folding the MPS with PBCs to one with OBCs by squaring the dimension
of the virtual spins D!D2; the cost to pay is an algorithm whose computational cost scales
as D6 and, more importantly, for which it is not possible to formulate an ansatz of excited
states with a definite momentum (see Section 3.4).

Another difference has to do with the fact that the standard DMRG algorithm is set up
in such a way that one performs a variational minimization over two sites together instead
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Figure 8. Energy level flow of the SIAM as a function of the site index n calculated with (a) VMPS
using DMPS¼ 32 calculated after sweeping and (b) NRG using DNRG¼ 322¼ 1024. The blue lines in
(a) denote the spectrum of Heff

" � 1# þ 1" � H
eff
# and demonstrate the decoupling of the " and # spin

chains for large n. The inset compares the ground state energy as function of D for VMPS (circles)
and NRG (squares). The subtracted extrapolated ground state energy is E*’� 3.0714. (Reprinted
from [61] with kind permission of the authors.)
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of over one site as described in the VMPS. Such as step is then followed by performing a
SVD and throwing away the least relevant modes; that step is strictly speaking no longer
variational, but there is evidence that the conditioning and the numerical convergence is
better when using this method. Another reason why this is done is that the so-called
truncation error gives some idea about the quality of the energy estimates obtained in a
particular DMRG run. However, from the point of view of VMPS, the one-site
optimization procedure should perform better for the same computational cost, as the
computational cost in the two-site setup goes up with a factor of d2 and one could
better use that time to increase D. This was already observed in the DMRG community
[4,85–87], as DMRG can also readily be reformulated with one-site optimizations, but it
took until 2005 and a nice paper by White [88] before the numerical conditioning problems
were solved (those techniques of course also apply to VMPS) and the one-site DMRG
became the standard DMRG method.

However, instead of pointing out the differences, let us discuss a few technical
improvements of VMPS that parallel the nice features of DMRG. Following Feynman’s
credo that you should never underestimate the pleasure of readers to read what they
already know, let us repeat again how the whole VMPS procedure works. The goal is to
minimize

min
j Ni2fMPSDg

h NjHNj Ni � 
h Nj Ni

 �

; ð11Þ

which is a multiquadratic optimization problem and can be solved using the ALS method.
This leads to the problem of solving the generalized eigenvalue problem Heffx¼ 
Neffx
which is a standard optimization problem itself that is efficiently solvable if the condition
number (i.e. smallest singular value) of Neff is not too small. It happens now that in the
case of OBCs, one can always make appropriate gauge transformations (see Section 3.1.3)
such as to ensure that Neff is equal to the identity. (Note that in the case of PBCs, no such
gauge transformation exists that makes Neff equal to the identity, and hence more heuristic
methods have to be used. We discuss this in more detail in the Section dealing with PBCs;
that makes the VMPS algorithms with PBCs a bit more tricky to implement, but the basic
idea and resulting numerical accuracy is very similar.) Those gauge transformations are
always implicitly done in the case of DMRG, and should also be done in the VMPS
approach as this obviously leads to the best conditioning (the computational cost for doing
so is small; to see this in practice and also to see how easy this VMPS approach is to
implement, we refer to Appendix C for the explicit Matlab code for doing so).

Let us now see whether there is any good justification for using this ALS method in the
context of minimizing the ground state energy of local spin Hamiltonians, used in both the
VMPS and the DMRG approach. Suppose for example that we are optimizing over some
site in the VMPS method and the corresponding D¼ 128 while the physical spin dimension
is d¼ 2; then we are effectively performing an optimization over m ¼ logdðdD

2Þ þ 1 ¼ 15
sites, as the number of degrees of freedom we are varying over is equal to the number of
degrees of freedom in 15 qubits. Ground states of spin models are typically such that there
is a finite correlations length (for critical systems, correlations are also decaying pretty
fast), such that ‘boundary effects’ of more than seven sites away will not play a big role.
Colloquially, the bulk convergence to a local optimum cannot occur if the gap in this
system of 15 qubits is larger than the effect from that boundary, and this gives
a handwaving argument why DMRG almost always converges to the global minimum.
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In other words, the success of the MPS approach is related to its inherent capability of

patching together solutions of local (e.g. 15 sites) optimization problems, together with the
fact that MPS are of course rich enough to approximate ground states of arbitrary ground

states that obey an area law (see Appendix B for a proof).
Before proceeding, let us look at a completely different way of performing variational

optimizations using MPSs when the Hamiltonian under interest is translational invariant,
and let us consider the thermodynamic limit (i.e. infinitely many sites). We know that the

ground state will be translational invariant, so we might well use an ansatz that reflects this

by choosing all Ai equal to each other. This approach has been originally proposed by
Rommer and Östlund [54] and later studied by several other authors (see [86] and

references therein). The optimization problem is now reduced to minimizing the

expectation value of one term in the Hamiltonian (i.e. energy per site), and this can be

calculated as follows: first consider the ‘transfer matrix’ E ¼
P

� A� �
�A� and its

eigenvalue decomposition E¼
P

i
ijriihlij with the 
i in decreasing order. The energy can

now be expressed as

E ¼
1


20

X
�1�2�01�

0
2

H�1�2;�0
1
�0
2
hl0jðA�1 �

�A�0
1
ÞðA�2 �

�A�0
2
Þjr0i;

where we assumed that the Hamiltonian is only acting on nearest neighbours. This cost
function is clearly a very non-linear function of the variables Ai, and standard techniques

such as conjugate gradient methods can be used to minimize that expression. However, it

happens that this optimization procedure may get stuck in local minima, and the situation
only gets worse when increasing D. In comparison with the DMRG or VMPS approach,

this method does not seem to work very well for several problems. At first sight, this seems

to be strange as in those latter approaches one has many more variables (i.e. one tensor per
site). However, this can be understood from the point of view of optimization theory,

where it is standard practice to introduce more variables than needed such as to ensure

that the problem becomes better behaved. This is precisely what is happening here.
However, as we will see later, the idea of using translational-invariant MPSs can be turned

into a successful algorithm by combining it with the concept of imaginary time evolution

of MPS. It is a bit of a mystery why that approach works better than, for example,

conjugate gradient methods, but it is probably related to the inherent robustness of
algorithms evolving in imaginary time.

As a last remark, we note that it can be very useful from a computational point of view

to exploit symmetries in the system. This can be done both in the DMRG and in the MPS
approach, and we refer to [3,89,90] for more details.

4.3.1. Excitations and spectral functions

An issue where the usefulness of VMPS really reveals itself is in the context of the study of

excitations. In the standard DMRG approach, the idea is basically to store all of the

information regarding the ground state and excited states into one big MPS: during the
iteration step at, for example, site k, one keeps all tensors A1,A2, . . . ,Ak� 1,Akþ 1, . . . ,AN

fixed and within the dD2-dimensional subspace one identifies a number of lowest lying

states. One then moves to the next site, and continues until convergence (again, for a more
complete understanding of how DMRG works, we refer the interested reader to the many
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review papers on the subject [4,5]). That procedure is clearly suboptimal and no longer

variational, as there is no reason why the same tensors should be used for the ground and

excited states. In the worst-case scenario, the tensors Ai are block-diagonal, each block

containing the information of a different excited state, and hence the computational cost

scales badly with the number of excited states encoded in this manner (i.e. the cost of

performing a simulation with k excited states is k3 times the cost of doing it for the ground

state; also, the memory requirements scale as k2).
Looking back at the VMPS approach described above however, this is a more natural

way to deal with excitations at a lower cost, both with respect to memory

and computational cost. To repeat again what was explained earlier, one can build up

the spectrum in a sequential way: first look for the ground state, after this start over again

and find the MPS with minimal energy that is furthermore orthogonal to the ground state,

and so further [83]. This procedure does not have any of the drawbacks mentioned above

in the case of DMRG, and is fast and reliable, although it requires the whole variational

procedure to be run for each required excited state.
If the Hamiltonian under consideration has some symmetries, there might of course be

alternative ways of finding excited states. Consider, for example, the spin-1 Heisenberg

chain. It is well known that the ground state lives in the sector with total spin 0, and the

really interesting quantity in this case is to find the gap between this ground state and

the state with minimal energy out of the spin-1 sector. As the total spin commutes with the

Hamiltonian, we can add a small magnetic field to the Hamiltonian that plays the role of a

chemical potential, and within some parameter range, which can easily be found by doing

some numerics, we are guaranteed that the ground state of the complete Hamiltonian will

have spin 1. It will, however, still be necessary to implement the procedure mentioned

above if more excitation energies are to be found.
Let us continue now and find out whether the formulation of DMRG in terms of MPS

also allows one to obtain lower bounds to the energies. More precisely, suppose that the

variational method converges to a MPS j i with associated energy E ¼ h jHj i. Let us
next define the quantity

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h jðH � EÞ2j i

q
:

It is a simple exercise to prove that there exists an exact eigenvalue Eex of H such that

E 	 Eex 	 E� �. We show that, in the case of MPSs, one can calculate the quantity � at
essentially the same computational cost as E. This implies that the VMPS approach

outlined allows us to obtain both upper and lower bounds to eigenvalues of a given

Hamiltonian H; to the best of our knowledge, this is a truly unique feature for a

variational method. In typical applications such as the calculation of the ground state

energy of Heisenberg antiferromagnets, �’ 10� 8.
Let us now sketch how � can be calculated efficiently [61]. First of all, we note that

expectation values of tensor products of local observables can be calculated by multiplying

vectors by matrices:

h jÔ1 � Ô2 � � � ÔNj i ¼ A½1�
Ô1
A½2�

Ô2
� � �A½N�1�

ÔN�1
A½N�

ÔN

A½n�
� �

��;�0� 0
¼
X
ij

Pi ½n�
�� 0

�Pj ½n�
�� 0 hijÔnj ji:
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Let us now try to evaluate an expression such as h jðH � EÞ2j i. For simplicity, let us

assume that H represents a spin chain with only nearest neighbour couplings. Naively, one

expects that one will have to evaluate of the order of N2 expectation values of local

observables. There is, however, a much more efficient method: going recursively from the

first site to the last, one keeps three D2-dimensional vectors v0, v1, v2 containing terms with

respectively 0, 1, 2 interaction terms (note that H2 contains at most two interaction terms).

At each recursion step, one can easily update v0 as a function of v0 and the local terms of

the MPS, and equivalently v1 as a function of v1 and v0 plus the local Hamiltonian; v2 can

be updated as a function of the local MPS terms, the local Hamiltonian and v0, v1, v2.

Therefore, the computational complexity of calculating � scales as ND3, just as for the case

of evaluating the energy h jHj i. Another and perhaps more direct way to see this is do

make use of the formalism of MPOs (see Section 5): there we show that every Hamiltonian

with only nearest-neighbour interaction has a very simple parametrization as a MPO, and

hence also the square of it.
As a side product, this insight allows one to devise efficient algorithms for calculating

highly excited eigenstates and eigenenergies of Hamiltonians. Suppose for example that

one would like to know the closest eigenstate and eigenenergy to a certain prespecified

energy Esp. This could be interesting when one wants to calculate gaps in the spectrum.

The variational problem that has to be solved in that case is the following:

min
j i2fMPSg

h jðH � EspÞ
2
j i � 
h j i

This is indeed again a multiquadratic problem that can be solved using the same

variational techniques as outlined before, yielding an algorithm with the same

computational complexity as the original.
Similar techniques also allow us to calculate Green’s functions in a variational

way [61]. Green’s function have been calculated using NRG methods [91,92], but because

of the strong interplay between the different energy levels in that context, the MPS

approach should be able to give more precise results. The DMRG techniques that have

been developed for calculating Green’s functions of spin systems [93–95] are related to our

approach but differ in several aspects.
The typical Green’s functions of interest are of the form

Gð!þ i�Þ ¼  f
1

H� !� i�
f y

���� ���� � 

;

where j i represents the ground state and f y is a creation operator. Here we assume that

j i has been calculated using the MPS approach, and we show that this can be done to a

very good and controlled precision. The basic idea is now to calculate the Green’s function

variationally within the set of MPS by finding the unnormalized MPS j�i, commonly

called a correction vector [61], that minimizes the weighted norm

N ¼ j�i �
1

H� !� i�
f yj i

���� ����
W¼ðH�!Þ2þ�2

:

Here, we used the notation jk�ik2W¼h�jWj�i, and the weight W 4 0 was introduced to

make the problem tractable (it should not really affect the precision as all positive
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definite norms are essentially equivalent). Writing j�i in its real and imaginary part

j�i¼ j�riþ ij�ii and assuming H; j i real, this norm can be written as

N ¼ h�rjðH�!Þ
2
þ �2j�ri � 2h�rjðH�!Þf

yj i þ h�ijðH�!Þ
2
þ �2j�ii � 2h�ijf

yj i þ h j i:

ð12Þ

Minimizing N clearly involves two independent optimizations over j�ri, j�ii, which we

will both parameterize as MPSs. Both of the optimizations involve minimizing the sum of

a multiquadratic and a multilinear term; as terms such as h�jðH � !Þ2j�i can be calculated

efficiently, we can use again the same tricks and keep all but one projectors fP[i]
g fixed and

optimize over the remaining projector. As a multilinear term instead of a quadratic

constraint is present, each iteration step can be done efficiently by solving a sparse linear

set of equations [61]. Iterating this procedure until convergence, one can evaluate both

j�ri, j�ii, and exactly determine the precision of the result by calculating the norm (12);

if this norm is too large, one can always increase the control parameter D associated to the

MPS j�ri, j�ii. Finally, one can easily evaluate G(!þ i�) as a function of j�i. The precision
of this evaluation can again be bounded. To illustrate this with an example, we again

consider the SIAM model (see Figure 9).

4.4. DMRG and PBCs

The VMPS approach is applicable to the cases of both OBCs and PBCs. The main
difference between the methods is the computational cost of the contraction of the

associated tensor network (ND3 versus ND5) and the fact that a useful orthonormalization

can be used in the case of OBCs. On the other hand, there are several reasons why

simulations with PBCs are preferred.

(1) The boundary effects are much smaller than in the case with OBCs. This has been
identified as a serious problem for standard DMRG since its conception, as even

for very long chains the boundary effects can be seen in the bulk.
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that Â"ð0Þ should be 1, calculated with VMPS (solid) and NRG (dashed line). (Reprinted from [61]
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(2) Owing to the fact that any non-trivial system with OBCs cannot be translational
invariant, it is not possible to study excitations with a definite momentum.
Contrasting this to the case of PBCs, it is possible there to construct a variational
class of MPSs with a definite momentum, allowing us to, for example, obtain a
convenient picture of the energy-momentum relation. The overall price to be paid
however is that the computational cost for working with MPSs with PBCs scales as
D5 as opposed to D3 for OBC.

Note that the traditional DMRG algorithm has also been used to treat systems with PBCs.
It is clear, however, from the structure of MPSs that the only way to represent a MPS with
PBCs by one with OBCs is to use the virtual bonds to ‘teleport’ a maximally entangled
state from the first to the last site. This leads to an effective D that is equal to the original
value squared (this is the only possibly way to accommodate the extra degrees of freedom
to take into account this teleportation), and hence the computational cost for the same
accuracy would scale as D6. However, even in doing so, it would be very hard to construct
states with a definite momentum.

When implementing the VMPS approach to minimize the energy of a given
Hamiltonian with PBCs [10], special precautions have to be taken such that the problem
remains well conditioned. In practice, this means that we have to make sure that the matrix
Neff in the generalized eigenvalue problem Heffx¼ 
Neffx is positive definite and that its
smallest eigenvalue is as large as possible. There are several options to achieve this.
First of all, we can still play with the gauge conditions which would correspond to
a transformation

Neff! X� Y� Idð ÞNeff X
y � Y y � Id

� �
:

Looking back at the case with OBCs, the reason why we could always make Neff¼ I is that
the left- and right-hand side of the chain factorize such that Neff was always a tensor
product to start with. Here, the PBCs enforce the existence of correlations between those
sides, hence enforcing Neff to be ‘correlated’. However, in practice the number of
correlations will be small (as these are finite size effects), and hence Neff will be close to a
tensor product. A sensible way of choosing the gauge transformation therefore consists of
two steps:

(1) find the tensor product N1�N2�Id that approximates best Neff (this can easily be
achieved by doing a SVD in the space of Hermitian operators);

(2) choose the gauge transformations X,Y such that XN1X
y ¼ I ¼ YN2Y

y.

During the first sweeps, when absolute accuracy is not yet relevant and Neff could still be
far from a tensor product, one could, for example, add some identity to Neff such as to
make it better conditioned (Neff!Neffþ �I). The procedure outlined here is only one of
many possible procedures, and it might well be that another choice of gauge conditions
leads to better performance, but the procedure described here seems to give good results in
practice [10]. An example is provided in Figure 10 where we looked at the Heisenberg spin-
1/2 chain with N¼ 28 (we choose this example with a small number of sites as we can still
compare this with exact results, and for reference also the results of a DMRG calculation
for the same Hamiltonian is provided). As seen in the figure, the scaling of the error for
MPSs with PBCs nicely follows the scaling of the error obtained in a DMRG calculation
for a Hamiltonian with OBCs.
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As already explained in the previous Section, it is easy to look for excited states using
an extra Lagrange constraint. However, the VMPS approach can also easily be generalized
such as to become a variational method over states with a definite momentum. The basic
idea is very simple. Consider the state [83]

j ki ¼
XN�1
n¼0

eiknffiffiffiffi
N
p T̂nj�i, j�i ¼

X
�1;...

Tr A1
�1
A2
�2

. . .AN
�N

� �
j�1ij�2i . . . j�Ni;

where the operator T̂k is the shift operator implementing a translation over k sites.
The state j ki has the momentum k by construction and is obviously a superposition of
N MPSs (note that this implies that the block entropy of the state j ki can scale as
logðND2Þ as opposed to logðD2Þ for a normal MPS). What is clear, however, is that the
whole VMPS procedure outlined above can now be repeated for this extended class of
MPSs: the energy is still a multiquadratic function of all tensors Ai involved, and
expectation values of local observables can still be calculated efficiently by contracting the
corresponding tensor network. The price to pay is an extra factor of N (the number of
sites) in all of the calculations, due to the fact that cross terms between the different
superpositions enter the optimization. To achieve this rather mild slowdown, a rather
involved scheme of bookkeeping has to be maintained, and this is explained in great detail
in the paper [83]. As an illustration of the power of this technique, Figure 11 represents the
calculation of the energy–momentum relation for two values of the bilinear–biquadratic
S¼ 1 spin chain parameterized by the Hamiltonian

H ¼
X
i

cosð�Þ ~Si
~Siþ1 þ sinð�Þ

�
~Si
~Siþ1

�2
:

5. Time evolution using MPSs

One of the big advantages of the formulation of renormalization group methods in terms
of MPSs is that it also allows us to describe time evolution. This opens up the possibility of
simulating the non-equilibrium properties of spin chains, a topic that is currently very
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Figure 10. Comparison between DMRG (squares) [3] and the (new) VMPS method (circles) for
PBCs, and N¼ 28. For reference the DMRG results [3] for the Heisenberg chain with OBCs
(triangles) are also shown. Inset: variation of the local bond strength from the average along the
chain, calculated with the new method and D¼ 40. (Reprinted Figure 3 with permission from [10]
F. Verstraete et al., Phys. Rev. Lett. 93 (2004), p. 227205. � 2004 by the American Physical Society.)
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relevant given the recent breakthroughs in creating strongly correlated quantum spin
systems in, for example, optical lattices [96]. Since the development of DMRG, several
methods have been proposed [97–99], but the real breakthrough was obtained in a paper
of Vidal [69] which was followed up with a variety of related approaches [11,100–104].
In the spirit of this paper, we only review the variational approach, and refer to the review
of Schollwöck and White for DMRG-related approaches [105].

5.1. Variational formulation of time evolution with MPSs

Mathematically, the problem is to evolve an initial MPS in real time by updating the
tensors in the MPS description under Hamiltonian evolution. In practice, this could be
used to investigate how excitations travel through the spin chain or to obtain spectral
information about a Hamiltonian of interest. In the spirit of the VMPS approach,
we would like to do this in a variational way: given a Hamiltonian and an initial MPS,
evolve that state within the manifold of MPSs in such a way that the error in
approximating the exact evolution is minimized at every infinitesimal step [11].

We are particularly interested in the case where the Hamiltonian, which can be time-
dependent, is a sum of local terms of the form

HðtÞ ¼
X
hiji

fijðtÞÔi � Ôj

and where hiji means that the sum has to be taken over all pairs of nearest neighbours
(note that the situation with long-range interactions can be treated in a very similar way).
There are several tools to discretize the corresponding evolution. This is not completely
trivial because generically the different terms in the Hamiltonian do not commute.
A standard tool is to use the Trotter decomposition [106,107]

eAþB ¼ lim
n!1

�
e
A
ne

B
n

�n
:
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Figure 11. Lowest states of a bilinear–biquadratic S¼ 1 chain, N¼ 40 sites, D¼ 10: (a) �¼�� / 2,
E0¼� 2.7976N; (b) �¼� 0.74�, E0¼� 1.4673N. Empty circles: lowest energy states. Filled circles:
first branch of excitations. We estimate the absolute error as �Ek
10

� 3, by comparison with
calculations with larger D. (Reprinted Figure 6 with permission from [83] D. Porras et al., Phys. Rev.
B 73 (2006), p. 014410. � 2004 by the American Physical Society.)
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Suppose, for example, that the Hamiltonian can be split into two parts A and B such that

all terms within A and within B are commuting: H ¼ Aþ B; A¼
P

iAi; B¼
P

iBi;

[Ai,Aj]�¼ 0¼ [Bi,Bj]�. This ensures that one can efficiently represent eiA as a product of

terms. The evolution can then be approximated by evolving first under the operator ei�tA,

then under ei�tB, again under ei�tA and so further. The time step can be chosen such as to

ensure that the error made due to this discretization is smaller than a prespecified error,

and there is extensive literature of how to improve on this by using, for example, the higher

order Trotter decompositions [108,109]. In the case of nearest-neighbour Hamiltonians, a

convenient choice for A is to take all terms that couple the even sites with the odd sites to

the right of it and for B the sites to the left of it. In that case, eiA and eiB are tensor products

of nearest-neighbour two-body operators; see Figure 12(a) for a pictorial representation of

this in terms of spin networks. However, it is important to note that different choices of

A and B might work better in practice. Consider, for example, the Ising Hamiltonian in an

transversal field and its decomposition into two different terms A and B (see also

Figure 12(b)):

HIsing ¼
X
k


kz � 

kþ1
z|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

A

þH
X
k


kx|fflfflfflfflffl{zfflfflfflfflffl}
B

: ð13Þ

Obviously, a similar kind of decomposition is possible in the case of the Heisenberg model,

but there three terms are needed instead. The advantage of evolution with such a

decomposition is that it does not break translational invariance as in the even–odd case.
Let us next investigate how to treat this time evolution in a variational way within the

class of MPSs. A sensible cost function to minimize is given by

kAj ðkÞi � j ðkþ 1Þik22; ð14Þ

where j (k)i is the initial MPS, j (kþ 1)i is the MPS to be found, and A is the operator

arising out of the Trotter expansion. (We remark that as alternative cost function we could

have chosen jh (kþ 1)jAj (k)ij2/h (kþ 1)j (kþ 1)i which has the aim of finding the

Figure 12. Spin network representation of the different operators obtained in the case of a Trotter
expansion of the Ising Hamiltonian in transverse field with (a) nearest-neighbour decomposition and
(b) Ising versus magnetic field decomposition.
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normalized MPS j (kþ 1)i that has maximal overlap with the evolved version of the

original MPS. It is, however, an easy exercise to find out that this optimization problem

leads to exactly the same optimal MPS, up to a normalization factor.) First of all, it is
important to note that this cost function can indeed be evaluated efficiently when j (k)i
and j (kþ 1)i are MPSs and A is of the form discussed above. In principle, this cost

function can be made equal to zero by increasing the bond dimension D by a factor of at

most d2 (this is indeed the largest possible Schmidt number of an operator acting on two
sites). However, the whole point of using MPSs is that MPSs with low bond dimension are

able to capture the physics needed to describe the low-energy sector of the Hilbert space.

So if we stay within that sector, the hope is that the bond dimension will not have to be

multiplied by a constant factor at each step (which would lead to an exponential

computational cost as a function of time), but will hopefully saturate. This is certainly the
case if we evolve using, for example, imaginary time evolution of a constant local

Hamiltonian, as we know that in that case the ground state is indeed well represented with

a MPS with not too large a bond dimension. It is, however, important to keep in mind that

an exponential explosion is, in principle, possible for other kinds of evolution: the
worst-case computational complexity for time evolution using MPSs is exponential as

a function of time.
Taking this into account, a justified way of dealing with time evolution is to prespecify

an error � that can be tolerated, and then look for the minimal D for which there exists

a MPS j (kþ 1)i that yields an error smaller than �. Looking back at the cost
function (14), it looks pretty familiar how to minimize it: the cost function has only

quadratic and linear terms, and we will hence be able to minimize it using a method very

similar to the ALS method discussed in the previous Section. More specifically, the cost

function has only multiquadratic and multilinear terms in the variables of the MPS,
and we will solve this in a recursive way where at each recursion step an optimization of

the form

x yAeffx� 2x yyeff

has to be solved. The solution to this problem is the simple solution of the linear set of

equations

Aeffx ¼ yeff;

and this hence leads to a very efficient way of minimizing the cost function for time

evolution in a recursive way: sweeping back and forth, we solve the above optimization

subproblem at each step, and we are guaranteed that the total cost function goes down at
every step and hence will converge. After convergence, we can check how large the error

has been for the particular value of D that we choose, and if this error is too large, we can

increase D and repeat the optimization. Note that the only requirement for the complete

Trotter step evolution to be successful is that the tensor network when sandwiching the

operators A and B between two MPSs can be contracted efficiently. It is clear that this
method both works in real and imaginary time evolution, and both for time-independent

and time-dependent Hamiltonians. As a note, and this will be crucial in the applications of

this variational time evolution of MPSs to higher-dimensional spin systems, we also want

to point out that we did not use the fact that the operator A was close to the identity, that
is, this method is applicable in a more general way than only for small Trotter steps.
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Note also that this method is applicable to systems with both OBCs and PBCs, and also

with long-range interactions.

5.1.1. Time-evolving block-decimation

There has recently been a lot of attention on studying time evolution using MPSs, but

instead of using the optimal variational way described above, the vast majority of the

works has been using the so-called time-evolving block-decimation (TEBD) procedure

introduced by Vidal [69]. The reason for this is that this method can readily be

implemented with existing DMRG code [100,101]. It explicitly uses the Schmidt normal

form described in Section 3.1.3, and is hence more suitable for MPSs with OBCs. Also,

one has to use the Trotter expansion with even–odd sites decomposition. It can also be

understood as a variational method, but in the more restricted sense in which we consider

the following setup: given a MPS and one (possibly non-unitary) gate acting on two

nearest neighbours, find the new MPS with given dimension D that approximates this

optimally. This can be done using the SVD: using the normal form for MPSs with OBCs,

we know that the original MPS is of the form

j i ¼
XD
n¼1

j L
n ij�

R
n i

with fj L
n g and fj 

R
n g orthogonal sets. The gate which acts on the nearest neighbours

locally increased the dimension of the bond with a factor of at most d2, and we would like

to reduce the dimension of that bond to D again. One can orthonormalize everything again

and obtain the Schmidt decomposition over that particular bond, and then the reduction

can trivially be done by discarding (i.e. projecting out) the smallest Schmidt coefficients.

(This is indeed the virtue of the SVD: if we want to approximate a given matrix with one of

lower rank in an optimal way, so as to minimize the Frobenius norm of the difference,

then the solution is given by taking the SVD and putting the smallest singular values

equal to zero.) In the next step, evolution between the next nearest neighbours is

considered, and so on. Note that the variational method discussed above could deal with

all those gates at once; nevertheless, the computational cost of both methods is very

similar, and in practice both methods seem to achieve a similar accuracy if the time steps

are small. The first, however, can be improved by choosing longer time steps and higher

Trotter orders [103].
It is also possible to devise more sophisticated methods that somehow make use of the

fact that superpositions of MPSs can still be dealt with in an efficient way. For a nice

review that compares all such methods and those described before, see [103]. For nice

examples of the power of real-time evolution, we refer the reader to the review article [105].

5.1.2. Exchanging time and space

In the previous exposition on how to treat time evolution in MPS systems, the space and

time directions were treated on distinct footings: the goal was to find good approximations

to the states j (t)i. However, in the end we are mainly interested in calculating expectation

values of some specific operators h (t)jOj (t)i. Using a Trotter decomposition as before,

the exact calculation of this quantity involves the contraction of a tensor network as
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depicted in Figure 13. The time-evolution algorithms described above are particular ways
of approximating the contraction of this tensor network. However, it is clear that within
this picture, space and time directions can easily be exchanged, leading to an alternative
way of calculating expectation values. This is particularly interesting when we want to
perform, for example, imaginary time evolution for a finite spin chain but where we want
the time steps go to infinity: exchanging space and time, this is equivalent to evolving an
infinite MPS over a finite period of time, and we will describe how to do this in the next
Section. Note also that this picture of reinterpreting the problem of time evolution in terms
of the contraction of spin networks turns out to be the central tool needed to perform
calculations with PEPSs, the extensions of MPSs to higher dimensions.

5.2. Finding ground states by imaginary time evolution

The tools discussed in the previous Section apply both to real and imaginary time
evolution. This provides a completely different way of finding ground states of local
quantum spin Hamiltonians: if we start with an arbitrary state j 0i, evolution in imaginary
time leads to

j ðtÞi ¼ e�Htj 0i ¼
Xn
k¼1

e�
ktj�kih�kj 0i

with H ¼
Pn

k¼1 
kj�kih�kj the eigenvalue decomposition of H. Hence, as long as the
ground state is not degenerate and for times longer than the inverse gap, the state j (t)i
will converge exponentially fast to the ground state, and the speed of convergence is
exactly quantified by the gap. This is indeed something that is a recurring theme: the
smaller the gap, the slower all variational methods seem to converge. This is of course not

A
B

O X X

Ψ(0)

Ψ(0)

x(0) x(0)A′ B′

Figure 13. When contracting the spin network for time evolution, one can also exchange time and
space directions. In this particular case, this depicts a network for calculating the X–X correlation
function for the state j (0)i evolved with eight Trotter steps parameterized by the operators A, B.
This is equivalent to evolving the state j�i with different operators A0, B0. The operators A0, B0 are
obtained trivially by exchanging the physical and virtual dimensions of A, B.
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unexpected because it is difficult to discriminate between excited states with small energy

and the ground state. However, it is interesting to note that the closer a system is to

criticality (i.e. gap goes to zero), the larger D has to be for a MPS to approximate the

ground state for a fixed error (see Appendix B, which shows that in critical systems this

scaling is polynomial in the number of spins in the worst case scenario). A very interesting

question would be to relate the density of states above the gap to the decay of the Schmidt

coefficients that one obtains by dividing the ground state into two pieces.
In practice, finding a ground state using imaginary time evolution is pretty reliable.

Of course, the time steps have to be adjusted such that they become smaller and smaller,

but one of the great features of imaginary time evolution is its inherent robustness: it does

not really matter if one makes mistakes in the beginning, as there is anyway an exponential

convergence to the ground state afterwards. This is in contrast to the evolution in

real time.

5.2.1. Infinite spin chains

Another advantage of the imaginary time evolution approach is that one can easily treat

systems with PBCs or treat the thermodynamic limit (number of sites!1) by making use

of the inherent translational invariance of MPSs with all tensors Ai equal to each other.
To illustrate how this can be done, let us consider the specific case treated in [72] and

assume that we want to model the ground state of the Ising Hamiltonian in a transverse

field defined on a spin chain. As discussed in Section 4.1 following equation (13), one can

choose the decomposition in the Trotter step in such a way that both the operators A

and B

A ¼
X
k


kz � 

kþ1
z ; B ¼ h

X
k


kx;

are completely translational invariant, and hence we can stay within the manifold of

translational-invariant states to describe its evolution. The next step is to see what expð�tAÞ
and expð�tBÞ look like. The latter is simple, as it is just equal to

expð�tBÞ ¼ �k expð�th
xÞ:

The former expression is obviously a product of commuting operators, and a simple

exercise allows one to see that there is a simple matrix product description for it:

expð�tAÞ ¼
X
i1i2...

TrðCi1Ci2 . . .ÞXi1 � Xi2 � . . . ;

C0 ¼
� 0

0 �

� �
; C1 ¼

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð�tÞ coshð�tÞ

p
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhð�tÞ coshð�tÞ
p

0

 !
;

X0 ¼
1 0

0 1

� �
; X1 ¼

1 0

0 �1

� �
:

ð15Þ

This can justifiably be called a MPO (see the next Section). The associated bond dimension

is two, and this means that when acting on a MPS of dimension D with this MPO, the

exact representation of the new MPS will at most be 2D. In this particular example of the

Ising Hamiltonian, imaginary time evolution would now amount to act subsequently with
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expð�tAÞ and expð�tBÞ on an initial state. Combined together, it happens that their product

Q ¼ expð�tB=2Þ expð�tAÞ expð�tB=2Þ is again exactly of the form (15) with unchanged

tensor Ci and Xi but where we have to replace X0¼ I with X0 ¼ expð�t
xÞ. So Q is a very

simple MPO with bond dimension two, and the goal is to evolve a translational-invariant

MPS using this MPO. This can be done in a very simple way: given a MPS with tensor Ai

of dimension D, the action of Q is such that we have to replace

Ai !
X
k;l

Ak � ClhijXljki:

The new MPS corresponding to this Ai has bond dimension 2D, and this has to be reduced

as otherwise its size would increase exponentially. The optimal choice is again simple if we

consider a system with OBCs: we consider its normal form (Section 3.1.3), and cut it in the

appropriate way without losing translational invariance. (More specifically, a possible

procedure is as follows [72]: calculate the leading left jvli and right eigenvector jvri ofP
k Ck � �Ck; note that this can be done in a sparse way. Reshape those eigenvectors in the

square matrices Xl and Xr, and as those matrices are the fixed points of the CP-mapsP
k Ck � C

y

k and
P

k C
y

k � Ck, Xl and Xr are guaranteed to be positive. Next take the SVD offfiffiffiffiffi
Xr

p ffiffiffiffiffi
Xl

p
¼ U�V y, and reduce the number of columns of U and V to D and discard the D

lowest singular values in �; U and V hence become 2D�D matrices and � a D � D

matrix. Define Gr ¼
ffiffiffiffiffiffiffiffi
X�1r

p
U

ffiffiffiffi
�
p

and Gl ¼
ffiffiffiffi
�
p

V y
ffiffiffiffiffiffiffiffi
X�1l

q
, and make the transformation

Ai!Gl �AiGr such that it corresponds to a MPS with D-dimensional bonds instead of 2D.)
The cutting step is not so easy to justify rigorously, but seems to work very well

in practice: what we do is calculate the Schmidt normal form with respect to the

2D-dimensional bonds, and then cut all bonds together. The tricky thing is that cutting the

bond somewhere changes the Schmidt coefficients somewhere else, but the point is that

these changes are only of the order of the Schmidt coefficients that are cut and those are

very small anyway. Amazingly, this procedure works very well, and even a small bond

dimension of D¼ 32 already reproduces the ground state energy density E of the critical

Ising model (h¼ 1) up to a precision better than E� 4/�5 10� 7. Much better conditioning

can also be obtained [72] by working with Hermitian matrices fAi
g.

Clearly, this procedure can be repeated for any translational-invariant Hamiltonian

such as the Heisenberg model (note that the bond dimension will be larger there), and

the big advantage is that it allows us to treat infinite systems. The finite system with

PBCs can be dealt with in a similar way, although the cutting procedure is more involved

there.
A variant of this procedure can be obtained by using the even–odd Trotter

decomposition. In that case, exact translational invariance is broken, but it is still

perfectly translational invariant with period 2:

j i ¼
X
i1i2...

. . .Ai1Bi2Ai3Bi4 . . . ji1iji2iji3iji4i:

This type of imaginary time evolution has been studied in detail by Vidal [9], and

convergence seems to be fast. The updating and cutting works in a very similar way as

discussed in the example above. Note that from the point of view of variational states, it

could be advantageous to work with such an ABAB. . . scheme when an antiferromagnetic

ordering is expected.

180 F. Verstraete et al.



6. MPOs

Instead of restricting our attention to pure MPSs, we can readily generalize the approach

and deal with MPOs. In its most general case, a MPO is defined as [8,11]

Ô ¼
X
i1i2...

Tr A1
i1
A2

i2
. . .

� �

i1 � 
i2 � . . . ð16Þ

with 
i a complete single particle basis (e.g. the Pauli matrices for a qubit). We have

already encountered an example of such a MPO in the previous Section, where the

evolution following a Trotter step was expressed by a MPO; that MPO essentially played

the role of a transfer matrix during the evolution. As we will show later, any transfer

matrix arising in the context of the classical partition function will have an exact

representation in terms of such a MPO. This is the reason why all of the renormalization

methods described above can also be used in the context of two-dimensional classical spin

systems. As a side remark, it is also true that any translational-invariant spin Hamiltonian

with nearest-neighbour interactions has an exact MPO representation. For this, let us

consider the spin-1/2 case. We first need the fact that there always exists a basis such that

the Hamiltonian is of the form

H ¼
X
�;i


�

i
� � 


iþ1
� þ

X
j

Ôj

where Ô can be any one-qubit operator. It is now a small exercise to prove that

H ¼
X
i1i2...

vlAi1Ai2 . . . vTr
� �

Xi1 � Xi2 � . . . ;

X0 ¼ I X1 ¼ 
x X2 ¼ 
y X3 ¼ 
z X4 ¼ Ô;

vl ¼ j0i vr ¼ j4i;

A0 ¼ j0ih0j þ j4ih4j; A1 ¼ j0ih1j þ j1ih4j A2 ¼ j0ih2j þ j2ih4j;

A3 ¼ j0ih3j þ j3ih4j; A4 ¼ j0ih4j:

Actually, one can easily prove that D¼ 5 is optimal because this is the operator Schmidt

number of the Hamiltonian when splitting it into two pieces.
MPOs have been shown to be very useful in obtaining spectral information about

a given Hamiltonian. Examples are the parametrization of Gibbs states (Section 5.1), the

simulation of random quantum spin systems (Section 5.2), the calculation of classical

partition functions (Section 5.3), and the determination of the density of states

(Section 5.4).
If a MPO is a positive operator and has trace one, then it becomes a matrix product

density operator (MPDO). A simple systematic way of constructing a MPDO [11] is by

making use of the fact that every mixed state can be seen as a part of a bigger pure system,

namely its purification. If we model this purification as a MPS, then the MPDO is

obtained by tracing over the purifying degrees of freedom. This picture is especially useful

if the purification is such that to every original spin, a locally accompanying purifying

spin is present, and that the pure state is such that these pairs of spins correspond to
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one bigger site:

j i ¼
X
i1i2...

Tr A1
i1j1

A2
i2j2

. . .
� �

ji1ijj1i � ji2ijj2i � . . . ;

� ¼ Trj1j2... j ih jð Þ;

¼
X

i1i2...i 0
1
i 0
2
...

Tr
X
j1j
0
1

A1
i1j1
� �A1

i 0
1
j 0
1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

E1
i1 i
0
1

X
j2j
0
2

A2
i2j2
� �A2

i 0
2
j 0
2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

E2
i2 i
0
2

. . .

0BBBBBB@

1CCCCCCAji1ihi
0
1j � ji2ihi

0
2j � . . . ;

¼
X

i1i2...i 0
1
i 0
2
...

Tr E1
i1i
0
1
E2
i2i
0
2
. . .

� �
ji1ihi

0
1j � ji2ihi

0
2j � . . . : ð17Þ

This representation of MPDOs in terms of purifications will turn out to be very useful to

describe Gibbs states in thermal equilibrium. Note that not all MPO can arise from locally

tracing out an ancilla: the tensors Ei arising in the above description are very special in

the sense that they correspond to completely positive maps and hence live in a convex

positive cone.

6.1. Finite-temperature systems

MPOs are very convenient method for approximating Gibbs states of local Hamiltonians.

More specifically, we would like to approximate the operator

e��H ¼ e�ð�=2ÞHIe�ð�=2ÞH;

where I is the identity operator. In the spirit of last few Sections, this amounts to evolving

the maximally mixed state in imaginary time for a period �/2 (see [8,11]). However, instead

of implementing this evolution on the MPO directly, a square root speed up in

computational complexity can be gained (note that such a square root speed-up is

guaranteed when the temperature is very low as there as the number of

classical correlations is zero for pure states) by considering the evolution on its purification

(see the previous Section). More specifically, the initial state I can be seen as a collection of

half of the maximally entangled pairs. In the notation of equation (17), the initial state is a

MPS with D¼ 1 and where Aij¼ �ij. We can now use the variational algorithm discussed

above to evolve this initial state over a time �/2, and once we have that state it can be used,

for example, to calculate the free energy and any correlation function.
Note that without time evolution, it would be very hard to perform a variational

calculation over all possible MPOs to approximate the Gibbs state, as that state is

variationally characterized by the condition that it minimizes the free energy

Tr �Hð Þ � TSð�Þ; the problem here is the calculation of the von Neumann entropy S(�),
which we do not know how to calculate for MPDOs in general. However, as a by-product

of the imaginary time approach, we can readily calculate the entropy of the Gibbs state �

S �ð Þ ¼ log Tr e��H
� �

þ �
Tr He��H
� �

Tr e��Hð Þ
;
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as all of the quantities on the right-hand side of this equation can efficiently be calculated
and approximated using the MPS/MPO representation obtained via evolution in
imaginary time.

Let us now see whether it is possible to calculate non-equilibrium properties of such
MPOs by evolving them. The most general type of evolution allowed by quantum
mechanics is described by the Lindblad equation, which takes into account noise and can
therefore increase the entropy. In general, this means that the system is interacting with an
extra auxiliary system, and this poses problems for treating the evolution via the
purification described above: the dimension of the ancilla has to grow continuously.
The straightforward remedy is to work with the full MPO picture, and evolution can
again be treated in a straightforward variational way [8,11].

6.2. Random quantum spin systems

Another non-trivial application of MPOs and more specifically of the corresponding
purifications is the fact that those allow us to simulate random quantum spin systems in a
highly efficient way. By making effective use of the entanglement present between system
and an appropriately chosen ancilla, it happens that one can simulate exponentially many
realizations of the random system in one run; this is quantum parallelism in the strongest
possible sense. To explain this, we closely follow the exposition given in the paper [15].

Let us consider a quantum system with Hilbert space H that evolves accordingly to a
Hamiltonian H(r1, . . . , rn) where r1, . . . , rn are random variables that take values within a
finite discrete set, r‘ 2 �‘ ¼ f


‘
1, . . . , 
‘m‘

g, with a probability distribution given by
p(r1, . . . , rn). In order to simulate exactly the dynamics of such a system one would need
to perform

Qn
‘¼1 m‘ simulations, one per each possible realization of the set of random

variables r ¼ ðr1, . . . , rnÞ. For each realization the system evolves to a different state
j rðtÞi ¼ e�iHðrÞt=�hj 0i, where j 0i is the initial state. Given this set of evolved states and a
physical observable Ô, one is typically interested in the average of the expectation values of
that observable in the different evolved states, that is, in quantities of the form:�

hÔðtÞi
�

:¼
X
r

pðrÞh rðtÞjÔj rðtÞi: ð18Þ

In the following we describe an algorithm that allows us to simulate in parallel all possible
time evolutions of the random system described above. We consider an auxiliary
system with Hilbert space Ha and a Hamiltonian acting on H�Ha of the formeH ¼ HðR̂1, . . . , R̂nÞ, where R̂1, . . . , R̂n are operators that act in Ha, commute with each
other and have spectra �1, . . . ,�n. Note that we have replaced the set of random variables r
by a set of quantum operators R̂ with the same spectra. The algorithm works as follows.

(1) Initialization. Let us prepare the auxiliary system in an initial superposition state of
the form:

j ai ¼
X
r

ffiffiffiffiffiffiffiffi
pðrÞ

p
jri; ð19Þ

where the states jri are simultaneous eigenstates of the set of operators R̂, with
R̂‘jri ¼ r‘jri. Each state jri is therefore in one-to-one correspondence with one
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realization of the set of random variables r, its weight in the superposition state
(19) being equal to the probability with which the corresponding realization occurs
for the random system.

(2) Evolution. We evolve the initial state of the composite system j 0i�j ai under the
Hamiltonian eH. The evolved state is

j�ðtÞi ¼
X
r

ffiffiffiffiffiffiffiffi
pðrÞ

p
j rðtÞi � jri: ð20Þ

This superposition state contains the complete set of evolved states we are
interested in

(3) Read-out. In order to obtain the quantities (18) we just need to measure the
observable Ô� 1,

h�ðtÞjÔ� 1j�ðtÞi ¼ hhÔðtÞii: ð21Þ

The algorithm above allows us, in particular, to obtain the averaged properties of a
random system over the collection of all possible ground states. Let us assume that the
interaction between the system and the ancilla is introduced adiabatically, so that the
Hamiltonian is now eHðtÞ ¼ Hð�ðtÞR̂Þ, where �(t) is a slowly varying function of time with
�(0)¼ 0, �(T)¼ 1, T being the time duration of the evolution. If the system is prepared in
the ground state of the Hamiltonian Hð0Þ, the algorithm above will simulate in parallel
all possible adiabatic paths, so that the composite superposition state (20) will contain all
possible ground states of the random system [15].

In addition, the scheme above can be easily extended for the computation of other
moments of the distribution of physical observables (higher than (18)), which are
sometimes important in the understanding of quantum random systems (QRS) [15]. For
example, quantities such as hhÔ2i � hÔi2i, can be computed by using an additional copy of
the system.

The algorithm described above reduces the simulation of a quantum random system to
the simulation of an equivalent non-random interacting problem. This exact mapping
allows us to integrate the simulation of randomness in quantum systems within the
framework of numerical methods that are able to efficiently simulate the corresponding
interacting problem. As an illustrative example we consider the case of a one-dimensional
spin s¼ 1/2 system with random local magnetic field. The Hamiltonian of the system is

Hðb1, . . . , bNÞ ¼ H0 þ B
XN
‘¼1

b‘S
z
‘; ð22Þ

where H0 is a short-range interaction Hamiltonian, b ¼ ðb1, . . . , bNÞ is a set of classical
random variables that take values f1/2,�1/2g with probability distribution pðbÞ. Following
the algorithm above the 2N simulations required for the exact simulation of the dynamics
(or the ground-state properties) of this random problem can be simulated in parallel as
follows. We consider an auxiliary one-dimensional spin 
¼ 1/2 system. We prepare this
ancilla in the initial state j ai ¼

P
b �bjbi, where the states jbi have all z components of the

N spins well defined, b
z‘jbi ¼ b‘jbi, and �b ¼
ffiffiffiffiffiffiffiffi
pðbÞ

p
. The entangled properties of the state

of the ancilla reflect the classical correlations among the random variables. For example,
for a uniform distribution of the random field, pðbÞ ¼ 1=2N, the state of the ancilla is just
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a product state, j ai / j "i þ j #ið Þ
�N. We evolve the system and the ancilla under the

interaction Hamiltonian

eH ¼ Hðb
 z
1 , . . . ,b
 z

n Þ ¼ H0 þ �
X
‘

b
 z
‘
bS z
‘ : ð23Þ

Here, �¼B if we want to simulate dynamics under the Hamiltonian (22), and � is a slowly
varying function of time with �(0)¼ 0 and �(T)¼B for the simulation of the ground state
properties. We have then reduced the simulation of the random problem to that of the time
evolution of two coupled spin-1/2 chains with the Hamiltonian (23). This problem is
equivalent to a one-dimensional lattice problem of N sites with physical dimension
d¼ 2� 2, which can be easily incorporated into the framework of the variational
numerical methods.

6.3. Classical partition functions and thermal quantum states

In this Section, we show how the concept of MPOs can be used to calculate the free energy
of a classical two-dimensional spin system. This also leads to an alternative way of treating
thermal states of one-dimensional quantum spin systems, as those can be mapped to
classical two-dimensional spin systems by the standard classical-quantum mapping. (In the
context of MPSs and especially PEPSs, there also exist a different mapping between
classical and quantum spin models in the same dimension [42]. There, the thermal classical

Figure 14. Numerical simulation of the time evolution of a random field XY spin chain with N¼ 40.
We show the correlation function hhcykckii as a function of time and momentum k. Here
ck /

P
‘ sinðk‘Þec‘, k¼� / (Nþ 1), . . . ,�N / (Nþ 1) and ec‘ ¼Q‘5 ‘0 S

z
‘0 ðS

x
‘ þ iS

y
‘Þ are the fermionic

operators given by the Jordan–Wigner transformation. The evolution Hamiltonian is
Hðb1; . . . ; bNÞ ¼ H0 þ B

PN
‘¼1 b‘S

z
‘ with H0 being the XY Hamiltonian with B0¼ 0, B / J¼� 4 and

p(b)¼ 1 / 2N. The initial state j 0i is the ground state of H0. As the system evolves in time the initially
sharp Fermi sea disappears.
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fluctuations map onto quantum ground state fluctuations, and this leads to a lot of insight

into the nature of quantum spin systems.) Historically, Nishino was the first to pioneer the

use of DMRG techniques in the context of calculating partition functions of classical spin

systems [110]. By making use of the Suzuki–Trotter decomposition, his method has then

subsequently been used to calculate the free energy of translational-invariant one-

dimensional quantum systems [111–113], but the main restriction of those methods is that

it cannot be applied in situations in which the number of particles is finite and/or the

system is not homogeneous; furthermore, one has to explicitly use a system with PBCs in

the quantum case, a task that is not well suited for standard DMRG. The VMPS-approach

gives an easy solution to those problems.
Our method relies on reexpressing the partition and correlation functions as

a contraction of a collection of 4-index tensors, which are arranged according to a two-

dimensional configuration [14]. We perform this task for both two-dimensional classical

and one-dimensional quantum systems.
Let us consider first the partition function of an inhomogeneous classical two-

dimensional n-level spin system on an L1�L2 lattice. For simplicity we concentrate on

a square lattice and nearest-neighbour interactions, although our method can be easily

extended to other short-range situations. We have

Z ¼
X

x11,..., xL1L2

exp ��Hðx11, . . . , xL1L2Þ

 �

;

where

H x11; . . .
� �

¼
X
ij

Hij
# xij; xiþ1;j
� �

þHij
! xij; xi;jþ1
� �h i

is the Hamiltonian, xij¼ 1, . . . , n and � is the inverse temperature. The SVD allows us

to write

exp ��Hij
qðx; yÞ

h i
¼
Xn
�¼1

f ijq�ðxÞg
ij
q�ðyÞ;

with q2 f#,!g. Defining the tensors

Xij
lrud ¼

Xn
x¼1

f ij
#dðxÞg

i�1;j
#u ðxÞf

ij
!rðxÞg

i;j�1
!l ðxÞ;

the partition function can now be calculated by contracting all 4-index tensors Xij arranged

on a square lattice in such a way that, for example, the indices l, r, u, d of Xij are contracted

with the indices r, l, d, u of the respective tensors Xi,j� 1,Xi, jþ 1,Xi� 1,j,Xiþ 1,j. In order to

determine the expectation value of a general operator of the form O(fxijg)¼Z
Q

ijO
ij(xij),

one just has to replace each tensor Xij by

Xij
lrud Oij
� �

¼
Xn
x¼1

OijðxÞf ij
#dðxÞg

i�1;j
#u ðxÞf

ij
!rðxÞg

i;j�1
!l :

The quantum case if very similar. We consider the partition function of an inhomogeneous

one-dimensional quantum system composed of L n-level systems,

Z ¼ tr exp ��Hð Þ:
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It is always possible to write the Hamiltonian H as a sum H¼
P

kHk with each part

consisting of a sum of commuting terms. Let us, for simplicity, assume that H¼H1þH2

and that only local and two-body nearest-neighbour interactions occur, that is,

Hk ¼
P

i O
i;iþ1
k and



Oi;iþ1

k ;Oj;jþ1
k

�
¼ 0, with i, j¼ 1, . . . ,L. The more general case can be

treated in a similar way. Let us now consider a decomposition

exp �
�

M
O i;iþ1

k

� �
¼
X�
�¼1

Ŝi
k� � T̂ iþ1

k� : ð24Þ

The SVD guarantees the existence of such an expression with �� n2. As we will see later,

a smart choice of H¼
P

kHk can typically decrease � drastically. Making use of the

Suzuki–Trotter formula (note that, in practice, it will be desirable to use the higher order

versions of the Trotter decomposition)

Z ¼ Tr
Y
k

exp �
�

M
Hk

� � !M

þO
1

M

� �
it can be readily seen that the partition function can again be calculated by contracting a

collection of 4-index tensors Xij defined as

Xij
ðll 0Þðrr 0Þud � T̂ j

1lŜ
j
1rT̂

j
2l 0
Ŝ j
2r 0

h i
½ud�
;

where the indices (l, l 0) and (r, r 0) are combined to yield a single index that may assume

values ranging from 1 to �2. Note that now the tensors Xij and Xi 0j coincide, and that the

indices u of the first and d of the last row have to be contracted with each other as well,

which corresponds to a classical spin system with PBCs in the vertical direction. A general

expectation value of an operator of the form O ¼ ZO1 � � � � �ON can also be reexpressed

as a contraction of tensors with the same structure: it is merely required to replace each

tensor X1j in the first row by

X1j
ðll 0Þðrr 0Þud Oj

� �
¼ OjT̂ j

1lŜ
j
1rT̂

j
2l 0
Ŝ j
2r 0

h i
½ud�
:

Let us next move on to explaining how the tensor contraction can be performed. We

use the techniques that were originally developed in the context of PEPSs in order to

contract the tensors Xij introduced above in a controlled way. The main idea is to express

the objects resulting from the contraction of tensors along the first and last column in

the two-dimensional configuration as MPSs and those obtained along the columns

2, 3, . . . ,L� 1 as MPOs. More precisely, we define

hX
1
j :¼

Xm
r1...rM¼1

tr X
11
r1

. . . XM1
rM

� �
hr1 . . . rMj

jX
L
i :¼

Xm
l1...lM¼1

tr X
1L
l1

. . . XML
lM

� �
jl1 . . . lMi

X
j :¼

Xm
l1;r1;...¼1

tr X
1j
l1r1

. . . XMj
lMrM

� �
jl1 . . .ihr1 . . . j;
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where m¼ n for two-dimensional classical systems and m¼ �2 for on-dimensional
quantum systems. These MPSs and MPOs are associated with a chain of M
m-dimensional systems and their virtual dimension amounts to D¼ n. Note that for
two-dimensional classical systems the first and last matrices under the trace in the
MPS and MPO reduce to vectors. The partition function (and similarly other
correlation functions) reads Z ¼ hX1

jX
2
� � �X

L�1
jX

L
i. Evaluating this expression

iteratively by calculating step by step hXj
j :¼ hX j�1

jX
j for j¼ 2, . . . ,L� 1 fails

because the virtual dimension of the MPS hX j
j increases exponentially with j. A way

to circumvent this problem is to replace in each iterative step the MPS hX j
j by a

MPS h ~X
j
j with a reduced virtual dimension ~D that approximates the state hX j

j best
in the sense that the norm �K :¼ khX j

j � h ~X
j
jk is minimized. Owing to the fact that

this cost function is multiquadratic in the variables of the MPS, this minimization can
be carried out very efficiently; the exponential increase of the virtual dimension can
hence be prevented and the iterative evaluation of Z becomes tractable, such that an
approximation to the partition function can be obtained from Z ’ h ~X

L�1
jX

L
i. The

accuracy of this approximation depends only on the choice of the reduced dimension
~D and the approximation becomes exact for ~D 	 DL. As the norm �K can be
calculated at each step, ~D can be increased dynamically if the obtained accuracy is
not large enough. In the worst-case scenario, such as in the NP-complete Ising spin
glasses [114], ~D will probably have to grow exponentially in L for a fixed precision of
the partition function. However, in less pathological cases, it seems that ~D only has
to grow polynomially in L; indeed, the success of the methods developed by Nishino
[110] in the translational-invariant case indicate that even a constant ~D will produce
very reliable results.

We illustrate this with an example of bosons in optical lattices. A system of trapped
bosonic particles in a one-dimensional optical lattice of L sites is described by the Bose–
Hubbard Hamiltonian [115]

H ¼ �J
XL�1
i¼1

ða yi aiþ1 þ h:c:Þ þ
U

2

XL
i¼1

n̂iðn̂i � 1Þ þ
XL
i¼1

Vin̂i;

where a yi and ai are the creation and annihilation operators on site i and n̂i ¼ a yi ai is the
number operator. This Hamiltonian describes the interplay between the kinetic energy
due to the next-neighbour hopping with amplitude J and the repulsive on-site interaction
U of the particles. The last term in the Hamiltonian models the harmonic confinement of
magnitude Vi¼V0(i� i0)

2. The variation of the ratio U/J drives a phase-transition between
the Mott-insulating and the superfluid phase, characterized by localized and delocalized
particles, respectively [116]. Experimentally, the variation of U/J can be realized by tuning
the depth of the optical lattice [115,117]. On the other hand, one typically measures the
momentum distribution directly by letting the atomic gas expand and then measuring the
density distribution. Thus, here we are mainly interested in the (quasi-)momentum
distribution

nk ¼
1

L

XL
r;s¼1

ha yr asie
i2�kðr�sÞ=L:

Our goal is now to use our numerical method to study the finite-temperature properties
of this system for different ratios U/J. We thereby assume that the system is in a thermal
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state corresponding to a grand canonical ensemble with chemical potential �, such that the
partition function is obtained as Z ¼ tr e��ðH��N̂Þ. Here, N̂ ¼

PL
i¼1 n̂i represents the total

number of particles. For the numerical study, we assume a maximal particle number q per
lattice site, such that we can project the Hamiltonian H on the subspace spanned by Fock
states with particle numbers per site ranging from 0 to q. The projected Hamiltonian ~H

then describes a chain of L spins, with each spin acting on a Hilbert-space of dimension
n¼ qþ 1. A Trotter decomposition that turned out to be advantageous for this case is

e��ð
~H��N̂Þ ¼ ðV̂

y
V̂ÞM þO

1

M2

� �
; ð25Þ

with ~H ¼ HR þHS þHT, HR ¼ �ðJ=2Þ
PL�1

i¼1 RðiÞRðiþ1Þ, HS ¼ �ðJ=2Þ
PL�1

i¼1 SðiÞSðiþ1Þ,

HT ¼
PL

i¼1 T
ðiÞ, RðiÞ ¼ ~a yi þ ~ai, SðiÞ ¼ �ið ~a yi � ~aiÞ, TðiÞ ¼ ð1=2Þ ~nið ~ni � 1Þ þ Vi ~ni and

V̂ ¼ e�ð�=2MÞHRe�ð�=2MÞHSe�ð�=2MÞðHT��N̂Þ. Thereby, ~a yi , ~ai and ~ni denote the projections of
the creation, the annihilation and the number operators a yi , ai and ni on the q-particle
subspace. The decomposition (24) of all two-particle operators in expression (25) then
straightforwardly leads to a set of 4-index tensors Xij

lrud, with indices l and r ranging from 1
to (qþ 1)3 and indices u and d ranging from 1 to q þ 1. Note that the typical second-order
Trotter decomposition with H¼HevenþHodd would make the indices l and r range from 1
to (qþ 1)6.

Let us start out by considering the limit U=J!1 in which double occupation of
single lattice sites is prevented and the particles in the lattice form a Tonks–Girardeau gas
[118]. In this limit, the Bose–Hubbard Hamiltonian maps to the Hamiltonian of the exactly
solvable (inhomogeneous) XX model, which allows us to benchmark our algorithm.
The comparison of our numerical results with the exact results can be garnered from

Figure 15. Here, the density and the (quasi-)momentum distribution are considered for the
special case �J¼ 1, L¼ 40, N¼ 21 and V0/J¼ 0.034. The numerical results shown have
been obtained for a Trotter number of M¼ 10 and two different reduced virtual
dimensions ~D ¼ 2 and ~D ¼ 8. The norm �K was of the order of 10� 4 for ~D ¼ 2 and 10� 6

for ~D ¼ 8. (We note that we have stopped our iterative algorithm at the point where the
variation of �K was less than 10� 8.) From the insets, it can be garnered that the error of
the numerical calculations is already very small for ~D ¼ 2 (of the order of 10� 3) and
decreases significantly for ~D ¼ 8. This error can be decreased further by increasing the
Trotter number M.

As the ratio U/J becomes finite, the system becomes physically more interesting, but
lacks an exact mathematical solution. In order to judge the reliability of our numerical
solutions in this case, we check the convergence with respect to the free parameters of our

algorithm (q, ~D andM). As an illustration, the convergence with respect to the parameter q
is shown in Figure 16. In this figure, the density and the (quasi-)momentum distribution
are plotted for q¼ 2, 3 and 4. We thereby assume that �J¼ 1, L¼ 40 and N¼ 21 and
consider interaction strengths U/J¼ 4 and 8. The harmonic potential V0 is chosen in such a
way so as to describe Rb atoms in a harmonic trap of a frequency in Hertz (along the lines
of [118]). We note that we have taken into account that changes of the ratio U/J are
obtained from changes in both the on-site interaction U and the hopping amplitude J
due to variations in the depth of the optical lattice. The numerical calculations have been
performed with M¼ 10 and ~D ¼ qþ 1. From the figure it can be garnered that
convergence with respect to q is achieved for q	 3.
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(a)

(b) (c)

Figure 15. Density and (quasi-)momentum distribution in the Tonks–Girardeau gas limit, plotted
for �J¼ 1, L¼ 40, N¼ 21 and V0 / J¼ 0.034. The dots (crosses) represent the numerical results
for ~D ¼ 2 ( ~D ¼ 8) and the solid line illustrates the exact results. The error of the numerical results
can be garnered from the insets. (Reprinted with permission from [14] V. Murg et al., Phys. Rev.
Lett. 95 (2005), p. 057206. � 2005 by the American Physical Society.)

Figure 16. Density and (quasi-)momentum distributions for interaction strengths U / J¼ 4 and 8.
Here, �J¼ 1, L¼ 40, N¼ 21 and M¼ 10. Numerical results were obtained for q¼ 2 (plus signs),
q¼ 3 (crosses) and q¼ 4 (solid line). For comparison, the distributions for U / J¼ 0 (dotted lines) and
U=J!1 (dash-dotted lines) are also included. (Reprinted with permission from [14] V. Murg et al.,
Phys. Rev. Lett. 95 (2005), p. 057206. � 2005 by the American Physical Society.)
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6.4. Density of states

Information about the density of states can be obtained by studying the quantity

fðtÞ ¼ Tr e�iHt
� �

as a function of time. Indeed, assume that we know the function f(t) exactly from

t¼�1!þ1. Its Fourier transform

Fð!Þ ¼

Z 1
t¼�1

ei!tTr e�iHt ¼
X1
k¼0

� !� Ekð Þ

with {Ek} the spectrum of the Hamiltonian H. Hence, the Fourier transform of f(t) gives

all of the information about the spectrum. Of course, in practice we will not be able to

determine f(t) for all times, and we will only be able to approximate it within some time

window. The effect on its Fourier transform is that it becomes convolved with a sinc-

function of some width inversely proportional to the time window. (We can also make use

of more advanced signal processing tricks to obtain a better conditioning. We refer the

interested reader to [119] for more details.) This means that the resolution of such

simulations will depend on the time frames in which we can calculate f(t). Furthermore,

only a discrete number of points will be available, such that we have to perform a discrete

Fourier transform instead, but this is still sufficient to obtain the spectral information we

are interested in.
As first discussed by Osborne, the calculation of f(t) can efficiently be implemented

with the techniques discussed before [119]. Basically, it is the real-time equivalent of

calculating e��H and, as has already been discussed, there are several options for doing

this. First of all, we can evolve a collection of maximally entangled states with I� e� iHt

using small Trotter steps, and then calculate its overlap with the original maximally

entangled states (note again that several options exist for how to choose the Trotter

decomposition). Indeed, it happens that

hIjA� IjIi ¼ TrA

with jIi ¼
P

kjkijki a maximally entangled state.
Alternatively, we can consider the Suzuki–Trotter decomposition for an infinitesimal

step, write down the complete tensor network corresponding to f(t), and contract it using

the techniques discussed in the previous Section 5.3. Note that in this particular case, there

is again the possibility of contracting the corresponding tensor network in two directions,

namely in the time or space direction. Experience tell us which way is more reliable.
In any case, it is really exciting to see how many new tools and possibilities can be

explored by reformulating it in the MPS language.

7. PEPSs and ground states of two-dimensional quantum spin systems

In this Section, we present a natural generalization of the one-dimensional MPS to two

and higher dimensions and build simulation techniques based on those states which

effectively extend DMRG to higher dimensions. We call those states PEPSs [12,13], since

they can be understood in terms of pairs of maximally entangled states of some auxiliary

systems that are locally projected in some low-dimensional subspaces. This class of states
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includes the generalizations of the two-dimensional AKLT states known as tensor product
states [120–126] which have been used for two-dimensional problems but is much broader
since every state can be represented as a PEPS (as long as the dimension of the entangled
pairs is large enough). We also develop an efficient algorithm to calculate correlation
functions of these PEPSs, and which allows us to extend the one-dimensional algorithms
to higher dimensions. This leads to many interesting applications, such as scalable
variational methods for finding ground or thermal states of spin systems in higher
dimensions as well as simulating their time evolution. For the sake of simplicity, we
restrict our attention to a square lattice in two dimensions. The generalization to higher
dimensions and other geometries is straightforward.

We want to emphasize, however, that the PEPS method is not yet as well established as
the one-dimensional MPS or DMRG methods; this is mainly due to its higher complexity,
but also to a large extent due to the fact that these PEPS methods are relatively unexplored
which means that there is a lot of room for improvement and exciting research.

7.1. Construction and calculus of PEPSs

There have been various attempts at using the ideas developed in the context of the NRG
and DMRG to simulate two-dimensional quantum spin systems. However, in hindsight it
is clear why those methods were never very successful: they can be reformulated as
variational methods within the class of one-dimensional MPSs, and the structure of those
MPS is certainly not well suited to describing the ground states of two-dimensional
quantum spin systems. This can immediately be understood when reconsidering the area
law discussed in Section 2 (see Figure 17): if we look at the number of degrees of freedom
needed to describe the relevant modes in a block of spins, this has to scale as the boundary
of the block, and hence this increases exponentially with the size of that boundary. This
means that it is impossible to use a NRG or DMRG approach, where the number of
degrees of freedom is bounded to D. (Clearly, the VMPS/DMRG methods can reveal very
valuable information in the case of quasi-two-dimensional systems such as ladders with a
few rungs; see e.g. [127] for a nice illustration.)

However, it is straightforward to generalize the MPS picture to higher dimensions: the
main reason of the success of the MPS approach is that it allows a good representation of
local properties that are compatible with, for example, the translational symmetry in the
system. These strong local correlations are obtained by sharing maximally entangled states
between neighbours, and the longer range correlations are basically mediated by the
intermediate particles. This is, of course, a very physical picture, as the Hamiltonian does
not force any long-range correlations to exist a priori, and those only come into existence
because of frustration effects. This generalization to higher dimensions can therefore be
obtained by distributing virtual maximally entangled states between all neighbouring sites
[126], and as such a generalization of the AKLT picture is obtained.

More specifically, each physical system at site i is represented by four auxiliary systems
ai, bi, ci, and di of dimension D (except at the borders of the lattices). Each of those systems
is in a maximally entangled state

jIi ¼
XD
i¼1

jiii
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with one of its neighbours, as shown in Figure 17. The PEPS j�i is then obtained by

applying to each site one operator Qi that maps the four auxiliary systems onto one

physical system of dimension d. This leads to a state with coefficients that are contractions

of tensors according to a certain scheme. Each of the tensors is related to one operator Qi

according to 

Ai

�k
lrud
¼ hkjQijl; r; u; di

and thus associated with one lattice site i. All tensors possess one physical index k of

dimension d and four virtual indices l, r, u and d of dimension D. The scheme according to

which these tensors are contracted mimics the underlying lattice structure: the four virtual

indices of the tensors are related to the left, right, upper and lower bond emanating from

the corresponding lattice site. The coefficients of the PEPS are then formed by joining the

tensors in such a way that all virtual indices related to same bonds are contracted.

This is illustrated in Figure 18 for the special case of a 4� 4 square lattice. Assuming

this contraction of tensors is performed by the function Fð�Þ, the resulting PEPS can be

written as

j�i ¼
Xd

k1,..., kM¼1

F
�

A1

�k1 , . . . ,


AM

�kM�
jk1, . . . , kMi:

This construction can be generalized to any lattice shape and dimension and one can

show that any state can be written as a PEPS if we allow the bond dimension to become

Figure 17. Representation of a quantum spin system in two dimensions using the PEPS
representation. If we calculate the entropy of a block of spins, then this quantity will obey an
area law and scale as the length of the boundary between the block and the rest. PEPS states are
constructed such as to have this property built in.
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very large. In this way, we also resolve the problem of the entropy of blocks mentioned
above, since now this entropy is proportional to the bonds that connect such a block with
the rest, and therefore to the area of the block. Note also that, in analogy to the MPS [58],
the PEPSs are guaranteed to be ground states of local Hamiltonians.

There has recently been a lot of progress in justifying this PEPS picture; Hastings has
shown [46] that indeed every ground state of a local quantum spin Hamiltonian has an
efficient representation in terms of a PEPS, that is, one whose bond dimension D scales
subexponentially with the number of spins under interest. Also, he has shown that all
thermal states have an efficient representation in terms of MPOs. This is great news, as it
basically shows that we have identified the relevant manifold describing the low-energy
physics of quantum spin systems. This can lead to many applications in theoretical
condensed matter physics, as questions regarding the possibility of some exotic phase of
matter can now be answered by looking at the set of PEPSs, hence skipping the bottleneck
of simulation of ground states.

The family of PEPSs also seems to be very relevant in the field of quantum information
theory. For example, all quantum error-correcting codes such as Kitaev’s toric code [128]
exhibiting topological quantum order have a very simple and exact description in terms of
PEPSs [42]. Furthermore, the PEPS picture has been used to show the equivalence between
different models of quantum computation [126]; more specifically, the so-called cluster
states [129] have a simple interpretation in terms of PEPSs, and this picture demystifies the
inner workings of the one-way quantum computer.

7.2. Calculus of PEPS

We now show how to determine expectation values of operators in the state j�i. We
consider a general operator O¼

Q
iOi and define the D2

�D2
�D2

�D2–tensors

E
Oj

j

�ðuu 0Þðdd 0Þ
ðll 0Þðrr 0Þ

¼
Xd

k;k 0¼1

hkjOjjk
0i


A�j
�k 0
lrud



Aj

�k
l 0r 0u 0d 0

:

Figure 18. Structure of the coefficient related to the state jk11; . . . ; k44i in the PEPS j�Ai. The bonds
represent the indices of the tensors [Ai]

k that are contracted.
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In this definition, the symbols (ll 0), (rr 0), (uu 0) and (dd 0) indicate composite indices. We

may interpret the four indices of this tensor as being related to the four bonds emanating

from site j in the lattice. Then, h�jOj�i is formed by joining all tensors E
Oj

j in such a way

that all indices related to same bonds are contracted, as in the case of the coefficients of

PEPSs. These contractions have a rectangular structure, as depicted in Figure 19. In terms

of the function Fð�Þ, the expectation value reads

h�jOj�i ¼ F
�
EO1

1 , . . . ,EON

N

�
:

The contraction of all tensors E
Oj

j according to this scheme requires a number of steps that

scales exponentially with N, and makes calculations intractable as the system grows larger.

Owing to this, an approximate method has to be used to calculate expectation values.
The approximate method suggested in [12] is based on MPSs and MPOs. The main

idea is to interpret the first and last row in the contraction scheme as MPSs and the rows in

between as MPOs. The horizontal indices thereby form the virtual indices and the vertical

indices are the physical indices. Thus, the MPSs and MPOs have both virtual dimension

and physical dimension equal to D2. Explicitly written, the MPSs read as

jU1i ¼
XD2

~d1,..., ~dL¼1

tr
�

EO11

11

�1 ~d1
� � �


EO1L

1L

�1 ~dL
�
j ~d1, . . . , ~dLi

hULj ¼
XD2

~u1,..., ~uL¼1

tr
�

EOL1

L1

� ~u11
� � �


EOLL

LL

� ~uL1
�
h ~u1, . . . , ~uLj

and the MPO at row r is

Ur ¼
XD2

~u1,..., ~uL¼1
~d1,..., ~dL¼1

tr
�

EOr1

r1

� ~u1 ~d1
� � �


EOrL

rL

� ~uL ~dL
�
j ~u1, . . . , ~uLih ~d1, . . . , ~dLj:

Figure 19. Structure of the contractions in h�Aj�Ai. In this scheme, the first and last rows can be
interpreted as MPSs jU1i and hU4j and the rows in between as MPOs U2 and U3. The contraction of
all tensors is then equal to hU4jU3U2jU1i.
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In terms of these MPSs and MPOs, the expectation value is a product of MPOs and MPSs:

h�jOj�i ¼ hULjUL�1 � � �U2jU1i:

The evaluation of this expression is, of course, intractable. With each multiplication of a

MPO with a MPS, the virtual dimension increases by a factor of D2. Thus, after L

multiplications, the virtual dimension is D2L, which is exponential in the number of rows.

The expression, however, reminds of the time–evolution of a MPS. There, each

multiplication with a MPO corresponds to one evolution step. The problem of the

exponential increase in the virtual dimension is circumvented by restricting the evolution

to the subspace of MPSs with a certain virtual dimension ~D. This means that after each

evolution step the resulting MPS is approximated by the ‘nearest’ MPS with virtual

dimension ~D. This approximation can be done efficiently, as shown in [11]. In this way,

h�jOj�i can also be calculated efficiently: first, the MPS jU2i is formed by multiplying the

MPS jU1i with MPO U2. The MPS jU2i is then approximated by j ~U2i with virtual

dimension ~D. In this fashion the procedure is continued until j ~UL�1i is obtained. The

expectation value h�jOj�i is then simply

h�jOj�i ¼ hULj ~UL�1i:

Interestingly enough, this method to calculate expectation values can be adopted to

develop very efficient algorithms to determine the ground states of two-dimensional

Hamiltonians and the time evolution of PEPSs by extending DMRG and the time

evolution schemes to two dimensions.

7.3. Variational method with PEPSs

Let us start with an algorithm to determine the ground state of a Hamiltonian with short-

range interactions on a square L � L lattice. The goal is then to determine the PEPS j�i

with a given dimension D which minimizes the energy:

hHi ¼
h�jHj�i

h�j�i
: ð26Þ

Following [10], the idea is to iteratively optimize the tensors Ai one by one while fixing all

of the other tensors until convergence is reached. The crucial observation is the fact that

the exact energy of j�i (and also its normalization) is a quadratic function of the

components of the tensor Ai associated with one lattice site i. Owing to this, the optimal

parameters Ai can simply be found by solving a generalized eigenvalue problem.
The challenge that remains is to calculate the matrix pair for which the generalized

eigenvalues and eigenvectors shall be obtained. In principle, this is done by contracting

all indices in the expressions h�jHj�i and h�j�i except those connecting to Ai. By

interpreting the tensor Ai as a dD4-dimensional vector Ai, these expressions can be

written as

h�jHj�i ¼ AyiHiAi; ð27Þ

h�j�i ¼ AyiN iAi: ð28Þ
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Thus, the minimum of the energy is obtained by the generalized eigenvector Ai of the

matrix pair ðHi;N iÞ to the minimal eigenvalue �:

HiAi ¼ �N iAi:

It turns out that the matrix pair ðHi;N iÞ can be efficiently evaluated by the method

developed for the calculation of expectation values: N i relies on the contraction of all but

one tensors EI
j (with I denoting the identity) according to the same rectangular scheme as

before. The one tensor that has to be omitted is EI
i , the tensor related to site i. Assuming

this contraction is performed by the function Gið�Þ, N i can be written as

N i

�k
lrud

l 0r 0u 0d 0

k 0
¼ Gi

�
EI
1, . . . ,EI

N

�l 0r 0u 0d 0
lrud

�kk 0 :

If we join the indices (klrud) and (k 0l 0r 0u 0d 0), we obtain the dD4
� dD4 matrix that fulfills

equation (28). To evaluate Gið�Þ efficiently, we proceed in the same way as before by

interpreting the rows in the contraction structure as MPSs and MPOs. First, we join all

rows that lie above site i by multiplying the topmost MPS jU1i with subjacent MPO and

reducing the dimension after each multiplication to ~D. Then, we join all rows lying below i

by multiplying hULj with the adjacent MPOs and reducing the dimension as well. We end

up with two MPSs of virtual dimension ~D, which we can contract efficiently with all but

one of the tensors EI
j lying in the row of site i.

The effective Hamiltonian Hi can be determined in an analogous way, but here the

procedure has to be repeated for every term in the Hamiltonian (i.e. of the order of 2N

times in the case of nearest-neighbour interactions). Assuming a single term in the

Hamiltonian has the tensor-product structure Hs �
Q

i h
s
i , the effective Hamiltonian Hs

i

corresponding to this term is obtained as

Hs

i

�k
lrud

l 0r 0u 0d 0

k 0
¼ Gi

�
E
hs
1

1 , . . . ,E
hs
N

N

�l 0r 0u 0d 0
lrud



hsi
�k
k 0
:

The complete effective Hamiltonian Hi that fulfills equation (27) is then produced as

Hi ¼
X
s

Hs
i :

Thus, both of the matrices N i and Hi are directly related to the expressions Gi
�
EI
1, . . . ,EI

N

�
and Gi

�
E
hs
1

1 , . . . ,E
hs
N

N

�
. These expressions, however, can be evaluated efficiently using the

approximate method introduced before for the calculation of expectation values.

Therefore, the optimal Ai can be determined, and one can proceed with the following

site, iterating the procedure until convergence.

7.4. Time evolution with PEPS

Let us next move to describe how a time evolution can be simulated on a PEPS. We

assume that the Hamiltonian only couples nearest neighbours, although more general

settings can be considered. The principle of simulating a time-evolution step is as follows:

first, a PEPS j�0
Ai with physical dimension d¼ 2 and virtual dimension D is chosen as a

starting state. This state is evolved by the time-evolution operator U¼ e iH�t (we assume

�h¼ 1) to yield another PEPS j�Bi with a virtual dimension DB increased by a factor �:

j�Bi ¼ Uj�0
Ai:
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The virtual dimension of this state is then reduced to D by calculating a new PEPS j�Ai

with virtual dimension D that has minimal distance to j�Bi. This new PEPS is the starting

state for the next time-evolution step. The crucial point in simulating a time evolution with

PEPS is thus the development of an efficient algorithm for reducing the virtual dimension

of a PEPS.
Before formulating this algorithm, let us recite how to express the product Uj�0

Ai in

terms of a PEPS. This is done by means of a Trotter approximation: first, the interaction

terms in H are classified as horizontal and vertical according to their orientation and even

and odd depending on whether the interaction is between even–odd or odd–even rows

(or columns). The Hamiltonian can then be decomposed into a horizontal–even, a

horizontal–odd, a vertical–even and a vertical–odd part:

H ¼ Hhe þHho þHve þHvo:

The single-particle operators of the Hamiltonian can simply be incorporated into one of

the four parts (note that different Trotter decompositions are again possible, for example,

grouping all Pauli operators of the same kind into three different groups as we discussed

earlier, and in some cases this leads to a clear computational advantage). Using the Trotter

approximation, the time-evolution operator U can be written as a product of four

evolution operators:

U ¼ e�iH�t 
 e�iHhe�te�iHho�te�iHve�te�iHvo�t: ð29Þ

Since each of the four parts of the Hamiltonian consist of a sum of commuting terms, each

evolution operator is equal to a product of two-particle operators wij acting on

neighbouring sites i and j. These two-particle operators have a Schmidt decomposition

consisting of, say, � terms:

wij ¼
X�
�¼1

u�i � v�j :

One such two-particle operator wij applied to the PEPS j�0
Ai modifies the tensors A0

i and

A0
j associated with sites i and j as follows: assuming that the sites i and j are horizontal

neighbours, A0
i has to be replaced by



Bi

�k
lðr�Þud

¼
Xd
k 0¼1



u�i
�k
k 0



A0

i

�k 0
lrud

and A0
j becomes



Bj

�k
ðl�Þrud

¼
Xd
k 0¼1



v�j
�k
k 0



A0

j

�k 0
lrud
:

These new tensors have a joint index related to the bond between sites i and j. This joint

index is composed of the original index of dimension D and the index � of dimension � that
enumerates the terms in the Schmidt decomposition. Thus, the effect of the two-particle

operator wij is to increase the virtual dimension of the bond between sites i and j by a factor

of �. Consequently, e� iHhe�t and e� iHho�t increase the dimension of every second horizontal

bond by a factor of �; e� iHve�t and e� iHvo�t do the same for every second vertical bond.
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By applying all four evolution operators consecutively, we have found an approximate

form of the time-evolution operator U that, when applied to a PEPS j�0
Ai, yields another

PEPS j�Bi with a virtual dimension multiplied by a constant factor �.
The aim of the approximate algorithm is now to optimize the tensors Ai related to a

PEPS j�Ai with virtual dimension D, such that the distance between j�Ai and j�Bi tends

to a minimum. The function to be minimized is thus

K
�
A1, . . . ,AM

�
¼
��j�Ai � j�Bi

��2:
This function is non-convex with respect to all parameters fA1, . . . ,AMg. However, due to

the special structure of PEPSs, it is quadratic in the parameters Ai associated with

one lattice site i. Owing to this, the optimal parameters Ai can simply be found by solving a

system of linear equations. The concept of the algorithm is to perform this one-site

optimization site-by-site until convergence is reached.
The coefficient matrix and the inhomogeneity of the linear equations system can be

calculated efficiently using the method developed for the calculation of expectation values.

In principle, they are obtained by contracting all indices in the expressions for the scalar

products h�Aj�Ai and h�Aj�Bi except those connecting to Ai. By interpreting the tensor Ai

as a dD4-dimensional vector Ai, these scalar–products can be written as

h�Aj�Ai ¼ AyiN iAi; ð30Þ

h�Aj�Bi ¼ AyiW i: ð31Þ

Since

K ¼ h�Bj�Bi þ h�Aj�Ai � 2Reh�Aj�Bi;

the minimum is attained as

N iAi ¼ W i:

The efficient calculation of N i has already been described in the previous Section. The

scalar product h�Aj�Bi and the inhomogeneity W i are calculated in an efficient way

following the same ideas. First, the DDB�DDB�DDB�DDB tensors



Fj

�ðuu 0Þðdd 0Þ
ðll 0Þðrr 0Þ

¼
Xd
k¼1



A�j
�k
lrud



Bj

�k
l 0r 0u 0d 0

are defined. The scalar product h�Aj�Bi is then obtained by contracting all tensors Fj

according to the previous scheme, which is performed by the function Fð�Þ:

h�Aj�Bi ¼ F
�
F1, . . . ,FM

�
The inhomogeneityW i relies on the contraction of all but one of the tensors Fj, namely the

function Gi
�
�Þ, in the sense that



W i

�k
lrud
¼

XD
l 0r 0u 0d 0¼1

Gi
�
F1, . . . ,FM

�l 0r 0u 0d 0
lrud



Bi

�k
l 0r 0u 0d 0

:
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Joining all indices (klrud) in the resulting tensor leads to the vector of length dD4 that fulfills
equation (31). Thus, both the scalar product h�Aj�Bi and the inhomogeneity W i are
directly related to the expressions F

�
F1, . . . ,FM

�
and Gi

�
F1, . . . ,FM

�
. These expressions,

however, can be evaluated efficiently using the approximate method from before.
Even though the principle of simulating a time-evolution step has now been recited,

the implementation in this form is numerically expensive. The following notes describe
how to make the simulation more efficient.

(1) Partitioning of the evolution. The number of required numerical operations
decreases significantly as one time-evolution step is partitioned into four substeps:
first the state j�0

Ai is evolved by e� iHvo�t only and the dimension of the increased
bonds is reduced back to D. Next, evolutions according to e� iHve�t, e� iHho�t and
e� iHhe�t follow. Even though the partitioning increases the number of evolution
steps by a factor of four, the number of multiplications in one evolution step
decreases by a factor of �3.

(2) Optimization of the contraction order. Most critical for the efficiency of the
numerical simulation is the order in which the contractions are performed. We
have optimized the order in such a way that the scaling of the number of
multiplications with the virtual dimension D is minimal. For this, we assume that
the dimension ~D that tunes the accuracy of the approximate calculation of N i and
W i is proportional to D2, that is, ~D ¼ �D2. The number of required multiplications
is then of the order of �2D10L2 and the required memory scales as d��2D8.
(The scaling D10 is obtained when a sparse matrix algorithm is used at all steps
in the algorithm. In particular, we have to use an iterative sparse method for
solving the linear set of equations in the approximation step.)

(3) Optimization of the starting state. The number of sweeps required to reach
convergence depends on the choice of the starting state for the optimization. The
idea for finding a good starting state is to reduce the bonds with increased virtual
dimension �D by means of a Schmidt decomposition. This is done as follows:
assuming the bond is between the horizontal neighbouring sites i and j, the
contraction of the tensors associated with these sites, Bi and Bj, along the bond i – j
forms the tensor 


Mij

�k
lud

k 0

r 0u 0d 0
¼
XD�
�¼1



Bi

�k
l�ud



Bj

�k 0
�r 0u 0d 0

:

By joining the indices (klud) and (k 0r 0u 0d 0), this tensor can be interpreted as a
dD3� dD3-matrix. The Schmidt–decomposition of this matrix is

Mij ¼
XdD3

�¼1

c�A
�
i �A

�
j

with the Schmidt coefficients c� (c� 	 0) and corresponding matrices A�i and A�j . We can
relate these matrices to a new pair of tensors A0

i and A0
j associated with sites i and j:


A0
i

�k
l�ud
¼

ffiffiffiffiffi
c�
p 

A
�
i

�k
lud
;


A0
j

�k
�rud
¼

ffiffiffiffiffi
c�
p 

A
�
j

�k
rud
:
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The virtual dimension of these new tensors related to the bond between sites i and j is equal

to the number of terms in the Schmidt decomposition. Since these terms are weighted with

the Schmidt coefficients c�, it is justified to keep only the D terms with coefficients of

largest magnitude. Then, the contraction of the tensors A0
i and A0

j along the bond i–j with
dimension D yields a good approximation to the true valueMij:


Mij

�k
lud

k 0

r 0u 0d 0


XD
�¼1



A0

i

�k
l�ud



A0

j

�k 0
�r 0u 0d 0

:

When we apply this method to all bonds with increased dimension we obtain the starting

state for the optimization.

7.4.1. Examples

Let us now illustrate the variational methods with some examples. Models to which
the PEPS algorithms have already been applied to include the Heisenberg anti-

ferromagnet [12], the Shastry–Sutherland model [130] and the system of hard-core

bosons in a two-dimensional optical lattice [13]. In the following, we recite the results for

the latter system, which include calculations of ground-state properties and studies of the

time evolution after sudden changes in the parameters.
The system of bosons in a two-dimensional optical lattice is characterized by the

Bose–Hubbard Hamiltonian

H ¼ �J
X
hi;ji

�
ayi aj þ h:c:

�
þ
U

2

X
i

n̂iðn̂i � 1Þ þ
X
i

Vin̂i;

where a yi and ai are the creation and annihilation operators on site i and n̂i ¼ a yi ai is the

number operator. This Hamiltonian describes the interplay between the kinetic energy

due to the next-neighbour hopping with amplitude J and the repulsive on-site interaction

U of the particles. The last term in the Hamiltonian models the harmonic confinement of
magnitude Vi¼V0(i� i0)

2. Since the total number of particles N̂ ¼
P

i n̂i is a symmetry of

the Hamiltonian, the ground state will have a fixed number of particles. This number can

be chosen by appending the term ��N̂ to the Hamiltonian and tuning the chemical

potential �. In the limit of hard-core interaction, U=J!1, two particles are prevented

from occupying a single site. This limit is especially interesting in one dimension where the
particles form the so-called Tonks–Girardeau gas [118,131]. The particles in this gas are

strongly correlated, which leads to algebraically decaying correlation functions. In two

dimensions, the model was studied in detail in [132]. In the hard-core limit, the Bose–

Hubbard model is equivalent to a spin system with XX interactions described by the

Hamiltonian

H ¼ �
J

2

X
hi;ji

�

ðiÞx 


ð jÞ
x þ 


ðiÞ
y 

ð jÞ
y

�
þ
1

2

X
i

�
Vi � �

�

ðiÞz :

Here, 
ix, 

i
y and 
ðiÞz denote the Pauli operators acting on site i. This Hamiltonian has a

structure that can be simulated with the PEPS algorithm: it describes L2 physical systems

of dimension d¼ 2 on a L�L square lattice.
In Figure 20, the energy in the case of a 4� 4 lattice is plotted as the system undergoes

an imaginary time evolution. Thereby, a time step �t¼� i0.03 is assumed and the
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magnitude of the harmonic confinement (in units of the tunnelling constant) is chosen as
V0/J¼ 36. In addition, the chemical potential is tuned to �/J¼ 3.4 such that the ground
state has particle number hN̂i ¼ 4. With this configuration, the imaginary time evolution is
performed both exactly and variationally with PEPSs. As a starting state a product state is
used that represents a Mott-like distribution with four particles arranged in the centre of
the trap and no particles elsewhere. The variational calculation is performed with D¼ 2
first until convergence is reached; then, evolutions with D¼ 3, 4 and 5 follow. At the end,
a state is obtained that is very close to the state obtained by exact evolution. The difference
in energy is jED¼ 5�Eexactj ’ 6.4614� 10� 5J. For comparison, the exact ground-state
energy obtained by an eigenvalue calculation and the energy of the optimal Gutzwiller
ansatz are also included in Figure 20. The difference between the exact result and the
results of the imaginary time evolution is due to the Trotter error and is of the order of
O(�t2). The energy of the optimal Gutzwiller ansatz is well separated from the exact
ground-state energy and the results of the imaginary time evolution.

In Figure 21, the energy as a function of time is plotted for the imaginary time
evolution on an 11� 11 lattice. Again, a time step �t¼� i0.03 is assumed for the evolution.
The other parameters are set as follows: the ratio between harmonic confinement and the
tunnelling constant is chosen as V0/J¼ 100 and the chemical potential is tuned to �/J¼ 3.8
such that the total number of particles hN̂i is 14. The starting state for the imaginary time
evolution is, similar to before, a Mott-like distribution with 14 particles arranged in the
centre of the trap. This state is evolved within the subset of PEPS with D¼ 2, 3, 4 and 5.
As can be garnered from the plot, this evolution shows a definite convergence. In addition,
the energy of the final PEPS lies well below the energy of the optimal Gutzwiller ansatz.

An application of the time-evolution algorithm with PEPSs is found in the study of
dynamic properties of hard-core bosons on a lattice of size 11� 11. Here, the responses of
this system to sudden changes in the parameters are investigated and the numerical results

Figure 20. Energy as a function of time for the imaginary time evolution of the system of hard-core
bosons on a 4� 4 lattice. The evolutions are performed sequentially with PEPSs of virtual dimension
D¼ 2, 3, 4 and 5. The times at which D is increased are indicated by vertical lines. For comparison,
the exact ground-state energy, the exact imaginary time evolution and the energy of the optimal
Gutzwiller ansatz are included. (Reprinted with permission from [13] V. Murg et al., Phys. Rev. A 75
(2007), p. 033605. � 2007 by the American Physical Society.)
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are compared with the results obtained by a Gutzwiller ansatz. An interesting property

that is observed is the fraction of particles that are condensed. For interacting and finite

systems, this property is measured best by the condensate density � which is defined as the

largest eigenvalue of the correlation matrix ha yi aji.
In Figure 22, the evolution of a Mott distribution with 14 particles arranged in the

centre of the trap is studied. It is assumed that V0/J¼ 100, �/J¼ 3.8 and �t¼ 0.03. To

ensure that the results are accurate, the following procedure was used for simulating the

time evolution: first, the simulation has been performed using PEPSs with D¼ 2 and 3

until the overlap between these two states fell below a certain value. Then, the simulation

has been continued using PEPS with D¼ 3 and 4 as long as the overlap between these two

states was close to 1. The results of this calculation can be garnered from Figure 22. What

can be observed is that there is a definite increase in the condensate fraction. The

Gutzwiller ansatz is in contrast to this result since it predicts that the condensate density

will remain constant. The inset in Figure 22 shows the overlap of the D¼ 2 with the D¼ 3

PEPSs and the D¼ 3 with the D¼ 4 PEPSs.
Finally, we make a few comments about the accuracy of the algorithm. One indicator

for the accuracy is the distance between the time-evolved state and the state with reduced

virtual dimension. For the time evolution of the Mott distribution that was discussed

before, this quantity is plotted in Figure 23. We find that the distance is typically of the

order of 10� 3 for D¼ 2 and of the order of 10� 4 for D¼ 3 and 4. Another quantity that is

monitored is the total number of particles hN̂i. Since this quantity is supposed to be

conserved during the whole evolution, its fluctuations indicate the reliability of the

algorithm. From the inset in Figure 23, the fluctuations of the particle number in case of

the time evolution of the Mott distribution can be garnered. We find that these

fluctuations are at most of the order of 10� 5.

Figure 21. Energy as a function of time for the imaginary time evolution of the system of hard-core
bosons on a 11� 11 lattice. The evolutions are performed sequentially with PEPSs of virtual
dimension D¼ 2, 3, 4 and 5. The times at which D is increased are indicated by vertical lines. For
comparison, the energy of the optimal Gutzwiller ansatz is included. (Reprinted with permission
from [13] V. Murg et al., Phys. Rev. A 75 (2007), p. 033605. � 2007 by the American Physical
Society.)
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7.4.2. PEPSs and fermions

The critical reader should by now have complained that we are only talking about spin

systems and not about fermionic systems. Indeed, one of the long-term goals of the

numerical approaches discussed here is to be able to simulate, for example, the

Figure 22. Time evolution of the condensate density starting from a Mott distribution with 14
particles arranged in the centre of the trap. The magnitude of the trapping potential is V0 / J¼ 100.
For the evolution, the Gutzwiller ansatz and PEPSs with D¼ 2, 3 and 4 are used. The inset shows the
overlap between the D¼ 2 and 3 PEPSs (solid line) and the D¼ 3 and 4 PEPSs (dashed line).
(Reprinted with permission from [13] V. Murg et al., Phys. Rev. A 75 (2007), p. 033605. � 2007 by
the American Physical Society.)

Figure 23. Distance K between the time-evolved state and the state with reduced virtual dimension.
The virtual dimensions D¼ 2, 3 and 4 are included. The distance is plotted for the evolution of a
Mott distribution with N¼ 14, as explained in Figure 22. From the inset, the deviation of the particle
number from the value 14 can be garnered. (Reprinted with permission from [13] V. Murg et al.,
Phys. Rev. A 75 (2007), p. 033605. � 2007 by the American Physical Society.)
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Fermi–Hubbard model in the relevant parameter regime, as the big advantage of MPS/

PEPS methods is the non-existence of the so-called sign problem that is plaguing Monte

Carlo methods.
The methods that we discussed in one dimension are perfectly applicable to fermionic

systems, as the amazing Jordan–Wigner transformation allows us to map a local

Hamiltonian of fermions to a local Hamiltonian of spins, and we know that the MPS

techniques work provably well on the latter. The big problem, however, is that the Jordan–

Wigner transformation only works in one dimension: if we use it on a two-dimensional

lattice, a local Hamiltonian of fermions is mapped to a highly non-local Hamiltonian of

spins. PEPSs, on the other hand, are devised to be such that they have extremal local

properties; if the Hamiltonian contains a lot of strong non-local terms, we cannot expect

a PEPS to exhibit the corresponding extremal long-range correlations. The natural

question to ask is therefore whether there exists a generalization of the Jordan–Wigner

transformation to higher dimensions. This was indeed shown to be possible in [133]: given

any local Hamiltonian in terms of fermionic operators such as the Hubbard model in two

or three dimensions, then there exists a local spin-3/2 Hamiltonian whose low-energy

sector corresponds exactly to the original fermionic Hamiltonian. The conclusion is that

the PEPS methods are equally applicable to quantum spin systems as to fermionic systems.
Another and more efficient approach is to make use of quantum numbers. In general,

it is difficult to keep track of quantum numbers on a two-dimensional lattice. An

exception, however, is given by the parity of the occupation number between two sites: by

making the PEPS tensors block diagonal, one can invoke the even or odd occupation

number between any sites and as such eliminate the fact that spurious effective long-range

interactions arise in fermionic lattice systems [72]. This is very relevant as it leads to a huge

speed-up of the algorithms for fermionic lattice systems.

7.5. PEPSs on infinite lattices

In parallel with the one-dimensional MPSs, we can also explicitly make use of the

translational symmetry in the class of PEPSs to simulate low-energy properties of infinite

lattices. A naive procedure is to impose complete translational symmetry and perform a

line search (such as conjugate gradient) within the parameter space of the tensor; note that

this can be done as expectation values of the corresponding PEPSs can be calculated using

the appropriate one-dimensional infinite algorithms discussed above. However, the cost

function is highly non-linear and the number of parameters grows very fast with D, such

that those brute-force methods will typically lead to local minima. A smarter approach is

to use imaginary time evolution, but keeping the translational invariance. We have already

described how to do this in the one-dimensional case, where a particular kind of Trotter

expansion led to a translational-invariant MPO, and we can repeat this in two dimensions

leading to a translational-invariant PEPS operator. The only non-trivial part is the

question of how to reduce the bond dimension after one time evolution step; but here

we can again draw inspiration from the one-dimensional case, and ask the question which

projectors can we put on the bonds such as to maximize the overlap of the projected

state with the evolved one.
A more straightforward approach is to assume an . . .ABAB. . . symmetry where each

tensor A has all of its neighbouring tensors B and vice versa (of course, this is only possible
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for bipartite lattices; a different choice can be made for different types of lattice). Again,

imaginary time evolution can be used to find the ground state, and this was first studied in

[134] where the term iPEPS (infinite PEPS) was coined. The idea is as follows: take the

even–odd–horizontal–vertical Trotter decomposition as discussed previously, and next

evolve with just one operator acting on two nearest-neighbour sites. Effectively, this

increases the bond dimension between those two sites (A and B). The environment of those

spins can be readily calculated using the infinite one-dimensional translational-invariant

methods discussed above, and then the variational problem becomes the problem of

finding new A0 and B0 that approximate the state with higher bond optimally. Again, this

can be done using the ALS method. Subsequently, we replace all tensors A and B with A0

and B0, and continue until convergence. The last step, replacing all tensors with the

optimal local tensors, is only justified if the time step in the imaginary time evolution is

very small, but in practice, this seems to work very well, as illustrated in Figure 24.

8. Conclusion

Recent progress in quantum information theory has provided scientists with new

mathematical tools to describe and analyze many-body quantum systems. These new tools

have given rise to novel descriptions of the quantum states that appear in nature, which are

very efficient both in terms of the number of variables used to parameterize states and the

number of operations to determine expectation values of typical observables. In a sense,

they allow us to describe the ‘corner of Hilbert space’ where relevant states are located

with an effort that only scales polynomially with the number of particles, as opposed to the
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Figure 24. Magnetization mx(h) in the ground state j�hi of the two-dimensional quantum Ising
model with transverse magnetic field. A trivial iPEPS (inner dimension D¼ 1) produces a
magnetization that grows essentially linearly with the magnetic field until it saturates. Instead, the
simplest non-trivial iPEPS (inner dimension D¼ 2) produces a magnetization curve that overlaps
with the results of series expansions for both small and large magnetic fields. (D¼ 3 leads to results
that could hardly be distinguished from those for D¼ 2 in this Figure.) Note that around h
 3.1 the
derivative of the magnetization mx(h) changes suddenly. (Reprinted with permission from [134] with
kind permission of the authors.)
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exponential scaling resulting with other descriptions. These results have automatically led

to a diverse set of new powerful algorithms to simulate quantum systems. Those

algorithms allow us to describe ground states, thermal equilibrium, low excitations,
dynamics, random systems, etc., of many-body quantum systems, and thus to attack new

kinds of problems obtaining very precise results. Moreover, the methods work in one or

more spatial dimensions. In the first case, the success of some of those methods is directly

related to the extraordinary performance of DMRG. In higher dimensions, they also give

rise to a better understanding of several many-body systems for which a description has
not been possible with the existing techniques.

This paper has reviewed these new methods in a unified form. We have introduced

MPSs and their extensions to higher dimensions, PEPSs, and shown how one can build

powerful algorithms that find the best descriptions of states within that family of states.

The algorithms are relatively simple to implement, although they require some tricks that
have also been reported in this paper. We have also given simple Matlab codes in

Appendix C to illustrate how one can program some of the methods. Thus, we believe that

the present paper may be very useful both to scientists interested in implementing these

new algorithms to describe any kind of many-body quantum system, as well as those
interested in creating new algorithms for some specific purpose. We have also provided a

large amount of appealing evidence of the fact that most interesting states in nature are

well described by MPSs and PEPSs. This, in fact, indicates that our algorithms as well as

future extensions can provide us with unique tools to explore the fascinating physics of
quantum many-body systems.
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Appendix A: Local reduced density operators of spin systems

Due to the variational nature of ground states, there always exists a ground state with the same
symmetries as the associated Hamiltonian. If the Hamiltonian has translational symmetry and
consists of two-body nearest-neighbour interactions, then it is clear that the energy of a state with the
right symmetry is completely determined by its reduced density operator of two neighbouring spins.
The reduced density operators arising from these (eventually mixed) states with a given symmetry
form a convex set, and the energy for a given Hamiltonian will be minimized for a state whose
reduced density operator is an extreme point in this set. More specifically, the equation TrðH�Þ ¼ E
determines a hyperplane in the space of reduced density operators of states with a given symmetry,
and the energy will be extremal when the hyperplane is tangent to the convex set (E¼Eextr).
The problem of finding the ground-state energy of nearest-neighbour translational-invariant
Hamiltonians is therefore equivalent to the determination of the convex set of two-body reduced
density operators arising from states with the right symmetry. Strictly speaking, these two problems
are dual to each other. In the case of quadratic Hamiltonians involving continuous variables,
the determination of this convex set was solved for fairly general settings in [135] by means of
Gaussian states. The determination of this convex set in the case of spin systems, however, turns out
to be much more challenging.

Let us illustrate this with a simple example

H ¼ �
X
hi;ji

Sx
i S

x
j þ Sy

i S
y
j þ�S z

i S
z
j

on a lattice of arbitrary geometry and dimension. (We assume that the graph corresponding to the
lattice is edge transitive, meaning that any vertex can be mapped to any other vertex by application
of the symmetry group of the graph.) Due to the symmetries, the reduced density operator of two
nearest neighbours can be parameterized by only two parameters (this can easily be proven by
invoking local twirling operations which leave the Hamiltonian invariant):

� ¼
1

4
I� Iþ xð
x � 
x þ 
y � 
yÞ þ z
z � 
z
� �

:

Positivity of � enforces � 1� z� 1� 2jxj, and the state is separable if and only if 1þ z� 2jxj. In the
case of an infinite one-dimensional spin chain, the ground-state energy E(�) has been calculated
exactly [136], and this determines the tangent hyperplanes

2xþ z�þ Eð�Þ ¼ 0

whose envelope makes up the extreme points of the convex set of reduced density operators of
translationally invariant one-dimensional states: the boundary of this convex set is parameterized by

z ¼ �@Eð�Þ=@�

x ¼ �ðEð�Þ þ @Eð�Þ=@�Þ=2;

which we plotted in Figure A1. We also plot the boundary for the two-dimensional square
lattice. These two-dimensional data were obtained by numerical methods [12,137,138]); of course,
this convex set is contained in the previous set, as all of the semidefinite constraints defining the
set corresponding to one dimension are strictly included in the set of constraints for the two-
dimensional case. Finally, we plot the set of separable states, which contains the reduced density
operators of the allowed states for a lattice with infinite coordination number. The boundary of
this separable set is given by the inner diamond; this immediately implies that the difference
between the exact energy and that obtained by mean field theory will be maximized whenever the
hyperplane that forms the boundary of the first set will be parallel to this line. This happens
when �¼�1 (independent of the dimension), which corresponds to the antiferromagnetic case,
and this proves that the ‘entanglement gap’ [139] in the XXZ plane is maximized by the
antiferromagnetic ground state for any dimension and geometry. Similarly, it proves that the
ground state is separable whenever �	 1 and �¼�1. Note also that in the two-dimensional
case, part of the boundary of the convex set consists of a plane parameterized by
2xþ zþE(1)¼ 0. This indicates a degeneracy of the ground state around the antiferromagnetic
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Figure A1. Convex sets of the possible reduced density operators of translational-invariant spin-1/2
states in the XX–ZZ plane. The big triangle represents all positive density operators; the inner
parallelogram represents the separable states; the union of the separable cone and the convex hull of
the full curved line is the complete convex set in the case of a one-dimensional geometry,
and the dashed lines represent extreme points in the two-dimensional case of a square
lattice. The singlet corresponds to the point with coordinates (�1,�1). (Reprinted with permission
from [47] F. Verstraete et al., Phys. Rev. B 73 (2006), p. 094423. � 2006 by the American Physical
Society.)
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Figure A2. Convex sets in the XXZ plane: the inner diamond borders the set of separable states
(see Figure 1); dash-dotted lines represent extreme points of the convex set produced by MPSs of
D¼ 2. (Reprinted with permission from [47] F. Verstraete et al., Phys. Rev. B 73 (2006), p. 094423.
� 2006 by the American Physical Society.)
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point, and indicates that a phase transition is occurring at that point (more specifically between
an Ising and a Berezinskii–Kosterlitz–Thouless phase).

As a good illustration of the actual accuracy obtained with MPSs, we calculated the convex
set obtained with MPSs in the thermodynamic limit for the XXZ chain with D¼ 2, where D is
the dimension of the matrices in the MPS (see Figure A2). It is almost unbelievable how good
the exact convex set can be approximated. Note that typical DMRG calculations have D� 200,
and that the accuracy grows superpolynomial in D. Note also that the D¼ 1 case corresponds to
mean-field theory, whose corresponding convex set coincides with the set of separable states.

The same argument involving the notion of a correlation length applies in higher dimensions
and indicates that PEPSs represent ground states of gapped local Hamiltonians well. Note,
however, that the convex set in the two-dimensional case is much closer to the separable set than
in the one-dimensional case; this gives a hint that PEPSs of smaller dimension will suffice to give
the same accuracy as in the one-dimensional case. In the next Section we quantitatively bound
how well a translationally invariant state can be represented in terms of a MPS, and analyze the
corresponding implications for the description of ground states of one-dimensional spin chains.

Appendix B: MPSs represent ground states faithfully

We derive an upper bound to the error made by approximating a general ground state of a one-
dimensional quantum spin system by a MPS. As we show below, this has very important
implications in the performance of the renormalization algorithms in describing ground states of
one-dimensional spin chains.

Lemma B1: There exists a MPS j Di of dimension D such that

kj i � j Dik
2 � 2

XN�1
�¼1

��ðDÞ;

where ��ðDÞ ¼
PN�

i¼Dþ1 �
½��i.

Proof: We can always write  as a MPS of dimension D¼ 2N/2 and fulfillingX
i

A½m�iA½m�iy ¼ I;
X
i

A½m�iy�½mþ1�A½m�i ¼ �½m�:

Let us now consider the D-dimensional MPS j Di which is defined by the D�D matrices
[A[�]i](1. . .D,1. . .D) (i.e. the upper-left block of A[�]i). The goal is now to bound h j Di. The gauge
conditions were chosen such as to make the task simple:

h Dj i ¼ Tr½$2ð� � � $N�2ð$N�1ð�
N�1PÞPÞP � � �ÞP�; ðB1Þ

here P ¼
PD

k¼1 jkihkj and $mðXÞ ¼
P

i A
½m�iyXA½m�i represents a trace-preserving completely positive

(TPCP) map parameterized by the Kraus operators A[m]i. Let us now recursively define

Y½k� ¼ $k Y½kþ1�P
� �

; Y½N�1� ¼ �½N�1�P;

observe that �[k]
¼ $k(�

[kþ 1]). We want a bound on Trj�½1� � Y1j, as equation (B1) is equal
to TrðY½2�Þ. The crucial property we need is that TPCP maps are contractive with relation to the
trace-norm (this can directly be proven by considering the Neumark representation of a TPCP map
as a unitary in a larger space): Trj$ðXÞj � TrjXj. It follows that

Trj�½k� � Y½k�j ¼ Trj$k �½kþ1� � Y½kþ1�P
� �

j

� Trj�½kþ1� � Y½kþ1�Pj

� Trj�½kþ1� � Y½kþ1�j þ Trj�½kþ1�ðI� PÞj:
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Note that the last term in the sum is given exactly by
P2N=2

�¼Dþ1 

½kþ1��. The theorem now follows

immediately by recursion and by observing that h Dj Di� 1 by similar arguments. œ

The implications of this result are very strong: it shows that for systems for which the ��(D)
decay fast in D, there exist MPSs with small D which will not only reproduce well the local
correlations (such as energy) but also all of the non-local properties (such as correlation length).
The following lemma now relates the derived bound to the Renyi entropies of the reduced density
operators, through which one can make the connection to the ground states of one-dimensional
Hamiltonians. The Renyi entropies of � are defined as

S�ð�Þ ¼
1

1� �
log Tr ��ð Þ;

and we consider 05 �5 1. We denote as before �ðDÞ ¼
P1

i¼Dþ1 
i with 
i the non-increasingly
ordered eigenvalues of �. Then we have the following.

Lemma B2: Given a density operator �. If 05�5 1, then

logð�ðDÞÞ �
1� �

�
S�ð�Þ � log

D

1� �

� �
:

Proof: Let us first characterize the probability distribution that has maximal possible weight in its
tail (i.e. p ¼

P1
i¼Dþ1 pi) for a given Renyi entropy. Introducing a free parameter 05 h� (1� p)/D,

such a probability distribution must be of the form

p1 ¼ 1� p� ðD� 1Þh

h ¼ p2 ¼ p3 ¼ � � � pDþp=h

pDþp=hþ1; � � � p1 ¼ 0

because this distribution majorizes all other distributions with given p, D, pD (Renyi-entropies are
Schur-convex functions). For a given p, D, h, it holds thatX

i

p�i ¼ ð1� p� ðD� 1ÞhÞ� þ ðD� 1þ p=hÞh�

	 Dh� þ ph��1:

Minimizing this expression with relation to h, we obtainX
i

p�i 	 ðD
1��p�Þ=ðð1� �Þ1����Þ:

Denoting S�( p, D) the minimal possible entropy for given p, D, we obtain

S�ðp;DÞ 	
1

1� �
log

D1��p�

ð1� �Þ1����

� �
and, hence,

p � exp
1� �

�
S�ðp;DÞ � log

D

1� �

� �� �
:

The proof now follows by replacing S�(p, D) by S�(�). œ

This lemma is very interesting in the light of the fact that in the case of critical systems, arguably
the hardest to simulate (for non-critical systems, the renormalization group flow is expected
to increase the Renyi entropies in the UV direction; the corresponding fixed point corresponds
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to a critical system whose entropy thus upper bounds that of the non-critical system), the
Renyi-entropy of a contiguous block of L spins scales as [26,37,140,141]

S�ð�LÞ ’
cþ �c

12
1þ

1

�

� �
logðLÞ ðB2Þ

for all �4 0; here c is the central charge. The fact that the eigenvalues of �L decay fast has previously
been identified as a indication of the validity of the DMRG approach [140]. The truncation error
[2,4], which has been used in the DMRG community as a check for convergence, is essentially given
by �(D)� �(2D) and therefore indeed gives a good idea of the error in a simulation.

Let us investigate how the computational effort to simulate such critical systems scales as
a function of the length N¼ 2L of the chain. Let us therefore consider the Hamiltonian associated
to a critical system, but restrict it to 2L sites. The entropy of a half chain (we consider the
ground state j exi of the finite system) will typically scale as in equation (B2) but with an extra term
that scales as 1/N. Suppose that we want to enforce that jk exi� j Dik

2
� �0/L with �0 independent

of L. (We choose the 1/L dependence so as to ensure that the absolute error in extensive observables
does not grow.) Denote the minimal D needed to obtain this precision for a chain of length 2L by
DL. Following Lemma B1 and the fact that the entropy of all possible contiguous blocks reaches
its maximum in the middle of the chain (hence, p� �0/L

2 is certainly sufficient), Lemmas B.1 and
B.2 combined yield

DL � cst
L2

ð1� �Þ�0

� ��=ð1��Þ
Lððcþ �cÞ=12Þðð1þ�Þ=�Þ:

This shows that D only has to scale polynomially in L to keep the accuracy �0/L fixed; in other
words, there exists an efficient scalable representation for ground states of critical systems
(and, hence, also of non-critical systems) in terms of MPSs. Such a strong result could not have been
anticipated from just performing simulations. Furthermore, Hastings has proven that ground states
of gapped systems always obey a strict area law [142]. This implies that the ground state of any
gapped spin chain is indeed well approximated by a MPS. For a more detailed description of the
relations between area laws and approximability, we refer the interested reader to [143].

Now what about the complexity of finding this optimal MPS? It has been observed that DMRG
converges exponentially fast to the ground state with a relaxation time proportional to the inverse of
the gap � of the system [4]. For translational-invariant critical systems, this gap seems to close only
polynomially. As we have proven that D also only have to scale polynomially, the complexity of
deciding whether the ground-state energy of one-dimensional quantum systems is below a certain
value is certainly in NP (as it can be checked efficiently if Merlin gives the MPS description).
The problem would even be in P if the following conditions are met: (1) the �-entropy of blocks in
the exact ground state grow at most logarithmically with the size of the block for some �5 1; (2) the
gap of the system scales at most polynomially with the system size; (3) given a gap that obeys
condition (2), there exists an efficient DMRG-like algorithm that converges to the global minimum.
As the VMPS approach [10] is essentially an ALS method of solving a non-convex problem which is
at worst NP-hard [81,82], there is a priori no guarantee that it will converge to the global optimum,
although the occurrence of local minima seems to be unlikely [4]. Surprisingly, one can indeed
construct a family of Hamiltonians with nearest-neighbour interactions on a line for which the
ground state is an exact MPS with polynomial D, but for which it is an NP-complete problem to find
it [144]. As the corresponding Hamiltonian has a gap that closes polynomially in the size of the
system, the only hope of VMPS/DMRG methods being in P is in the case of gapped systems. (Let us
specify an alternative method which should in principle not become trapped in local minima in the
case of gapped systems. As in the adiabatic theorem, we can construct a time-dependent
Hamiltonian H(t) with H(0) trivial and H(1) the Hamiltonian to simulate; if we discretize this
evolution in a number of steps that grows polynomially in the inverse gap, the adiabatic theorem
guarantees that we will end up in the ground state of H(1) if we can follow the ground state of H(t)
closely (see, e.g. [145] for a nice application in the context of quantum simulators). The idea is to
make D of j D(t)i large enough such as to follow the ground state j (t)i close enough in such
a way that the optimization is always convex around the global optimum within the
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domain jk�i� j (t)ik� �. As we are simulating this classically, we could even perform imaginary
time evolution over a longer time during each step.)

Appendix C: Matlab code

Finally, we would like to give an idea of how to program the variational methods explained in the
previous Sections. We present two functions, one for the calculation of ground and first excited
states and one for the reduction of the virtual dimension of MPSs. We demonstrate these functions
by means of the antiferromagnetic Heisenberg chain.

C.1. Minimization of the energy

The function minimizeE optimizes the parameters of a MPS in such a way that the expectation value
with respect to a given Hamiltonian tends to a minimum. The function expects this Hamiltonian
to be defined in a M�N cell hset, where N denotes the number of sites and M the number of terms
in the Hamiltonian. Assuming that the Hamiltonian is of the form

H ¼
XM
m¼1

hð1Þm � � � � � hðNÞm ;

the element hset{m, j} is equal to hðjÞm . Further arguments are the virtual dimension of the resulting
MPS, D, and the expected accuracy of the energy, precision.

Output arguments are the optimized energy E and corresponding MPS mps. The MPS is stored
as a 1�N cell, each entry corresponding to one matrix.

Optionally, a MPS mpsB can be specified as an argument to which the resulting state shall be
orthogonal. This is especially useful for calculating the first excited state.

function [E,mps]¼minimizeE(hset,D,precision,mpsB)

[M,N]¼size(hset);
d¼size(hset{1,1},1);
mps¼createrandommps(N,D,d);
mps¼prepare(mps);

% storage-initialization
Hstorage¼initHstorage(mps,hset,d);
if �isempty(mpsB),Cstorage¼initCstorage(mps,[],mpsB,N); end
P¼[];

% optimization sweeps
while 1
Evalues¼[];

% ********* cycle 1: j!jþ1 (from 1 to N�1)*********
for j¼1:(N�1)
% projector-calculation
if �isempty(mpsB)
B¼mpsB{j};
Cleft¼Cstorage{j};
Cright¼Cstorage{jþ1};
P¼calcprojector_onesite(B,Cleft,Cright);

end

% optimization
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Hleft¼Hstorage(:,j);
Hright¼Hstorage(:,jþ1);
hsetj¼hset(:,j);
[A,E]¼minimizeE_onesite(hsetj,Hleft,Hright,P);
[A,U]¼prepare_onesite(A,’lr’);
mps{j}¼A;
Evalues¼[Evalues,E];

% storage-update
for m¼1:M
h¼reshape(hset{m,j},[1,1,d,d]);
Hstorage{m,jþ1}¼updateCleft(Hleft{m},A,h,A);

end
if �isempty(mpsB)
Cstorage{jþ1}¼updateCleft(Cleft,A,[],B);

end
end

% ****************** cycle 2: j!j�1 (from N to 2) ******************
for j¼N:(-1):2
% projector-calculation
if �isempty(mpsB)
B¼mpsB{j};
Cleft¼Cstorage{j};
Cright¼Cstorage{jþ1};
P¼calcprojector_onesite(B,Cleft,Cright);

end

% minimization
Hleft¼Hstorage(:,j);
Hright¼Hstorage(:,jþ1);
hsetj¼hset(:,j);
[A,E]¼minimizeE_onesite(hsetj,Hleft,Hright,P);
[A,U]¼prepare_onesite(A,’rl’);
mps{j}¼A;
Evalues¼[Evalues,E];

% storage-update
for m¼1:M
h¼reshape(hset{m,j},[1,1,d,d]);
Hstorage{m,j}¼updateCright(Hright{m},A,h,A);

end

if �isempty(mpsB)
Cstorage{j}¼updateCright(Cright,A,[],B);

end

end

if (std(Evalues)/abs(mean(Evalues))5precision)
mps{1}¼contracttensors(mps{1},3,2,U,2,1);
mps{1}¼permute(mps{1},[1,3,2]);
break;

end

end

% ******************** one-site optimization ***********************

function [A,E]¼minimizeE_onesite(hsetj,Hleft,Hright,P)
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DAl¼size(Hleft{1},1);
DAr¼size(Hright{1},1);
d¼size(hsetj{1},1);

% calculation of Heff
M¼size(hsetj,1);

Heff¼0;
for m¼1:M
Heffm¼contracttensors(Hleft{m},3,2,Hright{m},3,2);
Heffm¼contracttensors(Heffm,5,5,hsetj{m},3,3);
Heffm¼permute(Heffm,[1,3,5,2,4,6]);
Heffm¼reshape(Heffm,[DAl*DAr*d,DAl*DAr*d]);
Heff¼HeffþHeffm;

end

% projection on orthogonal subspace
if �isempty(P),Heff¼P’*Heff*P; end

% optimization
options.disp¼0;
[A,E]¼eigs(Heff,1,’sr’,options);
if �isempty(P),A¼P*A; end
A¼reshape(A,[DAl,DAr,d]);

function [P]¼calcprojector_onesite(B,Cleft,Cright)

y¼contracttensors(Cleft,3,3,B,3,1);
y¼contracttensors(y,4,[2,3],Cright,3,[2,3]);
y¼permute(y,[1,3,2]);
y¼reshape(y,[prod(size(y)),1]);

Q¼orth([y,eye(size(y,1))]);
P¼Q(:,2:end);

C.2. Time evolution

The function reduceD forms the basis for the simulation of a time evolution. It multiplies a given
MPS with a given MPO and reduces the virtual dimension of the resulting state, that is, it searches a
MPS with reduced virtual dimension and minimal distance to the original state. The MPS and the
MPO are specified in the arguments mpsA and mpoX. As before, they are represented by a cell with
entries identifying the matrices. The reduced virtual dimension is specified in the argument DB. The
argument precision defines the convergence condition: if fluctuations in the distance are less than
precision, the optimization is assumed to be finished.

The output argument is the optimized MPS mpsB with virtual dimension DB.

function mpsB¼reduceD(mpsA,mpoX,DB,precision)

N¼length(mpsA);
d¼size(mpsA{1},3);
mpsB¼createrandommps(N,DB,d);
mpsB¼prepare(mpsB);
% initialization of the storage
Cstorage¼initCstorage(mpsB,mpoX,mpsA,N);

% optimization sweeps
while 1
Kvalues¼[];
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% ****************** cycle 1: j!jþ1 (from 1 to N�1) ****************
for j¼1:(N�1)
% optimization
Cleft¼Cstorage{j};
Cright¼Cstorage{jþ1};
A¼mpsA{j}; X¼mpoX{j};
[B,K]¼reduceD2_onesite(A,X,Cleft,Cright);
[B,U]¼prepare_onesite(B,’lr’);
mpsB{j}¼B;
Kvalues¼[Kvalues,K];
% storage-update
Cstorage{jþ1}¼updateCleft(Cleft,B,X,A);

end

% ****************** cycle 2: j!j�1 (from N to 2) ******************
for j¼N:(-1):2
% optimization
Cleft¼Cstorage{j};
Cright¼Cstorage{jþ1};
A¼mpsA{j}; X¼mpoX{j};
[B,K]¼reduceD2_onesite(A,X,Cleft,Cright);
[B,U]¼prepare_onesite(B,’rl’);
mpsB{j}¼B;
Kvalues¼[Kvalues,K];

% storage-update
Cstorage{j}¼updateCright(Cright,B,X,A);

end

if std(Kvalues)/abs(mean(Kvalues)) lt;precision
mpsB{1}¼contracttensors(mpsB{1},3,2,U,2,1);
mpsB{1}¼permute(mpsB{1},[1,3,2]);
break;

end

end

% ******************** one-site optimization **********************

function [B,K]¼reduceD2_onesite(A,X,Cleft,Cright)

Cleft¼contracttensors(Cleft,3,3,A,3,1);
Cleft¼contracttensors(Cleft,4,[2,4],X,4,[1,4]);

B¼contracttensors(Cleft,4,[3,2],Cright,3,[2,3]);
B¼permute(B,[1,3,2]);

b¼reshape(B,[prod(size(B)),1]);
K¼-b’*b;

C.3. Auxiliary functions

The previous two functions depend on several auxiliary functions that are printed in this Section.

. Gauge transformation that prepares the MPS mpsB in such a form that Neff is equal to the
identity for the first spin (see Section 3.3):

function [mps]¼prepare(mps)
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N¼length(mps);

for i¼N:-1:2
[mps{i},U]¼prepare_onesite(mps{i},’rl’);
mps{i-1}¼contracttensors(mps{i-1},3,2,U,2,1);
mps{i-1}¼permute(mps{i-1},[1,3,2]);

end

function [B,U,DB]¼prepare_onesite(A,direction)

[D1,D2,d]¼size(A);
switch direction
case ’lr’
A¼permute(A,[3,1,2]); A¼reshape(A,[d*D1,D2]);
[B,S,U]¼svd2(A); DB¼size(S,1);
B¼reshape(B,[d,D1,DB]); B¼permute(B,[2,3,1]);
U¼S*U;

case ’rl’
A¼permute(A,[1,3,2]); A¼reshape(A,[D1,d*D2]);
[U,S,B]¼svd2(A); DB¼size(S,1);
B¼reshape(B,[DB,d,D2]); B¼permute(B,[1,3,2]);
U¼U*S;

end

. Initialization of storages:

function [Hstorage]¼initHstorage(mps,hset,d)
[M,N]¼size(hset);
Hstorage¼cell(M,Nþ1);
for m¼1:M,Hstorage{m,1}¼1; Hstorage{m,Nþ1}¼1; end
for j¼N:-1:2
for m¼1:M
h¼reshape(hset{m,j},[1,1,d,d]);
Hstorage{m,j}¼updateCright(Hstorage
{m,jþ1},mps{j},h,mps{j});

end

end

function [Cstorage]¼initCstorage(mpsB,mpoX,mpsA,N)

Cstorage¼cell(1,Nþ1);
Cstorage{1}¼1;
Cstorage{Nþ1}¼1;
for i¼N:-1:2
if isempty(mpoX),X¼[]; else X¼mpoX{i}; end
Cstorage{i}¼updateCright(Cstorage
{iþ1},mpsB{i},X,mpsA{i});

end

function [Cleft]¼updateCleft(Cleft,B,X,A)

if isempty(X),X¼reshape(eye(size(B,3)),[1,1,2,2]); end

Cleft¼contracttensors(A,3,1,Cleft,3,3);
Cleft¼contracttensors(X,4,[1,4],Cleft,4,[4,2]);
Cleft¼contracttensors(conj(B),3,[1,3],Cleft,4,[4,2]);

function [Cright]¼updateCright(Cright,B,X,A)

if isempty(X),X¼reshape(eye(size(B,3)),[1,1,2,2]); end
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Cright¼contracttensors(A,3,2,Cright,3,3);
Cright¼contracttensors(X,4,[2,4],Cright,4,[4,2]);
Cright¼contracttensors(conj(B),3,[2,3],Cright,4,[4,2]);

. Creation of a random MPS:

function [mps]¼createrandommps(N,D,d)
mps¼cell(1,N);
mps{1}¼randn(1,D,d)/sqrt(D);
mps{N}¼randn(D,1,d)/sqrt(D);
for i¼2:(N�1)
mps{i}¼randn(D,D,d)/sqrt(D);

end

. Expectation value of the MPS mps with respect to the operator defined in hset:

function [e,n]¼expectationvalue(mps,hset)

[M,N]¼size(hset);
d¼size(mps{1},3);

% expectation value
e¼0;
for m¼1:M

em¼1;
for j¼N:-1:1
h¼hset{m,j};
h¼reshape(h,[1,1,d,d]);
em¼updateCright(em,mps{j},h,mps{j});

end
e¼eþem;

end

% norm
n¼1;
X¼eye(d); X¼reshape(X,[1,1,d,d]);
for j¼N:-1:1
n¼updateCright(n,mps{j},X,mps{j});

end

e¼e/n;

. Contraction of index indX of tensor X with index indY of tensor Y (X and Y have a number
of indices corresponding to numindX and numindY, respectively):

function [X,numindX]¼contracttensors
(X,numindX,indX,Y,numindY,indY)

Xsize¼ones(1,numindX); Xsize(1:length(size(X)))¼size(X);
Ysize¼ones(1,numindY); Ysize(1:length(size(Y)))¼size(Y);

indXl¼1:numindX; indXl(indX)¼[];
indYr¼1:numindY; indYr(indY)¼[];

sizeXl¼Xsize(indXl);
sizeX¼Xsize(indX);
sizeYr¼Ysize(indYr);
sizeY¼Ysize(indY);

if prod(sizeX)�¼prod(sizeY)
error(’indX and indY are not of same dimension.’);
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end

if isempty(indYr)
if isempty(indXl)

X¼permute(X,[indX]);
X¼reshape(X,[1,prod(sizeX)]);

Y¼permute(Y,[indY]);
Y¼reshape(Y,[prod(sizeY),1]);
X¼X*Y;
Xsize¼1;

return;

else
X¼permute(X,[indXl,indX]);
X¼reshape(X,[prod(sizeXl),prod(sizeX)]);
Y¼permute(Y,[indY]);
Y¼reshape(Y,[prod(sizeY),1]);

X¼X*Y;
Xsize¼Xsize(indXl);

X¼reshape(X,[Xsize,1]);

return
end

end

X¼permute(X,[indXl,indX]);
X¼reshape(X,[prod(sizeXl),prod(sizeX)]);

Y¼permute(Y,[indY,indYr]);
Y¼reshape(Y,[prod(sizeY),prod(sizeYr)]);

X¼X*Y;
Xsize¼[Xsize(indXl),Ysize(indYr)];
numindX¼length(Xsize);
X¼reshape(X,[Xsize,1]);

. Economical SVD:

function [U,S,V]¼svd2(T)

[m,n]¼size(T);
if m gt;¼n,[U,S,V]¼svd(T,0); else [V,S,U]¼svd(T’,0); end
V¼V’;

C.4. Examples

As a first example, we show how to calculate the ground state and the first excited state of the
antiferromagnetic Heisenberg chain using the method minimizeE from before. In this example, the
chain length N is assumed to be 10 and the virtual dimension D is set to 5.

N¼10;
D¼5;
precision¼1e-5;

% Heisenberg Hamiltonian
M¼3*(N�1);
hset¼cell(M,N);
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sx¼[0,1;1,0]; sy¼[0,-1i;1i,0]; sz¼[1,0;0,-1]; id¼eye(2);
for m¼1:M,for j¼1:N,hset{m,j}¼id; end; end
for j¼1:(N�1)

hset{3*(j�1)þ1,j}¼sx; hset{3*(j�1)þ1,jþ1}¼sx;
hset{3*(j�1)þ2,j}¼sy; hset{3*(j�1)þ2,jþ1}¼sy;
hset{3*(j�1)þ3,j}¼sz; hset{3*(j�1)þ3,jþ1}¼sz;

end

% ground state energy
randn(’state’,0)
[E0,mps0]¼minimizeE(hset,D,precision,[]);
fprintf(’E0¼ %g\n’,E0);

% first excited state
[E1,mps1]¼minimizeE(hset,D,precision,mps0);
fprintf(’E1¼ %g\n’,E1);

As a second example, we focus on the real time evolution with respect to the Heisenberg
antiferromagnet. The starting state is a product state with all spins pointing in the z-direction except
for the central spin which is flipped. We evolve the state with the method reduceD and
calculate at each step the magnetization mz of the central spin. As before, N is equal to 10 and D is set
to 5.

N¼10;
D¼5;
precision¼1e-5;
dt¼0.03;
jflipped¼5;
% magnetization in z-direction
oset¼cell(1,N);

sx¼[0,1;1,0]; sy¼[0,-1i;1i,0]; sz¼[1,0;0,-1]; id¼eye(2);
for j¼1:N,oset{1,j}¼id; end;
oset{1,jflipped}¼sz;

% time evolution operator
h¼kron(sx,sx)þkron(sy,sy)þkron(sz,sz);
w¼expm(-1i*dt*h);
w¼reshape(w,[2,2,2,2]); w¼permute(w,[1,3,2,4]);
w¼reshape(w,[4,4]);
[U,S,V]¼svd2(w); eta¼size(S,1);
U¼U*sqrt(S); V¼sqrt(S)*V;
U¼reshape(U,[2,2,eta]); U¼permute(U,[4,3,2,1]);
V¼reshape(V,[eta,2,2]); V¼permute(V,[1,4,3,2]);
I¼reshape(id,[1,1,2,2]);
mpo_even¼cell(1,N);
mpo_odd¼cell(1,N);
for j¼1:N,mpo_even{j}¼I; mpo_odd{j}¼I; end
for j¼1:2:(N�1),mpo_odd{j}¼U; mpo_odd{jþ1}¼V; end
for j¼2:2:(N�1),mpo_even{j}¼U; mpo_even{jþ1}¼V; end

% starting state (one spin flipped)
mps0¼cell(1,N);
for j¼1:N

if j¼¼jflipped,state¼[0; 1]; else state¼[1; 0]; end
mps0{j}¼reshape(state,[1,1,2]);

end

% time evolution
mps¼mps0;
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mzvalues¼[];
for step¼1:50

fprintf(’Step %2d: ’,step);
[mps,K]¼reduceD(mps,mpo_even,D,precision);
[mps,K]¼reduceD(mps,mpo_odd,D,precision);
mz¼expectationvalue(mps,oset);
mzvalues¼[mzvalues,mz];
fprintf(’mz¼%g\n’,mz);

end

A comparison of the results produced by these examples to exact calculations is shown in
Figure C1. It can be seen that already for moderate values of D the precision is very good.

(a) (b)

Figure C1. (a) Error of the variational method as a function of the virtual dimension D for N¼ 10
spins. The blue triangles represent the ground state, the red triangles the first excited state. (b) Time
evolution as described in the second example. The magnetization of the central spin is represented by
blue triangles and the magnetization of the spin adjacent to the central spin by red triangles. For
comparison, exact results are also included (black lines). See online version for colour.
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