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The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties
such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most
beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this
paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in
the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded
by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit
building up the many-body quantum state. In our derivation we review how the different “solution ingredients” of
the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation,
braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built
in this way allows for a clear understanding of several properties of the model. In particular, we show how the
fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector.
We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the
pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond
dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices,
spins, and dimensions.
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I. INTRODUCTION

In the study of strongly correlated systems and complex
materials, one usually boils everything down to minimal,
simple models, in order to understand basic phenomena. Such
models are greatly simplified, but still, most of the time they
are simply too hard to understand. This is the reason why we
need clever numerical simulation methods, of which there are
plenty of well-known examples. But sometimes we are lucky,
and we can understand properties of some of these models
exactly. These are the so-called exactly solvable models, which
have a long-standing tradition in statistical mechanics. Just to
name some examples, Onsager’s solution of the 2d classical
Ising model [1] was a monumental step forward in theoretical
physics and mathematics. Many important developments lead-
ing to exact solutions of classical statistical models were also
due to Baxter [2]. From the quantum-mechanical perspective
these results were also useful, given the correspondence
between classical models in d spatial dimensions and quantum
models in (d − 1) spatial dimensions [3]. Another milestone
development in the field of exactly solvable models was
the Bethe ansatz [4], and its connection to the Yang-Baxter
equations [5]. Many important theorems were also due to
Lieb, Schultz, and Mattis [6]. Interesting families of exactly
solvable models have been analyzed also by other techniques
in the context of quantum many-body systems. For instance,
the exact solution of the XY [7] and AKLT [8] quantum spin
chains (and their generalizations [9]) allowed a more precise
understanding of quantum entanglement in condensed matter
systems. Another example is the family of string-net mod-
els [10], which account for all possible nonchiral topological
phases of matter, and which correspond to renormalization
group fixed points describing lattice gauge theories. Free
boson and fermion lattice models are also exactly solvable,
which has underpinned recent research in, e.g., topological
insulators [11]. Finally, in the realm of quantum field theory,

conformal field theories in 1+1 dimensions are also exactly
solvable [12], which turned out to be particularly useful also
in the study of quantum many-body entanglement [13].

In this context, Kitaev proposed another type of exactly
solvable model in 2d which is nowadays commonly known as
the Kitaev honeycomb model [14]. This is a model of spins-1/2
sitting on the sites of a honeycomb lattice, and interacting via
highly anisotropic nearest-neighbor interactions. The model
can, in fact, be solved exactly in several ways [14–16].
These exact solutions show that there is an Abelian phase,
called the A phase, which hosts Abelian anyons and Z2

topological order, being in the same universality class as the
2d toric code [14]. There is also a quantum phase transition
to the so-called B phase, which is gapless and with Dirac
cones in the dispersion relation. The B phase acquires a
gap if one adds a small perturbation, such as a magnetic
field or a 3-spin interaction. In the presence of such a
perturbation the phase is chiral and quasiparticle excitations
are non-Abelian Ising anyons. These results make this model
a paradigmatic example for studying Abelian, non-Abelian,
chiral, and nonchiral topological phases, as well as quantum
phase transitions between them, in a fully analytic way.
Moreover, from the experimental point of view the model
is relevant in the study of some materials, where one needs
to consider also the presence of competing Heisenberg and/or
Hubbard interactions [17,18]. Such Hamiltonians are dubbed
“Kitaev-Heisenberg” and “Kitaev-Hubbard” models, and since
they are no longer exactly solvable, they have been the subject
of several numerical studies in recent years. The Kitaev
honeycomb model has also been generalized to different
settings while keeping (most of) its exact solvability, e.g.,
to other 2d lattices using Clifford matrices instead of spin
operators [19], 3d lattices [20], and other values of the local
spins [21]. Additionally, and from the perspective of quantum
information theory, it was recently proven that the ground
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state of the model always obeys the so-called area law for the
entanglement entropy of a block [22,23].

Independently of the above developments on exactly
solvable models, tensor networks (TN) [24] have emerged
recently as the natural language based on entanglement
to understand quantum many-body states of matter. Many
successful numerical algorithms have been developed using
TNs, e.g., density matrix renormalization group (DMRG) [25]
and time-evolving block decimation (TEBD) [26] in 1d,
projected entangled pair states (PEPS) in 2d [27], multiscale
entanglement renormalization ansatz (MERA) for critical
systems [28], and many, many more [24]. But independently
of numerics, TNs are also a very valuable tool from the
analytical perspective, since they offer a unique visual picture
of how quantum correlations build up quantum states of matter.
In fact, exactly solvable models usually have some exact
TN structure behind, which accounts for the organization of
correlations in the system. This, in turn, often provides useful
insights into other nontrivial properties. There are, in fact,
many well-known examples of this. For instance, string-net
models have an exact TN representation of all their eigenstates
in terms of PEPS and MERA [29], which includes the toric
code and the quantum double models as particular cases [30].
The Bethe anstaz also has a TN structure [31]. Quadratic
fermionic homogeneous Hamiltonians can be diagonalized
via the fast Fourier transformation, which can be represented
by the so-called spectral TN [32]. Also, the ground state of
the XY model can be written in terms of a 2d TN, which
can be approximated by a matrix product state (MPS) with
exponentially good accuracy in the gapped phases [33].

On top of all this, during the last 3 years there has been
a boom in the study of chiral topological phases with TNs.
While nonchiral topological phases in 2d admit a natural TN
description (e.g., the string-net models mentioned above), the
situation was not so clear for chiral topological phases, where
chiral modes appear at the boundaries of the state. And this
is relevant, since these phases are the ones entering in the
description of very important strongly correlated systems,
such as fractional quantum Hall states [34] and topological
insulators [11]. In this context, it was recently shown that one
can build toy-model TN wave functions with chiral topological
order using 2d PEPS, with the caveat that they also have
infinite correlation length and are therefore the ground states
of either (i) a gapless local Hamiltonian, or (ii) a gapped
Hamiltonian with long-range interactions. Some of these wave
functions were explicitly constructed for fermions, with parent
Hamiltonians having Fermi points in momentum space and a
quadratic dispersion relation for quasiparticles [35].

Given all the above, we have then the following natural
questions:

(1) What is the TN structure of the eigenstates of the Kitaev
model, and what can be understood from it?

(2) Can this TN be written, perhaps approximately, as a 2d
PEPS with finite bond dimension?

Concerning the first question, we know that such a structure
must exist, though it is not unique because different ways
of solving the model will produce different TN structures
for the eigenstates. Nevertheless, no matter which way of
solving the model one chooses, finding such TN structure
would help in better understanding the properties of the model

and its generalizations. As for the second question, we expect
this to be true at least close to the toric code regime (in
the thermodynamic limit), where we know there is an exact
PEPS representation. But the fact that the area law for the
entanglement entropy is always satisfied is giving us a hint
that, perhaps, this may be possible in the whole parameter
range of the model. In the B phase, the PEPS constructed in
this way would be a practical (and perhaps approximate) first
example of a 2d PEPS with both infinite correlation length
and Dirac cones in the dispersion relation of quasiparticles
that becomes chiral in the presence of a small perturbation. If
however such a construction is not possible, then this would be
the first practical example of an area-law state that cannot be
approximated by a 2d PEPS with finite bond dimension, which
even if quite uncommon may also exist in principle [36].

In this paper we fully answer the first question above, and
partially answer the second. Specifically, we first provide an
explicit and exact unitary 3d TN construction for the eigen-
states of the Kitaev honeycomb model in the thermodynamic
limit, and show how some well-known properties of the model
can be derived straightforwardly from it, such as fidelity
diagrams at zero and finite temperature. Then, we discuss the
pros and cons of contracting such a 3d TN down to a 2d PEPS
with finite bond dimension [37]. In order to find the exact 3d
TN structure we follow step-by-step a possible way of solving
the Kitaev honeycomb model, and understand at each step how
everything can be translated into the language of TNs. This
may sound easy at first sight, but there are in fact derivations
that turn out to be quite nontrivial, and which will for sure be
useful for further applications of TNs in other contexts. Here
we will focus, in particular, on the ground state of the system,
but our 3d construction can be easily generalized to arbitrary
eigenstates, as we shall also explain. Some of the properties of
this 3d unitary TN will also be discussed, such as the existence
of a causal cone. Moreover, we shall also prove that the ground
state of the (fermionized) Kitaev honeycomb model cannot be
represented exactly by a Gaussian fermionic 2d PEPS with
finite bond dimension, leaving the door open for other types
of (perhaps approximate) PEPS. To the best of our knowledge,
this work provides also the first explicit TN construction for
the eigenstates of this paradigmatic exactly-solvable model of
quantum matter.

This paper is organized as follows. In Sec. II we review
some background material, namely, (i) Kitaev’s honeycomb
model, an exact solution using a Jordan-Wigner transfor-
mation, and the properties of its phase diagram; (ii) brief
basics on TNs. In Sec. III we construct the 3d unitary TN
for the ground state of the model, and explain how this can
be generalized to other eigenstates. We also explain here
some of the basic properties of this TN construction, showing
that it can be understood as a quantum circuit building up
the quantum state (and hence has causal cones). In Sec. IV
we show our applications of this 3d TN to derive (i) the
ground-state fidelity diagram, (ii) the thermal fidelity diagram
in the vortex-free sector, and (iii) properties of the two-point
correlation functions. In Sec. V we discuss the possibility of
approximating our 3d TN by a 2d PEPS with finite bond
dimension in the whole parameter range, together with its
potential implications. Finally, in Sec. VI we wrap up our
conclusions, and provide some intuitions for further work
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FIG. 1. (a) Original honeycomb lattice, and (b) topologically
equivalent brick wall lattice. The nearest-neighbor spin-spin inter-
action depends on the orientation of the bonds.

along this direction. In Appendix we explain a couple of
technicalities concerning the calculation of the finite-size
Hamiltonian that we use in our numerical checks, especially
concerning the Fourier transformation and the boundary terms
coming from the Jordan-Wigner transformation.

II. BACKGROUND MATERIAL

A. The Kitaev honeycomb model

1. Hamiltonian

The Kitaev honeycomb model, originally introduced by
Kitaev in 2006 [14], describes a spin system with spins-1/2
at the sites of a two-dimensional honeycomb lattice. This
lattice has connectivity three, which means that each site is
connected to three nearest neighbors. Additionally, the lattice
is bi-colorable, see Fig. 1, since it can be understood in terms
of two overlapping triangular sublattices. The lattice, made
of hexagons, is also topologically equivalent to a brick wall
lattice. Some of the derivations in this paper are easier to
visualize in this brick wall picture, so from now on we will
stick to it.

The model is defined by a nearest-neighbor interaction
between the spins that depends on the bond orientation. More
specifically, for the three different types of bonds x,y, and

z (see Fig. 1) one has respectively XX,YY , and ZZ Pauli
interactions. The model is thus described by the Hamiltonian

Ĥ = −Jx

∑
x links

σ̂ x
i σ̂ x

j − Jy

∑
y links

σ̂
y

i σ̂
y

j − Jz

∑
z links

σ̂ z
i σ̂ z

j , (1)

with σ̂ α
i the α-Pauli matrix at site i. The physics of this

Hamiltonian is symmetric with respect to permutations of the
coupling strengths Jx,Jy , and Jz. As we shall review later,
this Hamiltonian offers a variety of interesting phenomena,
including different topological phases supporting both Abelian
and non-Abelian anyons. The fact that it can host non-Abelian
anyons has made this model particularly interesting for
topological quantum computing [38].

2. Exact solution

The model can be solved exactly using different techniques.
For instance, in the original proposal by Kitaev the model was
mapped to a fermionic Hamiltonian with redundant degrees
of freedom that were subsequently projected out [14]. It
is however possible to get around this projection by using
a Jordan-Wigner transformation [16]. Another possibility
involves a mapping to hard-core bosons [15]. For the work in
this paper we have chosen the second of these options, namely,
the exact solution through a Jordan-Wigner transformation. We
will see that this solution can be very neatly understood with
the TN language. But before we do this, let us first review the
formal solution of the model.

(i) Conserved quantities. An important feature of the Kitaev
honeycomb model is the presence of infinitely many conserved
quantities, which is related to the fact that the model can
be fully diagonalized exactly. Those conserved quantities are
associated with the plaquettes p of the lattice. For every
plaquette there is an operator B̂p that commutes with the
Hamiltonian. Following Fig. 2, this operator B̂p is defined
as a product of Pauli matrices around p, and is given by

B̂p = σ̂
y

1 σ̂ z
2 σ̂ x

3 σ̂
y

4 σ̂ z
5 σ̂ x

6 . (2)

It is easy to verify that the B̂p operators commute with the
Hamiltonian, which implies that they are conserved quantities,

FIG. 2. A plaquette of the honeycomb lattice. The conserved
quantity B̂p is constructed as a product of Pauli matrices at every
site, where the specific matrix is given by the type of “outgoing”
bond.
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FIG. 3. String associated with the ordering of fermionic modes
in the Jordan-Wigner transformation of Eq. (4). Boundary terms can
be neglected in the thermodynamic limit.

as well as among themselves:

[Ĥ ,B̂p] = 0 ∀p, [B̂p,B̂p′] = 0 ∀p,p′. (3)

Since B̂2
p = 1, the eigenvalues of these plaquette operators can

only take the values ±1.
(ii) Jordan-Wigner transformation. Let us now label each

site as i,j , where i is the column and j the row in the brick
wall lattice representation. With this notation, we now define
the following Jordan-Wigner transformation acting on all the
spins of the 2d lattice:

σ̂+
i,j = 2

⎛
⎝∏

j ′<j

∏
i ′

σ̂ z
i ′,j ′

⎞
⎠(∏

i ′<i

σ̂ z
i ′,j

)
â
†
i,j ,

σ̂−
i,j = 2

⎛
⎝∏

j ′<j

∏
i ′

σ̂ z
i ′,j ′

⎞
⎠(∏

i ′<i

σ̂ z
i ′,j

)
âi,j , (4)

σ̂ z
i,j = 2â

†
i,j âi,j − 1.

Here the spin ladder operators are defined in the usual way:
σ̂± = (σ̂ x ± iσ̂ y). The string for the ordering of fermionic
modes in the Jordan-Wigner transformation is shown in Fig. 3.
The different terms in the Hamiltonian of Eq. (1) transform
then in the following way:

σ̂ x
i,j σ̂

x
i+1,j = −(â†

i,j − âi,j )(â†
i+1,j + âi+1,j ),

σ̂
y

i−1,j σ̂
y

i,j = (â†
i−1,j + âi−1,j )(â†

i,j − âi,j ), (5)

σ̂ z
i,j σ̂

z
i,j+1 = (2â

†
i,j âi,j − 1)(2â

†
i,j+1âi,j+1 − 1).

Thus, strings of σ̂ z’s in the Jordan-Wigner only affect
interactions along the x and y bonds, and the resulting
fermionic interactions are local, in the sense that they do not
have any string of operators attached. After this transformation,
the Hamiltonian H reads

Ĥ = + Jx

∑
x links

(â†
i,j − âi,j )(â†

i+1,j + âi+1,j )

− Jy

∑
y links

(â†
i−1,j + âi−1,j )(â†

i,j − âi,j )

− Jz

∑
z links

(2â
†
i,j âi,j − 1)(2â

†
i,j+1âi,j+1 − 1) (6)

with i + j even. The Jx and Jy terms give then quadratic
interactions among spinless Dirac fermions. This is good, since
quadratic fermionic Hamiltonians can be diagonalized exactly
under certain symmetry assumptions such as translation
invariance. The Jz term, however, gives some density-density
interactions which are quartic in the fermionic modes. We
shall see that this quartic term can in fact be further simplified
thanks to the conserved quantities B̂p defined previously.

(iii) Majorana fermions. Let us now introduce two Majo-
rana fermionic operators ĉi,j and d̂i,j at every site of the lattice,
such that

ĉi,j = i(â†
i,j − âi,j ), d̂i,j = â

†
i,j + âi,j , i + j even ≡ ◦;

ĉi,j = â
†
i,j + âi,j , d̂i,j = i(â†

i,j − âi,j ), i + j odd ≡ •.

(7)

The original Dirac fermions on each site can be easily
reconstructed from these Majorana operators, which obey the
usual Majorana relations

ĉ2
i,j = d̂2

i,j = 1,

{ĉi,j ,ĉi ′,j ′ } = {
d̂i,j ,d̂i ′,j ′

} = 2δii ′δjj ′ , (8)

{ĉi,j ,d̂i ′,j ′ } = 0.

Using these Majorana operators, the Hamiltonian can be
rewritten in the following way using pictorial indices that
correspond to the even and odd lattice sites, respectively:

Ĥ = −iJx

∑
x links

ĉ◦ĉ• + iJy

∑
y links

ĉ•ĉ◦ − iJz

∑
z links

(id̂•d̂◦)ĉ•ĉ◦.

(9)
For the subsequent diagonalization, we first rewrite once

again the Hamiltonian using lattice vectors �r1 and �r2, and
vectors �r to label the unit cells. This unit cell consists of one
even and one odd lattice site, and vectors �r1 and �r2 span then
the whole (square) lattice of unit cells; see Fig. 4. The sums
over all x,y, and z links in the Hamiltonian are then translated
into sums over unit cells, so that we get

Ĥ = i
∑

�r
(Jxĉ•,�r ĉ◦,�r+�r1 + Jyĉ•,�r ĉ◦,�r+�r2 − Jzα̂�r ĉ•,�r ĉ◦,�r )

(10)
with the new operator α̂�r = (id̂•,�r d̂◦,�r ) defined on each z link
of the lattice and being labeled by the unit cell vector �r . The
eigenvalues of α̂�r are good quantum numbers, since these

x x

x

x

x

x

y y

y

y

y

y

z z z

z zr1 r2

FIG. 4. Brick wall lattice with unit cell and plane vectors.
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operators commute with the Hamiltonian. This is easy to verify
for the first two terms in Ĥ , because the anticommutation
relation for single fermions leads to commutations for pairs
of fermions. Commutation is also straightforward for the third
term and all lattice sites except site �r , for which we have

[d̂• d̂◦ ĉ• ĉ◦ , d̂• d̂◦] = d̂• d̂◦ĉ• ĉ◦ d̂• d̂◦ − d̂• d̂◦ d̂• d̂◦ ĉ• ĉ◦
= d̂• d̂◦ [ĉ• ĉ◦ , d̂• d̂◦] = 0, (11)

so that commutation holds in all possible cases, and therefore
with the full Hamiltonian.

Therefore, operators Ĥ and α̂�r can be diagonalized in
the same basis. Once a configuration of eigenvalues for all
operators α̂�r is fixed, the model is described by a Hamiltonian
of free Majorana fermions in a static Z2 gauge field related
to the eigenvalue configuration of the α̂�r ’s. The fact that this
generates a static Z2 gauge field is because the α̂�r ’s are related
to the plaquette operators B̂p, which, remember, are conserved
quantities by themselves. In fact, applying the Jordan-Wigner
transformation to B̂p and rewriting the result with the Majorana
fermion operators, one gets

B̂p = (id̂◦,1 d̂◦,3)(id̂•,4 d̂•,6) = α̂61α̂43, (12)

where the subindices refer to the sites in Fig. 2. Therefore, each
plaquette p can be regarded as having an independent vortex
variable that can take the values ±1. A vortex configuration
for the plaquettes corresponds thus to a given configuration of
eigenvalues of the α̂�r ’s. Once this configuration is fixed, the
Hamiltonian in this subspace is a free Majorana Hamiltonian
that can be diagonalized exactly in the translationally invariant
cases by Fourier-transforming the fermionic modes followed
by a Bogoliubov transformation.

Let us now “recouple” the Majorana modes into Dirac
modes. Since the conserved quantities α̂�r live on the z links of
the lattice, we introduce new Dirac fermions on each z link,
defined as follows:

d̂�r = 1
2 (ĉ•,�r − iĉ◦,�r ),

(13)
d̂
†
�r = 1

2 (ĉ•,�r + iĉ◦,�r ).

This yields a model of Dirac fermions on a square lattice with
a site-dependent chemical potential, given by

Ĥ =
∑

�r
Jx(d̂†

�r + d̂�r )
(
d̂
†
�r+�r1

− d̂�r+�r1

)
+Jy(d̂†

�r + d̂�r )
(
d̂
†
�r+�r2

− d̂�r+�r2

) + Jzα�r (2d̂
†
�r d̂�r − 1), (14)

where we have removed the “hat” from α�r to indicate that it is
an eigenvalue of operator α̂�r , and therefore we are writing the

Hamiltonian in a given flux sector (in fact, this is also what
Kitaev calls “removing hats” [14]).

As explained by Kitaev [14], a theorem due to Lieb
implies that the ground state of the model is in the flux-free
sector [39]. This means that, to target the ground state, we
need to fix the eigenvalue of B̂p to +1 for all p. Choosing
the eigenvalues α�r = 1 for all �r is thus the obvious choice (in
fact, all configurations leading to the same vortex sector are
equivalent). Notice, though, that other sectors could also be
considered if necessary by choosing a different pattern for the
quantities α�r .

(iv) Fourier transformation. In the vortex-free sector, the
Hamiltonian is translationally invariant and can be Fourier-
transformed to momentum space in order to be solved. The
Fourier transformation for the Dirac fermions is given by

d̂�r = 1√
N

∑
�k

e+i�k·�r d̂�k,

(15)

d̂
†
�r = 1√

N

∑
�k

e−i�k·�r d̂†
�k .

The resulting Hamiltonian after this transformation is of the
BCS type, and can be written as

Ĥ =
∑

�k

[
ε�kd̂

†
�k d̂�k + 1

2
(i��kd̂

†
�k d̂

†
-�k + H.c.)

]
− JzN,

ε�k = 2[Jz − Jx cos (k1) − Jy cos (k2)], (16)

��k = 2[Jx sin (k1) + Jy sin (k2)].

Using the symmetric property ε�k = ε-�k we can represent it in
the convenient form

Ĥ =
∑

�k

1

2
(d̂†

�k d̂-�k)

(
ε�k i��k−i�∗

�k −ε�k

)(
d̂�k
d̂
†
-�k

)
, (17)

where the central 2 × 2 matrix is simply ε�k · σ z − ��k · σy

for momentum �k, and both ε�k and ��k are trigonometric
polynomials according to Eq. (16).

(v) Bogoliubov transformation. To diagonalize the Hamil-
tonian in the vortex-free sector we implement now the unitary
Bogoliubov transformation

γ̂�k = u�kd̂�k + v�kd̂
†
-�k, (18)

γ̂
†
-�k = −v∗

�k d̂�k + u∗
�k d̂

†
-�k,

where u�k and v�k are complex coefficients satisfying |u�k|2 +
|v�k|2 = 1. The new Hamiltonian is then

Ĥ =
∑

�k

1

2
(γ̂ †

�k γ̂-�k)

(
u�k v�k

−v∗
�k u∗

�k

)(
ε�k i��k

−i�∗
�k −ε�k

)(
u∗

�k −v�k
v∗

�k u�k

)(
γ̂�k
γ̂
†
-�k

)
. (19)

The product of the three 2 × 2 matrices above is

(
ε�k(|u�k|2 − |v�k|2) + i��ku�kv

∗
�k − i��ku

∗
�kv�k −2ε�ku�kv�k + i��ku

2
�k + i��kv

2
�k

−2ε�ku
∗
�kv

∗
�k − i��ku

∗2
�k − i��kv

∗2
�k −(ε�k(|u�k|2 − |v�k|2) + i��ku�kv

∗
�k − i��ku

∗
�kv�k)

)
. (20)
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The Bogoliubov modes that diagonalize the Hamiltonian are
then found by imposing that the nondiagonal terms in the above
matrix vanish. For this, it is convenient to express u�k and v�k as

u�k = eiφ1 cos(θ�k/2), v�k = eiφ2 sin(θ�k/2). (21)

It is sufficient to use only one condition for vanishing off-
diagonal matrix elements, so that we get

−2ε�ku�kv�k + i��ku
2
�k − (−i��k)v2

�k = 0 (22)

and therefore

ε�k cos

(
θ�k
2

)
sin

(
θ�k
2

)
ei(φ1+φ2) + ��k cos2

(
θ�k
2

)
ei(2φ1+ π

2 )

−��k sin2

(
θ�k
2

)
ei(2φ2− π

2 ) = 0, (23)

where the relation φ1 + φ2 = 2φ1 + π/2 = 2φ2 − π/2 must
be fulfilled. Without loss of generality we can choose φ1 = 0
and φ2 = π/2, so that the condition above can be expressed as

tan(θ�k) = ��k
ε�k

. (24)

It is now possible to derive the required expressions for the
parameters u�k and v�k using

|u�k|2 − |v�k|2 = cos(θ�k) = 1√
1 + tan2(θ�k)

= ε�k
E�k

,

(25)

u�kv�k = i

2
sin(θ�k) = i

2
tan(θ�k) cos(θ�k) = i

2

��k
E�k

,

where E�k =
√

ε2
�k + �2

�k is the quasiparticle excitation energy

taken as the positive square root. The parameters then become

u�k =
√

1

2

(
1 + ε�k

E�k

)
v�k = i

√
1

2

(
1 − ε�k

E�k

)
. (26)

Additional properties follow from Eq. (25). In particular, using
the relations E-�k = E�k and �-�k = −��k we see that

u-�kv-�k = − i

2

��k
E�k

. (27)

Therefore, one of the Bogoliubov coefficients needs to be
symmetric while the other one needs to be antisymmetric under
�k → −�k. Here we take

u-�k = u�k, v-�k = −v�k. (28)

This property becomes particularly important for the actual im-
plementation of the Bogoliubov transformation for finite-size
systems, which we will use later in this paper for intermediate
numerical checks. Finally, the obtained coefficients can be
used to express the remaining terms in the Hamiltonian, which
now has the diagonal form

Ĥ =
∑

�k

1

2
(γ̂ †

�k γ̂-�k)

(
E�k 0
0 −E�k

)(
γ̂�k
γ̂
†
-�k

)

=
∑

�k
E�k

(
γ̂
†
�k γ̂�k − 1

2

)
. (29)

J = (0, 0, 1)

J = (1, 0, 0) J = (0, 1, 0)

AZ

AX AY

B

FIG. 5. Phase diagram of the Kitaev honeycomb model. A point
in the triangle corresponds to relative magnitudes of the spin-spin
interactions Jx,Jy , and Jz, which are represented by a normalized
vector �J = (Jx,Jy,Jz) with Jx + Jy + Jz = 1. The three different A
phases Ax,Ay , and Az correspond to the case in which one of the
couplings predominates over the other two.

The model is then fully diagonalized in the vortex-free sector,
and the ground state of the model corresponds to the fermionic
vacuum of the Bogoliubov modes.

3. Phase diagram

Studying the dispersion relation of the Bogoliubov fermions
one can come up with the phase diagram of the model
quite straightforwardly, as done originally by Kitaev [14] and
reviewed extensively in many other places (see, e.g., Ref. [40]
and references therein). Here we will only recall briefly how
the phase diagram appears and what its most important features
are.

The phase diagram of the model is summarized in Fig. 5.
The energy spectrum is gapless if and only if |Jx |,|Jy |, and
|Jz| satisfy the triangle inequalities

|Jx | � |Jy | + |Jz|,
|Jy | � |Jx | + |Jz|, (30)

|Jz| � |Jx | + |Jy |.
In the case of having strict inequalities we are in the B
phase from Fig. 5. In this phase there are exactly two Fermi
points in momentum space, �k = ±�q∗, one in each half of the
first Brillouin zone, and corresponding to conic dispersion
relations (“Dirac cones”). This means that quasiparticles in
this regime are massless and relativistic. In the presence
of a small perturbation such as a magnetic field, the phase
acquires a gap, has a nonzero Chern number (=1), and
is chiral and topologically ordered (time-reversal symmetry
being explicitly broken by the perturbation). The gapped
quasiparticles are non-Abelian Ising anyons. Under certain
approximations, the magnetic field perturbation can also be
treated in terms of effective three-spin interactions [14], which
open a gap without destroying the exact solvability of the
model.

If one of the spin-spin interactions predominates over the
other two, then the system is in the so-called A phase; see
Fig. 5. In this phase the spectrum is gapped, and a perturbation
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FIG. 6. (a) Matrix product state (MPS). (b) Matrix prod-
uct operator (MPO). (c) Projected entangled pair state (PEPS).
(d) Projected entangled pair operator (PEPO). (e) Tree tensor network
(TTN). (f) 1d binary multiscale entanglement renormalization ansatz
(MERA), with unitaries u and isometries w. The physical dimension
is q in all cases, whereas the bond dimension is χ for MPS, MPO,
TTN, and MERA, and D for PEPS and PEPO (though this is a
convention).

theory analysis taking dimers in one bond direction [14]
shows that it can be approximated by the so-called toric code
Hamiltonian [14]. The system has therefore nonchiralZ2 topo-
logical order (and thus zero Chern number), and quasiparticles
correspond to excitations of the plaquette operators B̂p. The
statistics of these quasiparticles corresponds to that of semions,
which are Abelian anyons.

B. Tensor networks

Let us now review briefly the basics of TNs (see, e.g.,
Ref. [24] and references therein).

1. Basic definitions

For our purposes, a tensor is a multidimensional array of
complex numbers. A tensor network (TN) is a network of
tensors whose indices are connected according to some pattern.
This connection of indices is done by summing over all the
possible values of common indices between tensors. Summing
over an index is also called contracting the index. Summing
over all the possible indices of a given TN is called contracting
the TN.

TNs are easily handled by using a diagrammatic notation
in terms of tensor network diagrams; see, e.g., Fig. 6. In these
diagrams tensors are represented by shapes, and indices in the
tensors are represented by lines emerging from the shapes. A
TN is thus represented by a set of shapes interconnected by
lines. The lines connecting tensors to each other correspond
to contracted indices, whereas lines that do not go from one
tensor to another correspond to open indices in the TN.

There are famous examples of TNs in the context of
many-body physics. For instance, for quantum lattice systems,
the classes of MPS and PEPS are suitable to describe quantum

states of 1d and 2d systems, respectively [see Figs. 6(a)
and 6(c)]. Other examples make use of an extra “holographic”
dimension accounting for some renormalization group scale,
such as tree tensor networks (TTNs) [41] [Fig. 6(e)] and
the so-called multiscale entanglement renormalization ansatz
(MERA) [Fig. 6(f)], which is at the basis of entanglement
renormalization [28]. TNs can also be used to describe
operators, such as matrix product operators (MPOs) in 1d and
projected entangled pair operators (PEPOs) in 2d [Figs. 6(b)
and 6(d)].

2. Fermionic tensor networks

TNs can be adapted to represent fermionic systems. Several
approaches have been developed in order to implement the
fermionic statistics at the level of TN algorithms [42–46], in the
end being all equivalent (see, e.g., Ref. [47] for some examples
of this). Here we will adopt the approach taken in Ref. [43],
which can be formulated entirely in terms of graphical rules
and tensor diagrams.

The “fermionization” of a TN is based on the following two
rules, according to the approach in Ref. [43]:

(1) Use parity-symmetric tensors; see Fig. 7(a). Fermionic
parity, i.e., whether the total number of fermions is even or
odd, is a good Z2 symmetry for fermionic systems, and is
therefore naturally incorporated in most fermionic gates.

(2) Replace line crossings in the planar representation
of the TN by fermionic swap gates; which are defined as
in Fig. 7(b). This replacement has the following physical

FIG. 7. TN fermionization rules: (a) parity invariance of tensors,
where P is a representation of the Z2 parity symmetry operator;
(b) crossings are replaced by fermionic swaps.
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interpretation: every wire or line in the fermionic TN diagram
represents a fermionic degree of freedom. In practice, when
an odd number of fermions (odd parity) swap their order with
an odd number of fermions, the wave function gets multiplied
by −1. This is what the fermionic swap takes into account, by
reading the parity “charge” of each index and multiplying by
−1 whenever appropriate.

Following these two simple rules, we can account for
diagrammatic representations of TNs for fermionic systems,
which as we shall see turns out to be particularly relevant for
the Kitaev honeycomb model, since it is mapped to a model
of fermions.

III. EXACT UNITARY 3D TENSOR NETWORK

In this section we show how the eigenstates of the Kitaev
model, and in particular the ground state, can be expressed
as exact 3d unitary TNs. We shall show how this works for
relatively small systems and then argue that our construction
scales well up to the thermodynamic limit. For the sake of
concreteness, to guarantee the correctness of our construction,
here we have done intermediate numerical checks for finite-
size systems up to 32 spins on a honeycomb lattice with
periodic boundary conditions. Our approach this time will
be “from the top to the bottom,” which means that we will
start from a product state of fermionic Bogoliubov modes,
and reconstruct the eigenstate step-by-step until we reach the
spins on the honeycomb lattice. It could also be done the other
way around, starting from spins and ending up in a product
state of fermions. However, we believe that the top-bottom
approach is more constructive from the TN perspective, and
also offers an interesting interpretation of the overall TN as
a quantum circuit for a quantum computer building up the
many-body wave function. We also remark at this point that
our TN remains fully fermionic until the mapping to spins done
by the Jordan-Wigner transformation. This means that we have
to take into account the usual procedures in fermionic TNs,
namely, tensors must be parity (Z2) symmetric, and crossings
of wires are accounted for by fermionic SWAP gates [43].

A. Fermionic vacuum and Bogoliubov transformation

We start in momentum space, where we have a diagonal
Hamiltonian and hence unentangled fermionic momentum
modes. The possible momenta �k = (kx,ky) for a finite-size
Nx × Ny system are given by

ki = 2πni

Ni

, ni = −Ni − 1

2
, . . . , + Ni − 1

2
, (31)

with i = x,y and Ni the size of the system along direction
i. When taking the thermodynamic limit, the discrete series
becomes a continuum of momentum modes. In what follows
we describe the procedure for the example of an 8-spin
and 32-spin honeycomb lattice, which at this stage amount
respectively to 2 × 2 and 4 × 4 square lattices of free fermions
in momentum space.

The first step to build the TN is the unentangled quantum
state in momentum space represented in Fig. 8. This is a
product state of vectors, with physical dimension 2. The values
of the physical index correspond to the fermionic occupation

FIG. 8. Product state in momentum space corresponding to the
Bogoliubov vacuum on a 2 × 2 square lattice. Dotted line is for
reference.

number of Bogoliubov momentum modes. This means that
if the physical index is 0 then the corresponding mode is
unoccupied, whereas it is occupied if the value of the physical
index is 1. If we focus on the ground state of the system, then
each tensor in the diagram has a nonzero component only for
the unoccupied fermionic mode [48], or in other words, the
overall product state is nothing but the Bogoliubov vacuum.

In order to couple the modes with opposite momentum we
have to undo the Bogoliubov transformation that diagonalized
the Hamiltonian in the previous section. Intuitively one can see
that this transformation can be built up with 2-body unitary
gates. For N fermionic modes we need N/2 of such gates.
The correct way to perform the Bogoliubov transformation is
shown in Fig. 9 for a 4 × 4 lattice, where all the momenta �k
along the black line are the ones entering as gate parameters.
The modes along this line are coupled, following the order
indicated by the arrow, to the modes with opposite momenta
on the right-hand side of the diagram. Momenta in bigger
lattices are also coupled following this prescription.

The actual Bogoliubov transformation is achieved by a
sequence of 2-body unitary gates acting on pairs of fermions
with opposite momentum. These gates are described by the
unitary matrix

B̂�k =

⎛
⎜⎜⎝

u�k 0 0 v�k
0 1 0 0
0 0 1 0

−v∗
�k 0 0 u∗

�k

⎞
⎟⎟⎠, (32)

where rows/columns are in the {|00〉,|01〉,|10〉,|11〉} occupa-
tion basis of the respective modes. Besides the momentum

FIG. 9. Modes along the black arrow are coupled to the ones on
the right-hand side with opposite momenta, following the ordering
indicated by the arrow. The value of �k for the modes along the
arrow also determines the input parameter for the Bogoliubov
transformation.
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TABLE I. Conditions for sgn(v�k) = −1 in the Bogoliubov
transformation.

Condition 1 Condition 2 Condition 3

Jx � 0,Jy � 0 kx < 0
|Jx | � |Jy | Jx � 0,Jy < 0 kx < 0

Jx < 0,Jy � 0 kx � 0
Jx < 0,Jy < 0 kx � 0

Jx � 0,Jy � 0 ky < 0
|Jx | < |Jy | Jx � 0,Jy < 0 ky � 0

Jx < 0,Jy � 0 ky < 0
Jx < 0,Jy < 0 ky � 0

dependency, both u�k and v�k depend nontrivially on Jx,Jy ,
and Jz. Also, due to intrinsic properties of the Bogoliubov
transformation, the coefficients must satisfy the condition

u−�k = u�k, v−�k = −v�k. (33)

On top of this we have also observed that, in order to
generate the correct transformations, the sign of v�k needs to
be chosen appropriately and in accordance with the values
of Jx and Jy . A numerical check indicates that the correct
convention is the one in Table I, where the conditions for a
negative overall sign of v�k are specified.

This Bogoliubov transformation works smoothly for square
lattices with an even number of sites in both directions, which
can be conveniently scaled up to the thermodynamic limit [49].
Applying this transformation to the Bogoliubov vacuum we get
the entangled state in momentum space shown in Fig. 10.

It is clear now that the TN we are constructing will have
a 3d structure. The TN diagrams will therefore be projections
of this network in the 2d plane of the paper. This is trivial
for bosons, but for fermions one needs to take into account
that different projections will produce different patterns of
fermionic SWAP gates, which in turn correspond to different
orderings of fermionic modes in second quantization [43]. In

FIG. 10. Entangled state for the 2 × 2 square lattice, obtained
after applying the Bogoliubov transformation. The construction can
be easily scaled up to the thermodynamic limit using the prescriptions
described in the text. This is an entangled state of fermionic
momentum modes. Dotted lines are for reference.

FIG. 11. A possible planar projection of the TN in Fig. 10,
accounting for a specific fermionic order in second quantization (from
left to right). To satisfy the fermionic anticommutation relations,
fermionic SWAP gates (black squares) are introduced each time two
fermions are swapped.

our case, the resulting planar structure for the TN in Fig. 10
is shown in Fig. 11, where the black squares correspond
to fermionic SWAP tensors. Such tensors account for the
fermionic anticommutation relation: whenever two odd-parity
sectors are swapped, we get a multiplying factor of −1. We
verified numerically that this construction correctly produces
all the eigenstates of the intermediate fermionic Hamiltonian
in Eq. (17) for lattices up to 4 × 4 sites, and it can be easily
generalized to larger lattices and to the thermodynamic limit.

B. Fourier transformation and spectral TN

The next step in our TN construction is to undo the Fourier
transformation of the fermions, bringing the modes from
momentum space back to real space. Here we assume, for
convenience of the Fourier transformation, that the number of
modes is a power of two.

The TN needed for this step was originally proposed in
Ref. [32]. In that reference, the so-called spectral TN was put
forward in order to represent the Fourier transformation of
fermions. In our case, this is exactly the piece we need at this
step, and we review it briefly in what follows.

The quantum circuit of the Fourier transformation translates
the quantum state between the momentum and real spaces, and
can be decomposed into a series of sparse operations. More
precisely, the fermionic Fourier transformation over N sites
(no matter the lattice) can be decomposed into two parallel
transformations, each one on N/2 sites. To see this notice that,
e.g., the creation operator ĉ

†
k in 1d (k being the momentum
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FIG. 12. Quantum circuit, or spectral TN, for the Fourier transfor-
mation for eight fermionic modes, implemented entirely in terms of
one- and two-body gates. The upper side of the diagram corresponds
to momentum space, and the lower part to real space. Crossings of
wires correspond to fermionic SWAP gates.

variable) is given in general by

ĉ
†
k = 1√

N

N−1∑
x=0

e
2πikx

N ĉ†x = 1√
N

N/2−1∑
x=0

e
2πikx
N/2 ĉ

†
2x

+ 1√
N

e
2πik
N

N/2−1∑
x=0

e
2πikx
N/2 ĉ

†
2x+1, (34)

where in the second equation we have split the sum into one
transformation for even sites and one transformation for odd
sites x. This implies, as explained in Ref. [32], that the whole
transformation can be implemented entirely by one- and two-
body gates. The trick to achieve this is clear: simply keep
splitting the sum into halves, until ending up eventually with
two-site transformations and one-body gates accounting for
the relative phases. In Fig. 12 we show this decomposition
for the example of 8 sites. The permutation at the bottom of
the circuit is a “bit-reversal operation” that restores the correct
order of the fermionic modes. Notice that since this is also a
fermionic TN, all crossings of lines in the TN diagram need to
be accounted for by fermionic SWAP gates.

The entangling two-body gate depicted in Fig. 12 is
the essential tensor here, and corresponds to the Fourier
transformation of two fermionic modes. In the occupation
number basis {|00〉,|01〉,|10〉,|11〉} of the two modes, the
action of the gate is given by the 4 × 4 unitary matrix

F̂2 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 −1

⎞
⎟⎟⎟⎠, (35)

where the last entry accounts for the anticommutation of two
occupied fermionic modes being swapped. As expected, this
matrix is parity-preserving. The 4 × 4 matrix can easily be
rewritten by a 2-site fermionic matrix product operator (MPO)
as in Fig. 12 with bond dimension 4 [50]. The one-body
gates include the correct twiddle factor exp(2πik/N) and
correspond to

ω̂k
N = (σ̂ z)

2k
N (36)

with σ̂ z the usual z Pauli matrix.
Moreover, this procedure can be easily extended to higher-

dimensional systems [32] by applying sequentially the Fourier
transformation along each direction, and in parallel for every
row or column. To give a concrete example of this, we show
the Fourier transformation for a 4 × 4 square lattice in Fig. 13,
where the quantum circuit in Fig. 13(a) is repeated four times
along the x and y directions. For the sake of simplicity in
the diagram, in Fig. 13(b) we contracted the one-body gates
and the two-site MPOs into some two-body gates, and did not
highlight fermionic SWAPs explicitly.

FIG. 13. (a) TN for the four-site Fourier transformation with a bit-
reversal permutation at the end. This 1d structure is repeated along x

and y directions to achieve a two-dimensional Fourier transformation,
such as the one in (b) for a 4 × 4 square lattice. In (b), one-body
gates and two-site MPOs are contracted into two-body gates (for
simplicity of the diagram), a bit-reversal permutation is performed at
the bottom, and fermionic SWAPs are not explicitly highlighted also
for simplicity.
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Finally, we have verified numerically that the state con-
structed in this way up to this point (concatenating the
Bogoliubov TN with the spectral TN) is the exact eigenstate
of the intermediate fermionic Hamiltonian in real space given
in Eq. (14) for a 4 × 4 lattice. Some subtleties coming from
the finite-size of the lattice are however in order, which we
explain in the Appendix.

C. Majorana braiding TN

A crucial step in the construction of the TN comes at this
point. Now, the Dirac fermionic modes in real space are split
into Majorana modes. The same is done for the fermionic Dirac
modes providing the vortex sector. And then, the Majoranas
from the real-space Dirac fermions are recombined with the
Majoranas from the vortex Dirac fermions, into new Dirac
modes living on the sites of a square lattice. Algebraically
this step is clear, as we reviewed (in reverse) in Sec. II.
However, at the TN level, this leads in principle to a nontrivial
construction. The first problem comes from the fact that
it is, actually, not possible to associate a Fock space with
Majorana fermions. How are we then going to represent them
using TNs? The second problem is that we should be able
to represent the splitting of Dirac fermions into Majorana
modes, as well as the recombination of Majorana modes
into Dirac fermions. The third issue, which is more subtle,
is that all these splittings-and-recombinations lead necessarily
to braidings of Majorana fermions, and we know that they
behave like non-Abelian anyons. The key result of this section
is that, in fact, it is actually possible to put all these ingredients
together into a very nice and natural TN description, as we
shall describe in what follows.

1. Majoranas as non-Abelian anyons

Let us start by reviewing the answer to the following
question: What does it mean that Majorana modes behave
like non-Abelian anyons? For this, we consider two spinless
Dirac fermions with creation operators f̂

†
1 and f̂

†
2 . Creation

and annihilation operators for both fermions can be rewritten
in terms of Majorana fermions γ̂1,γ̂2,γ̂3, and γ̂4 as

f̂1 = 1
2 (γ̂2 − iγ̂1), f̂

†
1 = 1

2 (γ̂2 + iγ̂1),
(37)

f̂2 = 1
2 (γ̂3 − iγ̂4), f̂

†
2 = 1

2 (γ̂3 + iγ̂4).

Complementarily, the Majorana fermions correspond to the
real and imaginary part of the original Dirac fermions, since

γ̂1 = −i(f̂ †
1 − f̂1), γ̂2 = f̂

†
1 + f̂1,

(38)
γ̂3 = f̂

†
2 + f̂2, γ̂4 = −i(f̂ †

2 − f̂2).

Therefore γ̂i = γ̂
†
i and also {γ̂i ,γ̂j } = 2δij , which follows

easily from the anticonmutation relation for Dirac fermions.
Moreover, one has that γ̂ 2

i = 1. This means, in particular,
that one cannot even define a number operator n̂i = γ̂

†
i γ̂i , so

that an occupation number representation is not appropriate.
Notice also that, given a Dirac mode, there is an intrinsic
gauge degree of freedom in the definition of its Majorana
components since these could be, e.g., multiplied by some
relative phase. The convention (gauge) that we used above is
the one that will be useful later for our TN construction [51].

It is possible to see [52] that the clockwise and anticlock-
wise braidings (or swaps) of two Majorana fermions γ̂i and γ̂j

can be accounted for respectively by the operators

B̂ = 1√
2

(1 + γ̂i γ̂j ) (clockwise),

(39)
ˆ̄B = 1√

2
(1 − γ̂i γ̂j ) (anticlockwise).

If γ̂i and γ̂j are the Majorana modes of one Dirac fermion,
then the above operators will be a one-body gate in the Fock
space of the Dirac fermion, and will do an “internal” braiding
within the Dirac mode. However, if γ̂i and γ̂j are Majorana

modes of different Dirac fermions, then B̂ and ˆ̄B will be
two-body operators acting on the Fock space of the two
Dirac fermions, and will implement an “external” braiding,
effectively exchanging one of the Majorana components inside
of each Dirac fermion. The effect of such operations can be
easily computed by rewriting them in terms of the original
Dirac modes, with which we know we can associate a Fock
space. Let us be more precise about this. For the case of a
braiding of the modes γ̂3 and γ̂4 inside f̂2, one has the following
for the clockwise and anticlockwise cases:

B̂ = 1√
2

[1 + i(f̂ †
2 f̂2 − f̂2f̂

†
2 )],

(40)
ˆ̄B = 1√

2
[1 − i(f̂ †

2 f̂2 − f̂2f̂
†
2 )].

It is then very easy to compute the matrix elements of these
operators in the basis {|0〉,|1〉} of the Dirac fermion, with
|0〉 = (0,1)t and |0〉 = (1,0)t . These are given by the 2 × 2
unitary matrices

B̂ = 1√
2

(
1 + i 0

0 1 − i

)
, ˆ̄B = 1√

2

(
1 − i 0

0 1 + i

)
,

(41)
where the first row/column is for the state |0〉, and the second
for |1〉. Additionally for the case of a braiding of the modes γ̂2

from f̂1 and γ̂3 from f̂2, the corresponding braiding operators
can be rewritten in terms of the Dirac modes as follows:

B̂ = 1√
2

[1 − i(f̂ †
1 f̂

†
2 − f̂

†
1 f̂2 + f̂1f̂

†
2 − f̂1f̂2)],

(42)
ˆ̄B = 1√

2
[1 + i(f̂ †

1 f̂
†
2 − f̂

†
1 f̂2 + f̂1f̂

†
2 − f̂1f̂2)].

These are clearly two-body fermionic gates acting on the Fock
spaces of the Dirac fermions f̂1 and f̂2. On the two-particle
basis {|00〉,|01〉,|10〉,|11〉}, the matrix elements are given by
the 4 × 4 matrices

B̂ = 1√
2

⎛
⎜⎝

1 0 0 −i

0 1 i 0
0 −i 1 0
i 0 0 1

⎞
⎟⎠,

(43)

ˆ̄B = 1√
2

⎛
⎜⎝

1 0 0 i

0 1 −i 0
0 i 1 0
−i 0 0 1

⎞
⎟⎠,
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FIG. 14. Majorana braiding operations to correctly recombine
the different modes on the left, and the corresponding action on the
Fock space of the two Dirac fermions on the right. FT refers to
the modes out of the Fourier transformation, and CQ to the modes
coming from the conserved quantities. The one-body gate braids
Majorana modes within a Dirac fermion, whereas the two-body gate
braids Majorana modes of different Dirac fermions. Valid patterns of
clockwise/anticlockwise braidings are explained in the main text.

where the first row/column corresponds to |00〉, the second
to |01〉, and so on. Notice that, as expected, all these
operators preserve the fermionic parity, and have therefore
a Z2 symmetry. Finally, notice that other swaps, e.g., between
γ̂1 and γ̂4, would follow easily by concatenating the ones that
we just described.

2. Building up a TN of Majorana braidings

We are now in position to analyze how the different
operations with Majorana fermions in the Kitaev honeycomb
model can be accounted for in the TN picture. The key point
to do this is to realize that such operations can always be
represented by unitary operators in the Fock space of the Dirac
fermions, as we have just shown. Therefore, it is possible to
represent them using the usual fermionic TN language.

The model has a large number of conserved quantities,
which are accounted for by the occupation number of some
“vortex” Dirac fermions, and which now need to be rein-
troduced in the flow of the quantum circuit. Reintroducing
these modes will lead, in fact, to having the correct number of
original spins on the honeycomb lattice. The correct procedure
is shown in Fig. 14, where one Majorana mode of the Dirac
fermion out of the Fourier transformation gets recombined
with one Majorana mode of a “vortex” fermion from the
conserved quantities. Using the convention introduced before
for the Majorana modes, we do the identification

ĉ◦ = γ̂1, d̂• = γ̂3,
(44)

ĉ• = γ̂2, d̂◦ = γ̂4.

Importantly, in order to reproduce the correct ground state
of the Kitaev honeycomb model, we observed that specific
patterns of clockwise/anticlockwise braidings need to be used.

To be more specific, we have observed numerically that
this depends on the conserved quantities: if we choose the
two-body “external” braiding as anticlockwise, then the one-
body gate in Fig. 14 depends on whether the mode for the
“vortex” fermion is occupied (so that α�r = −1) or not (so that
α�r = +1), according to

vortex mode = |0〉, α�r = +1 =⇒ anticlockwise,

vortex mode = |1〉, α�r = −1 =⇒ clockwise.

However, if we choose the two-body “external” braiding as
clockwise, then the one-body gate follows the opposite rule,
i.e.,

vortex mode = |0〉, α�r = +1 =⇒ clockwise,

vortex mode = |1〉, α�r = −1 =⇒ anticlockwise.

These rules are important in order to reproduce the correct
network for other eigenstates apart from the ground state.
In the end, the overall procedure amounts to a two-body
fermionic tensor which we call T , with the following matrix
elements in all possible cases, with � for clockwise and � for
anticlockwise braidings:

(i) vortex mode = |0〉,B23 � ,B34 �,

T = 1

2

⎛
⎜⎝

1 + i 0 0 −1 − i

0 1 + i 1 + i 0
0 1 − i 1 − i 0

−1 + i 0 0 1 − i

⎞
⎟⎠

;
(ii) vortex mode = |1〉,B23 � ,B34 �,

T = 1

2

⎛
⎜⎝

1 − i 0 0 1 − i

0 1 − i −1 + i 0
0 −1 − i 1 + i 0

1 + i 0 0 1 + i

⎞
⎟⎠

;
(iii) vortex mode = |0〉,B23 � ,B34 �,

T = 1

2

⎛
⎜⎝

1 − i 0 0 −1 + i

0 1 − i 1 − i 0
0 1 + i 1 + i 0

−1 − i 0 0 1 + i

⎞
⎟⎠

;
(iv) vortex mode = |1〉,B23 � ,B34 �,

T = 1

2

⎛
⎜⎝

1 + i 0 0 1 + i

0 1 + i −1 − i 0
0 −1 + i 1 − i 0

1 − i 0 0 1 − i

⎞
⎟⎠

.
The fermionic tensors in Fig. 14 act then locally on the z

links of the honeycomb lattice, as shown in Fig. 15. Since this
is a fermionic TN, all crossings of wires need to be accounted
for by fermionic SWAP gates. In this diagram, modes 3, 5,
7, and 8 are the “vortex” fermions. The other four fermions
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T

T

T

T

f1

f2

f3

f4

f5

f6

f7

f8

FIG. 15. Fermionic tensor network to reintroduce the conserved
quantities and braid the Majorana fermions. The transformation T

is given in Fig. 14 for the case of an unoccupied “vortex” fermion.
Fermionic SWAPs are not included for simplicity.

are the ones coming out of the Fourier transformation. Notice
that, importantly, once the vortex fermion is fixed, the tensor
T becomes an isometry, which is fundamental for some of the
applications that we shall consider later.

One needs to be careful in the implementation of the TN in
Fig. 15: to account for the correct fermionic SWAPs, it needs
to be redrawn in such a way that no fermionic wire crosses
a gate. To achieve this, one could, e.g., express the gate T

as a 2-site fermionic MPO with bond dimension 4, and the
crossings would then be between wires only. Another option,
however, is to simply project the network differently on the
2d plane of the paper. Whatever we do, the important thing is
to ensure the correct fermionic ordering at the bottom of the
network. As an example, the diagram in Fig. 15 is redrawn in
Fig. 16, and represents the overall network needed to undo all
the Majorana transformations in the Hamiltonian for an 8-site
honeycomb lattice. It is also clear from the diagrams that this
construction can be scaled up to lattices of any size. Again,
we have also verified numerically that the overall TN up to
here reproduces the correct eigenstates of the corresponding
intermediate Hamiltonian.

D. Jordan-Wigner transformation

The final step is to bring back the fermions to spins on
the lattice, which is implemented by undoing the Jordan-
Wigner transformation. The surprising fact is that, somewhat
a bit counterintuitively, this transformation only changes the

Fourier
Transformation

Conserved
Quantities

T T T T

f1 f2 f4 f6f3 f5 f7 f8

FIG. 16. A different projection of the TN in Fig. 15, where wires
do not cross any gate. The distinction between the modes coming
from the Fourier transformation and those coming from the conserved
quantities (“vortex” modes) is also made explicit.

interpretation of the wires in the TN, and not the value of the
overall coefficient obtained by the contraction. This fact had
already been noticed before [53], and can be seen as follows:
start from an arbitrary quantum state with an arbitrary number
of spins-1/2 given by

|ψ〉 =
∑

n1n2···
Cn1n2···|n1n2 · · · 〉, (45)

with ni = 0,1 for the down/up spin states at site i. This state
can be rewritten as

|ψ〉 =
∑

n1n2···
Cn1n2···(σ̂

+
1 )n1 (σ̂+

2 )n2 · · · |�〉, (46)

with |�〉 = |00 · · · 〉 (the state with all spins down). Applying
the Jordan-Wigner transformation, one gets the fermionic state

|ψ〉 =
∑

n1n2···
Cn1n2···(â

†
1)n1 (Ŝ1)n2 (â†

2)n2 · · · |�〉, (47)

where Ŝi is the string operator attached to the creation operator
â
†
i+1, and is given by

Ŝi =
∏
i ′�i

(−1)n̂i′ =
∏
i ′�i

(1 − 2n̂i ′ ), (48)

where the last equality can be easily checked by, e.g.,
Taylor-expanding (−1)n̂ = eiπn̂. At this point, the state |�〉
is reinterpreted as the vacuum of the fermionic modes.
Moreover, it is also easy to check that (i) {â†,(−1)n̂} = 0 and
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(ii) [â†
i ,(−1)n̂j ] = 0 for i �= j . Therefore, using this we can

write the state as

|ψ〉 =
∑

n1n2···
Cn1n2···(−1)n1n2 (−1)(n1+n2)n3 · · · (Ŝ1)n2 (Ŝ2)n3 · · ·

× (â†
1)n1 (â†

2)n2 · · · |�〉, (49)

where the phases come from the commutation and anticom-
mutation relations mentioned above. Finally, the action of
the string operators is easily computed on the Fock state
(â†

1)n1 (â†
2)n2 · · · |�〉, and the result is the quantum state

|ψ〉 =
∑

n1n2···
Cn1n2···(−1)n1n2 (−1)(n1+n2)n3 · · ·

× (−1)n1n2 (−1)(n1+n2)n3 · · · (â†
1)n1 (â†

2)n2 · · · |�〉
=

∑
n1n2···

Cn1n2···(â
†
1)n1 (â†

2)n2 · · · |�〉, (50)

where the last equation follows from the fact that the phases
exactly cancel each other. The final state is nothing but
a fermionic state in second quantization with the same
coefficients Cn1n2··· as the original state for spin-1/2.

The result is then clear: the Jordan-Wigner transformation
does not change the overall coefficient of the state, and
therefore does not add anything quantitatively new to the
TN. In our construction, this transformation is thus taken into
account by simply saying that, from this point on, the wires in
the TN represent spins instead of fermions, so that we do not
need to worry anymore about fermionic SWAP gates for the
crossings. Mathematically, this is a site-by-site mapping from
the Fock space of a spinless Dirac fermion to the Hilbert space
of a spin-1/2.

E. Overall picture and summary

Following the steps described until now, the overall exact
3d unitary TN for the ground state of the Kitaev honeycomb
model is represented in Fig. 17, for a small honeycomb lattice
of 8 sites with periodic boundary conditions. The structure is
easily scalable to the thermodynamic limit. In Fig. 18 we show
an alternative “2d projection” of the fermionic part of the same
TN, more in the spirit of a quantum circuit. In what follows
we review the basic steps leading to this construction.

1. Summary of the construction

Let us now summarize the main ingredients leading to this
exact 3d TN:

(1) We start from a product state of Bogoliubov modes,
and of “empty” vortex modes (for the ground state).

(2) The Bogoliubov transformation is implemented by 2-
body unitary gates.

(3) The Fourier transformation is implemented by a spec-
tral TN.

(4) Splittings and recombinations of Majoranas are imple-
mented by a network of Majorana braidings.

(5) Up to here, every crossing of indices (lines, wires) is
fermionic, and is accounted for by a fermionic SWAP gate.

(6) Finally, the Jordan-Wigner transformation simply maps
each of the open fermionic indices to a spin (bosonic) index.

FIG. 17. 3d unitary TN for the ground state of the Kitaev model,
for an 8-site honeycomb lattice with periodic boundary conditions.
Physical degrees of freedom are spins, but essentially the whole
network is fermionic. Fermionic SWAP gates are not included, for
simplicity of the figure. Dotted lines are for reference.

F. Basic properties

1. Arbitrary vortex sectors and arbitrary eigenstates

Arbitrary vortex sectors lead to a pattern of α�r that is
not necessarily translationally invariant, which means that
the resulting fermionic Hamiltonian cannot, in general, be
diagonalized by a Fourier transformation. However, even if
not invariant under translations, this fermionic Hamiltonian is
still quadratic in the fermionic operators. It is well known
that such Hamiltonians are always classically solvable in
polynomial time, or in other words, formally there is always
a classical circuit with a polynomial number of gates that
diagonalizes the Hamiltonian. Promoting such classical circuit
to a (reversible, unitary) quantum circuit is always possible at a
polynomial cost. Therefore, there is always a polynomial-size
quantum circuit (say, of one- and two-body gates) that brings
the Hamiltonian into diagonal form. Concerning our 3d TN
construction, this quantum circuit should replace the Fourier
and Bogoliubov transformations that were used to build up the
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FIG. 18. Fermionic part of the TN in Fig. 17, but projected
differently.

TN for the ground state. Arbitrary eigenstates can therefore
be easily constructed in this way, in a case-by-case basis
depending on the vortex pattern.

2. Quantum circuit and causal cone

The unitary 3d TN that we just constructed is clearly an
example of a polynomial-size quantum circuit (for a finite
system) building up the quantum many-body state. This
may have some interesting implications experimentally, e.g.,
to realize the ground state of a small Kitaev model in a
small-size experimental setup with some quantum computing
architecture. But moreover, the fact that the network is made of
unitary operators implies a causal cone structure reminiscent
to that in other TNs such as the MERA and the spectral
TN [28,32]. Its existence means that expectation values of
local operators only depend on the tensors inside the causal

J = (0, 0, 1)

J = (1, 0, 0) J = (0, 1, 0)

AZ

AX AY

B

Jx = Jy

Jz ∈ [0, 1]

FIG. 19. Trajectory in the parameter space given by Jx = Jy =
0.5(1 − Jz).

cone of the sites on which the operator is acting. This is a
rather straightforward property of unitary networks, and is
also the case in our construction. Notice, though, that unlike
in the MERA, here the causal cone has no bounded width.
Moreover, the fact that the 3d TN is constructed fully from
unitary operators greatly simplifies the calculation of fidelities
between states, as we show in the next section.

IV. APPLICATIONS

The 3d TN we just constructed allows for an easy
understanding of several properties of the Kitaev honeycomb
model, as well as a straightforward calculation of some relevant
quantities. As an example, in this section we present three of
them: the ground state fidelity diagram, the thermal fidelity in
the vortex-free sector, and two-point correlation functions.

A. Ground-state fidelity diagram

In the thermodynamic limit, the ground state fidelity per
site is a well-defined quantity that can be used to pinpoint
different phases and phase transitions in quantum many-body
systems [54]. For the Kitaev model, its derivative (the so-called
“fidelity susceptibility”) was computed in Ref. [55]. Here we
will show how this quantity is in fact straightforward within
our formalism.

Consider the Hamiltonian of the model for Jx = Jy =
0.5(1 − Jz), so that Jz is our single control parameter. The
ground-state fidelity F is thus defined as

F (J̃z,Jz) = |〈ψ(J̃z)|ψ(Jz)〉|2 (51)

with |ψ(Jz)〉 the ground state for coupling Jz, and similarly
for J̃z. As shown in Fig. 19, the phase transition between
the A and B phases is expected to take place at (Jx,Jy,Jz) =
(0.25,0.25,0.5).

Using our 3d TN to compute the overlap in Eq. (51), it is
easy to see that the couplings only enter in the Bogoliubov
tensors which are at the top of the structure, whereas all the
other tensors are the same for both ground states. This has a
nice implication: because of unitarity, the contraction of all
the tensors cancels out (see Fig. 20) up to the Bogoliubov
transformation, leaving only the diagram in Fig. 21. In fact,
all fermionic SWAPs also disappear because it is a closed
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U

U†

=

W†

W

=

FIG. 20. Simplification in the contraction of (a) unitary and (b)
isometric tensors. Notice that the Majorana braiding operators T̂ in
our 3d TN are like in (b).

contraction. Thus, the expression for the ground-state fidelity
is given by

F (J̃z,Jz) =
∏

�k
|〈00|B̃†

�kB�k|00〉|2, (52)

with B�k the Bogoliubov tensor for coupling Jz,B̃�k the one for
J̃z,�k the momentum, and |00〉 the empty state of Bogoliubov
fermions at momenta ±�k. This expression corresponds to the
TN diagram in Fig. 21. With a little bit of algebra one finds
the expression

F (J̃z,Jz) =
∏

�k
cos2(θ�k − θ̃�k), (53)

with the Bogoliubov angles θ�k defined in Sec. II. This
expression exactly matches the one in Ref. [55], found by
a different method. In fact, in the thermodynamic limit, we
can find an exact analytical expression for the fidelity per site
d(J̃z,Jz), which is defined as

log d(J̃z,Jz) ≡ lim
N→∞

− 1

N
log F (J̃z,Jz). (54)

By replacing sums over momenta by integrals over the first
Brillouin zone in the thermodynamic limit, it is not hard to see
that

log d(J̃z,Jz) = −1

(2π )2

∫
BZ

d2�k log[cos2(θ�k − θ̃�k)]. (55)

In Fig. 22 we show several calculations with 32, 512, 8192,
and 131 072 spins on the honeycomb lattice (4 × 4,16 ×
16,64 × 64, and 256 × 256 square lattices of Bogoliubov
momenta, respectively). One can there clearly see how finite-
size effects tend to disappear when considering larger sizes,

FIG. 21. TN diagram for the ground-state fidelity.

FIG. 22. Fidelity per lattice site for (a) 32, (b) 512, (c) 8192,
and (d) 131 072 spins on the honeycomb lattice, corresponding
respectively to 4 × 4,16 × 16,64 × 64, and 256 × 256 square lattices
of Bogoliubov momenta.

and how the diagram clearly pinpoints the transition between
the A and B phases, as expected. Unlike other continuous
phase transitions, where one sees a pinch point in the fidelity
surface, here we see a sudden change in the fidelity and, in fact,
the fidelity drops quickly to zero for any two different points
in the B phase. This fact may actually be related to the gapless
nature of the B phase and its infinite correlation length.

B. Thermal fidelity in the vortex-free sector

Here we show how, by using our 3d TN, it is also remarkably
simple to compute the fidelity between thermal states restricted
to the vortex-free sector [56]. Such states are given by

ρ̂β = e−βĤvf

Zβ

, (56)

with β the inverse temperature (in units where kB = 1), Ĥvf

is the Kitaev Hamiltonian restricted to the vortex-free sector,
and Zβ = tr (e−βĤvf ) is the canonical partition function for this
sector. The fidelity F between two such operators is defined as

F (x̃,x) = tr
(√

ρ̂
1/2
β

ˆ̃ρβ̃ ρ̂
1/2
β

) = tr (e−βĤvf/2e−β̃ ˆ̃Hvf/2)

(ZβZ̃β̃)1/2
, (57)

with x ≡ (Jx,Jy,Jz,β).
In this sector, the exponential of the Hamiltonian admits

a simple TN representation using the techniques, introduced
before. To see this, first notice that

e−βĤvf/2 =
∑
α∈vf

e−βEα/2|α〉〈α|, (58)

with Eα the sum of the energies of the occupied Bogoliubov
modes, and |α〉 the corresponding eigenstate in this sector. In
terms of the individual Bogoliubov energies Eα,�k at momentum
�k, one has Eα = ∑

�k Eα,�k , and therefore

e−βĤvf/2 =
∑
α∈vf

∏
�k

e−βEα,�k/2|α〉〈α|. (59)
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circuit

unitary
circuit

µk

FIG. 23. TN diagram for e−βĤvf/2, where state |α〉 is our unitary
3d TN for the ground state, but for an excited configuration α of the
Bogoliubov momenta.

This expression can be easily accounted for by the TN in
Fig. 23, where we introduced matrices μ�k defined as

μ̂�k ≡
(

1 0
0 e−βEα,�k/2

)
, (60)

in the |0〉 and |1〉 basis of Bogoliubov modes at momentum �k.
It is thus easy to see that the only change in the TN between
operators for x ≡ (Jx,Jy,Jz,β) and x̃ ≡ (J̃x,J̃y,J̃z,β) happens
only in the Bogoliubov tensors, which include the couplings,
and the μ̂�k tensors, which include the inverse temperature. This
means that, again, when taking products of such operators,
most of the tensors will cancel with each other because of the
constraints in Fig. 20. In the end it is straightforward to see
that the TN diagram in Fig. 24 corresponds to the numerator
in Eq. (57), whereas the denominator can be easily computed
from

Zβ =
∏

�k
tr

(
μ̂2

�k
)
. (61)

For the case of equal couplings and different temperatures,
the above derivations lead to the final expression

F (β̃,β) =
∏

�k

tr(μ�kμ̃�k)[
tr

(
μ2

�k
)

tr
(
μ̃2

�k
)]1/2 , (62)

k

B
†
k

µk

Bk

B
†
k

µ̃k

Bk

=
k

µk

µ̃k

FIG. 24. TN diagram for the numerator of Eq. (57). For different
couplings and temperatures, the left-hand side is to be considered. If
the couplings are the same and only temperatures differ, then this can
be further simplified, and one obtains the diagram on the right-hand
side.

FIG. 25. Thermal fidelity per lattice site in the vortex-free sector
for 128 spins (8 × 8 square lattice of Bogoliubov momenta), along
the trajectory in Fig. 19, and inverse temperatures β̃ = β = (a) 50,
(b) 100, (c) 200, and (d) 400.

which in the thermodynamic limit leads to the fidelity per site

log d(β̃,β) = −1

(2π )2

∫
BZ

d2�k log

⎛
⎝ tr(μ�kμ̃�k)[

tr
(
μ2

�k
)

tr
(
μ̃2

�k
)]1/2

⎞
⎠.

(63)
Using these expressions we have computed the thermal

fidelity in the vortex-free sector for different configurations
of couplings, temperatures, and sizes. In Fig. 25 we show
the results per lattice site for 128 spins, couplings as in the
trajectory of Fig. 19, and different fixed inverse temperatures.
We observe a strong presence of finite-size effects also at
nonzero temperature, with a clear different behavior between
“thermal” A and B phases, which gets stronger as we approach
lower temperatures. Complementarily, in Fig. 26 we show the
fidelity (this time not per lattice site) for fixed couplings and
different inverse temperatures, for 2048 and 32 768 spins, in
the A and B phases. In the A phase we see that finite-size
effects are quite weak, whereas these become quite strong in
the B phase.

As a final remark, let us stress that the thermal fidelity for
other vortex sectors could also be computed in a case-by-case
basis. As explained before, the 3d TN structure may change
depending on the pattern of excited vortices, but is always
unitary and of polynomial depth.

C. 2-point correlation functions

Let us now consider the calculation of 2-point correlation
functions. A well-known result for the Kitaev honeycomb
model is that, in the static case (i.e., without time dependence),
the spin-spin correlators of the ground state satisfy

〈
σα

i σ
β

j

〉 =
{

0 if i,j not nearest neighbors,
gα · δαβ if i,j nearest neighbors, (64)

with gα �= 0 only for an α-type link, with α = x,y,z. In other
words: spin-spin correlators are only nonzero for nearest-
neighbor sites, and between Pauli matrices of the same type as
the interaction term for the considered link [57].
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FIG. 26. Thermal fidelity in the vortex-free sector and differ-
ent inverse temperatures for (a) 2048 spins (32 × 32 Bogoliubov
fermions) and Jx = Jy = 0.1,Jz = 0.8 (A phase), (b) 32 768 spins
(128 × 128 Bogoliubov fermions) and Jx = Jy = 0.1,Jz = 0.8 (A
phase), (c) 2048 spins (32 × 32 Bogoliubov fermions) and Jx = Jy =
Jz = 1/3 (B phase), and (d) 32 768 spins (128 × 128 Bogoliubov
fermions) and Jx = Jy = Jz = 1/3 (B phase).

With our TN construction this result is actually easy to
reproduce. Because of the symmetry of the problem, we can
focus on spin-spin correlation functions along the direction of
the Jordan-Wigner string in Fig. 3. Now, we can derive Eq. (64)
by using the relations in the tensor network diagrams of Fig. 27
and Fig. 28, where we use the notation X ≡ (â† + â),Y ≡
i(â† − â), and Z ≡ 2â†â − 1 = (−1)n̂. More specifically, it is
easy to see that for sites that are not nearest neighbors there will
always be a contribution coming from the diagrams in Fig. 28
that will multiply the expectation value by zero. For instance,
correlators between Pauli x and y matrices get a string of Pauli

X

=

Z X

X

=

X Z

Y

=

Z Y

Y

=

Y Z

Z

=

Z

Z

=

Z

FIG. 27. Several relations between the fermionic SWAP gate and
operators X,Y , and Z. Notice that Z is the fermionic parity operator.

X

T

T

j

i

= X

T

T

j

i

= Z

T

T

j

i

= Z

T

T

j

i

= 0

Y

T

T

j

i

= Y

T

T

j

i

= (Y)ij

FIG. 28. Matrix elements of operators X,Y , and Z when sand-
wiched with the isometry T , resulting from the two-body gate T after
fixing one of its indices to 0.

z’s whose matrix elements when sandwiched with the isometry
T (i.e., the two-body gate T for which one of the indices is
fixed at |0〉) cancel exactly at every site along the string. For
correlations between Pauli-z operators there is no such a string,
but the same is true at the distant sites for which the correlator is
being computed. Next, focusing on nearest neighbors, without
loss of generality we can consider the spin-spin correlator for
a z-type link since the rest follow by symmetry. The relations
in Fig. 29 imply directly that the only nonzero correlation
function for such a z-type link can only be between Pauli-z
operators, and therefore Eq. (64) follows [58].

V. IMPLICATIONS FOR 2D PEPS

We now would like to discuss the following question:
is the 3d unitary TN presented before contractible, perhaps
approximately, down to a 2d PEPS with finite bond dimension?
As explained in the introduction, in the thermodynamic limit
this should indeed be possible in the A phase, as expected from
the approximate mapping to the toric code Hamiltonian in this
regime. In the B phase, however, the situation is unclear: if
such a description were possible, then the PEPS constructed
in this way would be PEPS for a gapless topological spin
liquid (and with infinite correlation length) but fermionic bond
indices, becoming chiral and gapped in the presence of a small
magnetic field (or 3-spin) perturbation. This would be in part
similar to some recently found chiral fermionic PEPS [35], but
with the ingredient of Dirac cones in the dispersion relation,
and the first instance (as far as we know) of a gapped chiral
topological 2d PEPS. However, if such a description were not
possible, then this would be a practical example of an area-law
state in 2d that cannot be represented by a 2d PEPS with finite
bond dimension, in turn agreeing with the results in Ref. [36].
Either way, answering this question would have important
implications in the study of chiral topological order and TN
states.
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(a)

(b)

(c)

FIG. 29. 8-fermion example, in quantum circuit form (i.e., projected on the plane of the paper). For a z link between fermions 2 and 5,
using the relations in Figs. 27 and 28, the only nonzero correlator is the one between Pauli-z operators [case (c)].

In what follows we discuss the possibility of answering this
question by using our 3d unitary TN, together with its pros
and cons. This looks like a natural option but, as we shall see,
is a nontrivial and hard task even with the aid of numerical TN
methods.

A. Exact Gaussian fermionic 2d PEPS as
ground state is impossible

To begin with, we would like to review the fact that
the ground state of the model cannot be written exactly
as a Gaussian fermionic 2d PEPS [35,44,59]. For this, a
necessary condition is that the Hamiltonian after the Fourier
transformation is given up to a constant by

Ĥ =
∑
|�k|>0

(d̂†
�k d̂−�k)

(
3∑

i=1

σ imi(�k)

)(
d̂�k
d̂
†
-�k

)
, (65)

with σ i the ith Pauli matrix, and mi(�k) trigonometric polyno-
mials in �k satisfying

[m1(�k)]2 + [m2(�k)]2 + [m3(�k)]2 = [p(�k)]2, (66)

with p(�k) another trigonometric polynomial. Comparing this
expression to Eq. (17), one can check easily that this is only
true when two of the couplings in the Hamiltonian (e.g., Jx

and Jy) are zero. Therefore, the ground state of the model
is, in general, not an exact fermionic 2d PEPS with Gaussian
projectors.

B. Is an approximate fermionic 2d PEPS feasible?

In spite of the result from the above section, it may still be
possible that the ground state of the model can be approximated
with good accuracy by a (not necessarily Gaussian) fermionic
2d PEPS. A possibility to check this would be, in fact, to
approximate our 3d TN layer-by-layer by a 2d PEPS with
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finite bond dimension, and check whether the final state
approximates with good accuracy the exact ground state. This
strategy is very tempting, but has the following important
drawbacks:

(1) The Bogoliubov transformation is highly nonlocal in
momentum space. In fact one can see that, when applied to
the Bogoliubov vacuum, the resulting state typically obeys a
volume law for the entanglement entropy [60]. This state is
hard to approximate by a PEPS with finite bond dimension
which, by definition, obeys an area law. The subsequent
fermionic Fourier transformation is also not guaranteed to
produce a good approximation to the ground state on such
a (drastically) approximated PEPS.

(2) The fermionic Fourier transformation brings down the
entanglement from the volume-law in the Bogoliubov state to
an area-law which, in principle, could be handled by a PEPS.
However, the state obtained from the exact contraction in our
3d TN would be a PEPS with a huge bond dimension, and is
numerically very hard to approximate.

(3) Additionally, the construction should be valid in the
thermodynamic limit. But as the size gets larger, the approx-
imations above become in fact harder since the Bogoliubov
state becomes more nonlocal. We are therefore restricted to
small-size approximations.

(4) And finally, finite-size effects in the Kitaev honeycomb
model are very strong, as has already been pointed out in the
literature [61]. Thus, the effect of a finite small size may
actually lead to a completely wrong conclusion about the
thermodynamic limit.

The above does not mean that such a numerical approxima-
tion is impossible, but it is definitely not obvious how to handle
it with all the above problems. As a matter of fact, we tried it
for a system of 32 spins on the honeycomb lattice (4 × 4 square
lattice of Bogoliubov fermions), with inconclusive results.
This finite size was pretty close to our computer memory limit.
Thus, the question remains open as to whether the ground state
of the Kitaev honeycomb model is approximately a PEPS with
finite bond dimension in the B phase or not.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have derived a unitary TN with a
3d structure for the eigenstates of the Kitaev honeycomb
model, focusing on the ground state. We have done this by
expressing, in the TN language, every single step leading to
the solution of this exactly solvable model: Jordan-Wigner
transformation, braiding of Majorana fermions, fermionic
Fourier transformation, and Bogoliubov transformation. The
produced TN allows for a straightforward calculation of
several quantities of relevance, such as ground-state fidelity
diagrams, fidelity between thermal states in the vortex-free
sector, and properties of the two-point correlation functions.
Moreover, we have discussed the possibility of approximating
this 3d TN layer-by-layer in order to elucidate whether the
ground state of the model in the B phase can be approximated
by a chiral 2d fermionic topological PEPS with finite bond
dimension. Notice that several degrees of freedom in our
construction could only be fixed by numerical checks for a
finite-size system. This not only includes the signs in the
Bogoliubov transformation, but also, e.g., the clockwise or

anticlockwise patterns of Majorana swaps. From the exact
solution there was no a priori reason to choose one convention
or the other, but this turns out to be relevant to reproduce the
correct eigenstates in the TN construction.

The results in this paper can be extended to generalizations
of the Kitaev honeycomb model to other lattices, spins,
and dimensions. The case of non-bipartite lattices would be
particularly interesting, since time-reversal symmetry could
be spontaneously broken in such cases, thus leading to chiral
ground states without the need of adding external magnetic
fields [14,62]. Moreover, our results can also be a good
starting point for numerical simulations of, e.g., Kitaev-
Heisenberg [17] and Kitaev-Hubbard [18] models with exotic
TN structures. A similar 3d TN construction is also expected
for the case of adding a 3-spin interaction to the model,
which opens a gap and keeps the exact solvability. In fact,
the property that 2d topological states show up at the surface
of 3d TNs also occurs in other situations, e.g., in the so-called
Walker-Wang models [63,64], so it would be interesting to see
whether there is any connection between these models and
our results. Finally, the fact that our TN has the structure of a
polynomial-size quantum circuit allows for direct realizations
of these states of matter in quantum computing and quantum
simulation architectures.
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APPENDIX: CONSTRUCTION OF THE FINITE-SIZE
HAMILTONIAN

1. After undoing the Fourier transformation

As explained in the main text, we have verified numerically
that the TN state constructed up to this point is the exact
eigenstate of the intermediate fermionic Hamiltonian in real
space given in Eq. (14), for a 4 × 4 lattice. There are however
some subtleties. First, for easiness of the calculation it is
worth redrawing the fermionic Fourier transformation as in
Fig. 30, where the labeling of the modes is explicit. The
4-site Fourier transformation is denoted as F̂4 and already
includes the bit-reversal operation. Crossings in this network
are also accounted for by fermionic SWAP gates. The mode
ordering tensor in the diagram sorts the modes to change the
direction of the transformation, e.g., from x to y (this has to
be undone once the Fourier tensors in the y direction have
been applied). The overall network in this diagram performs
the 4 × 4 Fourier transformation and sorts the modes as in
Fig. 13. This procedure can be easily scaled up to arbitrary
Nx × Ny sites, and therefore to the thermodynamic limit.
Second, we noticed that to do this exact verification, the
finite-size Hamiltonian needs to be constructed carefully. This
is because, due to the finite size, the interaction terms at the
boundary contribute with a negative sign in the Hamiltonian,
unlike the bulk interaction terms. In practice this means that
we need to work with antiperiodic boundary conditions, which
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FIG. 30. Fourier transformation for a 4 × 4 square lattice, re-
drawn in a different way. Each crossing in the mode-ordering tensor
as well as in the 4-site Fourier transformation F̂4 needs to be accounted
for by fermionic SWAP gates.

is clear from the fact that

ĉNi+1 = 1√
Ni

∑
ki

e
2πikiNi

Ni e
2πiki
Ni ĉki

= − 1√
Ni

∑
ki

e
2πiki
Ni ĉki

= −ĉ1 (A1)

for both spatial directions and all possible values of the
momentum. Figure 31 shows the links that are affected in
blue for the 4 × 4 square lattice. Taking this into consideration
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FIG. 31. 4 × 4 lattice in momentum space. The boundary con-
ditions in both directions shape the lattice into a torus. Interacting
terms at the boundary are signalled in blue, and need to be treated
differently in the Hamiltonian as compared to the bulk interaction
terms, as explained in the text.

it is possible to construct the appropriate finite-site version of
the Hamiltonian in Eq. (14), of which the intermediate TN
constructed up to here is an exact eigenstate. When scaling
up the system to the thermodynamic limit, this boundary
effects become irrelevant, and the TN construction can also
be extrapolated to this limit.

2. After undoing the Jordan-Wigner transformation

The Jordan-Wigner transformation for a finite-size system
leads to nonlocal interactions between degrees of freedom at
the boundaries that need to be taken into account to verify
the calculations. To correctly compensate for this effect in
our numerical checks, we had to introduce boundary terms
in the spin Hamiltonian with strings of σ̂ z attached, which
canceled out after the transformation, and reproduced the
correct spectrum of the finite-size fermionic Hamiltonian.
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PHILIPP SCHMOLL AND ROMÁN ORÚS PHYSICAL REVIEW B 95, 045112 (2017)

[20] K. O’Brien, M. Hermanns, and S. Trebst, Phys. Rev. B 93,
085101 (2016).

[21] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116
(2008).

[22] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277
(2010); J. I. Latorre and A. Riera, J. Phys. A: Math. Theor. 42,
504002 (2009).

[23] H. Yao and X.-L. Qi, Phys. Rev. Lett. 105, 080501 (2010).
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