W Mass and Width Measurements at the Tevatron

Sub-Z Workshop 12 May 2004, Fermilab

Ashutosh Kotwal

Duke University

for the CDF and D0 Collaborations

- Motivation
- Summary of Run 1 measurements
- Scaling of uncertainties in Run 2
- Summary

Motivation

- The W boson mass constrains $\rho = (M_W / M_Z \cos \theta_W)^2$
 - Unity at tree level
 - Radiative corrections from top quark, Higgs loops

• Contributions from new particles coupling to W's (example of quantum loop effect at $Q = M_W$)

Motivation

- $\Delta \rho = \rho 1$ has
 - Quadratic top mass dependence
 - Logarithmic Higgs mass dependence (due to spin=0)
 - Sensitive to SuperSymmetric particles and exotica
- Current SM Higgs fit: $M_H = 91^{+55}_{-36}$ GeV (LEP Collaborations and LEPEWWG, hep-ex/0312023)
- Δm_{top} and $\Delta \alpha_{EM}(M_Z)$ contribute to Δm_H uncertainty equivalent to $\Delta M_W \sim 26$ MeV and ~ 15 MeV respectively
- Current world (Tevatron) average $\Delta M_W \sim 40 (60)$ MeV => need improvement in M_W precision

Motivation

Run 2a (2 fb⁻¹) expectation shown:

 $\Delta M_W \sim 40 \text{ MeV}$

 $\Delta m_{top} \sim 2.5 \text{ GeV}$

per experiment

can we do better?

CDF D0
$$M(W) 80.433 \pm 0.079 \, \text{GeV} 80.483 \pm 0.084 \, \text{GeV}$$

$$\Gamma(W) 2.05 \pm 0.13 \, \text{GeV} 2.11 + 0.175 - 0.170 \, \text{GeV}$$

- Integrated luminosity ~ 110 pb⁻¹ per experiment
- CDF used electron and muon channel decays of W bosons
- D0 used electron channel with central and forward coverage

Run 1 W Mass Fits

Examples of W transverse mass and lepton transverse momentum fits:

- Tevatron (CDF and D0) Averages:
 - $-M_W = 80.456 \pm 0.059 \text{ GeV}$ (19 MeV correlation)
 - $-\Gamma_{\rm W} = 2.115 \pm 0.105 \,\, {\rm GeV} \,\, (26 \,\, {\rm MeV \,\, correlation})$
 - Correlated uncertainties due to QED radiative corrections, parton distribution functions, and W mass/width inputs
- Joint $M_W \Gamma_W$ combination (no external W mass or width information used):
 - $M_W = 80.452 \pm 0.060 \text{ GeV}$
 - $-\Gamma_{\rm W} = 2.105 \pm 0.106 \,{\rm GeV}$
 - Correlation coefficient = -0.17
- Analysis of correlations and Tevatron combined results published (hep-ex/0311039, accepted by PRD) by CDF, D0 & TeV-EWWG

• $\Gamma_{\rm W}$ is consistent with the standard model

• M_w favors low Higgs mass

Run 2 Prospects

- Scaling of ΔM_W and $\Delta \Gamma_W$ with integrated luminosity:
 - During 1987-1995 running period, integrated luminosity per collider experiment increased from 4 pb⁻¹ → 20 pb⁻¹
 → 110 pb⁻¹
 - ΔM_W reduced correspondingly: ~400 MeV → 150 MeV
 - → 60 MeV, following $L^{-1/2}$ scaling
- Systematics constrained with collider data
- Continuation of this trend could lead to $\Delta M_W \sim 15$ MeV, $\Delta \Gamma_W \sim 25$ MeV with 2fb^{-1}

W and Z production at the Tevatron

 \mathbf{E}_{T} **Electron** Neutrino Underlying event Hadronic recoil

Typically small hadronic (jet) activity

Isolated, high p_T leptons, missing transverse momentum in W's

Run 1 W Mass Systematic Uncertainties (MeV)

	CDF μ	CDF e	D0 <i>e</i>
W statistics	100	65	60
Lepton energy scale	85	75	56
Lepton resolution	20	25	19
Recoil model	35	37	35
pT(W)	20	15	15
Selection bias	18	-	12
Backgrounds	25	5	9
Parton dist. Functions	15	15	8
QED rad. Corrections	11	11	12
Γ(W)	10	10	10

(Correlated uncertainties)

Lepton Energy Scale & Resolution (Tracking, Calorimetry)

- Dominant systematic in the W mass and width measurement
- Most time and effort spent on detector calibration
- Ultimate energy scale verification provided by resonance mass measurements (π^0 , J/ ψ ,Y, Z): statistics-limited

Calorimeter Recoil Model and p_T(W)

• W mass measured using the location of the Jacobian edge in $p_T(l)$ or m_T distribution:

$$- M_{T} = \sqrt{(2 p_{T}^{l} p_{T}^{v} (1 - \cos \phi_{lv}))}$$

- Insensitive to p_T(W) to first order
- Reconstruction (by conservation of momentum) of p_T^v
 sensitive to hadronic response and multiple interactions
- Recoil model tuned using $Z \rightarrow ll$ data, statistics-limited
- Advantage of $p_T(l)$: insensitive to hadronic response modelling, but need theoretical model of $p_T(W)$
 - Use precisely measured $p_T(Z \rightarrow ll)$, statistics-limited

Calorimeter Recoil Model and p_T(W)

- Relevant $p_T(W)$ range ~ 5-10 GeV
 - Large non-perturbative contribution
 - Potential for small difference between $p_T(W)$ and $p_T(Z)$ due to charm-induced production (sc \longrightarrow W)

Parton Distribution Functions

- P_T^l, m_T not invariant under longitudinal boost given experimental rapidity cuts
- Forward rapidity coverage important to limit uncertainty from PDFs
 - W charge asymmetry measurement constrains u/d PDF ratio: statistics-limited
 - CDF measured in Run 1, new forward calorimeters in Run 2
 - D0 has forward coverage, charge measurement in Run 2
 - Use Forward W's in mass analysis
 - D0 did in Run 1, reduced PDF uncertainty (8 MeV vs 15 MeV)
- PDF fitters (MRST, CTEQ) now providing rigorous errors consensus on " 1σ " to emerge

QED Radiative Corrections

- Improvements over Run 1:
 - Complete NLO QED calculations available (U. Baur et. al.) for single photon emission
 - 2-photon calculations performed (Carloni Calame *et. al.*, hep-ex/0303102; Placzek & Jadach, hep-ex/0302065), predict 2-8 MeV shift in W mass
 - Combined QCD+QED (FSR γ) generator for W and Z bosons available (Cao & Yuan)
 - Independent scheme for combining generator-level QCD and QED effects in development at CDF
- Uncertainty in QED corrections not a fundamental limitation

Scaling of Systematic Uncertainties

No show-stoppers apparent yet

More data always welcome!

Summary

- Very successful Run 1 analyses of W boson mass and width
 - Systematic uncertainties limited by statistics of control samples
- Precise calibrations in progress of upgraded Run 2 detectors
- New developments in theoretical inputs
- Anticipate continued improvements in precision of W mass and width measurements with increasing Run 2 statistics