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Spontancous Symmetry Breaking

e 2008 Nobel Prize in Physics

"for the discovery of the mechanism of spontaneously broken symmetry
in subatomic physics"

Yoichiro Nambu

e Experimentally, jury is still out on Higgs mechanism of Electroweak
Symmetry Breaking in the Standard Model of Particle Physics



Outline

Importance of precision electroweak observables in the gauge and Higgs
sectors of the Standard Model

Current and future measurements of the W boson mass at the Tevatron

W boson mass measurement at the LHC
— potential for high precision

— 1ssues to address

Summary

Peter Higgs




Motivation

* The electroweak gauge sector of the standard model 1s
constrained by three precisely known parameters

— Oy (M) =1/127.918(18)
- G =1.16637 (1) x 10> GeV~2
M, =91.1876 (21) GeV
« Attree-level, these parameters are related to My, by
— My,2 = moigy / V2Gy sin?Oy,

» Where Uy, 1s the weak mixing angle, defined by (in the on-
shell scheme)

cos Uy, = My/M,,



Motivation

e Radiative corrections due to heavy quark and Higgs loops and exotica

w w

Motivate the introduction of the p parameter: My,> = p [M(tree)]?
with the predictions (p-1) ~ M,* and (p-1) ~ In My

e In conjunction with Mop» the W boson mass constrains the mass of the

Higgs boson, and possibly new particles beyond the standard model



Progress on M, at the Tevatron

Mass of the Top Quark (*Preliminary)
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From the Tevatron, @ZS@ = 1.3 GeV =>oM,/ M, =11%
equivalent OMy, = 8 MeV for the same Higgs mass constraint
Current world average oMy, = 23 MeV

— progress on OM,, now has the biggest impact on Higgs constraint!



Uncertainty from Q. (M)
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e 00y, dominated by uncertainty from non-perturbative contributions:

hadronic loops in photon propagator at low O’
e equivalent OM,, = 4 MeV for the same Higgs mass constraint

- Was equivalent 0My, = 15 MeV a decade ago !



Contributions from Supersymmetric Particles

(or any other model of new physics with calculable radiative corrections)

e Radiative correction depends on mass splitting between squarks in SU(2)
doublet

e After folding in limits on SUSY particles from direct searches, SUSY loops
can contribute 100-200 MeV to M

e Ratio of squark masses > 2.5 already disfavored by precision electroweak
measurements



My, vs M
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How will this plot change after (if) LHC observes
(I) the Higgs (11) one or more SUSY particles  (i11) something else ?
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My, vs M

experimental errors: LEP2/Tevatron (today)
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Higgs discovery with a large Higgs mass (measured with say 25% precision)
would create an interesting landscape



Current Higgs Constraint from SM Electroweak Fit
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« Can the X° parabola in In M, be narrowed?

 Where will it minimize in the future?
« Can Tevatron exclude the Higgs in the preferred (M, <200 GeV) range?

e Will LHC see the (SM or non-SM) Higgs inside or outside the preferred mass
range?



Current Tevatron SM Higgs Limits

Tevatron Run Il Preliminary, L=2.0-5.4 fbo™
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« Tevatron sensitivity within factor of 2 of standard model for M < 185 GeV

* Doubling of dataset (10 fb™' per experiment) quite likely by 2011
e Analysis improvements have contributed as much as luminosity increases
e More analysis improvements being developed



Motivation 11

« SM Higgs fit: M, = 83", GeV (gfitter.desy.de)

« LEPII direct searches: M, > 114.4 GeV @ 95% CL (PLB 565, 61)
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In addition to the Higgs,
1s there another missing piece
in this puzzle?

(Apg® vs A, : 3.20)

Must continue improving
precision of M, , M,,,...

other precision measurements

constrain Higgs, equivalent
to OMy, ~ 15 MeV

Motivate direct measurement of M,, at the 15 MeV level and better



Motivation II
« SM Higgs fit: M, = 83", GeV (gfitter.desy.de)

« LEPII direct searches: M, > 114.4 GeV @ 95% CL (PLB 565, 61)

In addition to the Higgs,
1s there another missing piece
in this puzzle?

(Apg® vs A, : 3.20)

Must continue improving
precision of M, M,,,...

other precision measurements

constrain Higgs, equivalent
to OMy, ~ 15 MeV

Motivate direct measurement of M,, at the 15 MeV level and better



Motivation 11

e Separate fits for M. using only leptonic and only hadronic

measurements of asymmetries: marginal difference in preferred Higgs
mass (from M. Chanowitz, February 2007 Seminar, Fermilab)
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Motivation III

e Generic parameterization of new physics contributing to W and Z
boson self-energies: S, 7, U parameters

Does not parameterize new physics in boson-fermion vertices
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(From PDG 2009)

Asymmetries and Zﬁw are the most powerful observables 1n this parameterization



Motivational Summary
At the dawn of the LHC era, we don't know

— Mechanism of electroweak symmetry breaking
— Solution to electroweak scale vs Planck scale hierarchy

If there 1s new physics, there 1s a large range of models

Precision electroweak measurements have provided much guidance
— But some intriguing tension in electroweak fits already

Will LHC discoveries decrease or increase this tension?

Higher precision on electroweak observables makes LHC discoveries
even more interesting:

— Guide interpretation of what we see
— Triangulate for what is not yet seen

- M has become a major player, and becomes more powertul as

precision keeps improving



W Boson Mass
Analysis Strategy



W Boson Production at the Tevatron

Quark

T QHCOB

Lepton

Antiquark W

€

Q
N
0@0

Quark-antiquark annihilation
dominates (80%)

Hadronic recoil

Lepton p carries most of W mass
information, can be measured precisely (achieved 0.03%)

Initial state QCD radiation 1s O(10 GeV), measure as soft 'hadronic recoil' in
calorimeter (calibrated to ~1%)
Pollutes W mass information, fortunately p (W) << M,



W Boson Production at the Tevatron

Ocmﬁw T Q_gOS

Antiquark

Quark-antiquark annihilation
dominates (80%)

Lepton p carries most of /¥ mass
information, can be measured precisely (achieved 0.03%)

Initial state QCD radiation 1s O(10 GeV), measure as soft 'hadronic recoil' in
calorimeter (calibrated to ~1%)



Quadrant of Collider Detector at Fermilab (CDF)
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Collider Detector at Fermilab (CDF)

Muon
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W Boson Mass Measurements

CDF: 200 pb™, electron
and muon channels

DO: 1 fb', electron
channel

CDF | 80433 = 79
DO | 80483 = 84
DELPHI °77 80336 = 67
L3 T 80270 = 55
OPAL 780416 + 53
ALEPH 80440 + 51
CDF I 780413 = 48
DO I 780401 = 43
World \_/<m. moﬁ_um AQm_m_Bv ..o_m..ow@@ _H 23
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(DO Run II: PRL 103:141801, 2009)
(CDF Run II: PRL 99:151801, 2007; PRD 77:112001, 2008)



Signal Simulation and Template Fitting

e All signals simulated using a custom Monte Carlo

— QGenerate finely-spaced templates as a function of the fit variable

— perform binned maximum-likelihood fits to the data

e Custom fast Monte Carlo makes smooth, high statistics templates

— And provides analysis control over key components of the simulation
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events0.5 GeV
o
8
o

30000

20000

10000

M, =81 GeV
Monte Carlo template

20
Transverse Mass (GeV)

mass, charged lepton p; and neutrino p.

CDF and DO extract the W mass from three kinematic distributions: Transverse



Energy scale and resolution at DO

e Calibrate EM energy scale using Z—ee
decays and LEP value for m;z

Reym(Ro) =ax Eg+ 3
e Amw=34 MeV

e Dominant systematic, limited by Z
statistics

e Parameterize energy resolution as constant
term and sampling term

e Sampling term driven by knowledge of
amount of material in CAL

e Constant term from Z peak
¢ Obtain C=(2.05+0.1)%
e Amw=2 MeV
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Events/0.5 GeV

W mass measurement: DO
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T..,_:_._ ¢ alnmw ) MeV g
T.“x_.:_.:.:..:.:_
Electron Energy Scale 3
Electron Energy Resclution Model 2
Flectron Energy Nonlinearity |
W and Z Electron energy !
loss differences
Recoil Maodel 6
Electron Efficiencies 5
Backgrounds 2
Experimental Total 39
W production and
decay model
rpr 9
QED 7
; Boson pr 2
W model Total 12
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e Electron channel with 1 fb™

e Combines all 3 fits
mw=80401+21(stat)+38(syst) MeV/c?
e Single best measurement of mw

e Both CDF and D@ looking at larger
datasets

e ~25 MeV precision



Outline of CDF Analysis

Energy scale measurements drive the W mass measurement

 Tracker Calibration

— alignment of the central drift chamber (COT with ~2400 cells) using
COSMIC rays

— COT momentum scale and tracker non-linearity constrained using
J/P—>PUY and Y —> U mass fits

e Confirmed using Z— UM mass fit

e EM Calorimeter Calibration

— COT momentum scale transferred to EM calorimeter using a fit to the peak
of the E/p spectrum, around E/p ~ 1

— Calorimeter energy scale confirmed using Z —» ee mass fit
e Tracker and EM Calorimeter resolutions

e Hadronic recoil modelling

— Characterized using p-balance in Z —»// events



Internal Alignment of COT

e Use a clean sample of ~200k cosmic rays for cell-by-cell internal
alignment

171693 Run: 139737 m,.a:n.—.\wﬂ\%—.»_ :
I —

4

e Fit COT hits on both
sides simultaneously

to a single helix (AK,
H. Gerberich and C. Hays,
NIMA 506, 110 (2003))

— Time of incidence is a
floated parameter

e Same technique being
used on ATLAS and
CMS
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Residuals of COT cells after alignment
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Cross-check of COT alignment

* Final cross-check and correction to track curvature based on
difference of <E/p> for positrons vs electrons (red points)

« Smooth ad-hoc curvature corrections applied => 0M, = 6 MeV

» Systematic effects also relevant for LHC trackers
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Signal Simulation and Fitting



Monte Carlo Detector Simulation

e A complete detector simulation of all quantities measured in the data
» First-principles simulation of tracking

— Tracks and photons propagated through detector geometry




A plp

Ap/p

-0.001

-0.002

-0.003

Tracking Momentum Calibration

e Setusing J/¥ > U and Y » PM resonances

— Consistent within total uncertainties

* Use J/¥ to study and calibrate non-linear response of tracker

e Systematics-dominated, improved detector modelling required
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Electromagnetic Calorimeter Calibration

 E/p peak from W *>eV decays provides EM calorimeter calibration
relative to the tracker

— Calibration performed in bins of electron energy

CDF II .- L dt ~ 200 pb™
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o
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events / 0.01

2000
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stat

v2ldof =17 116

® Data
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Tail region of E/p spectrum

used for tuning model of
\ radiative material
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Events / 0.5 GeV

Z [l Mass Cross-checks

e 7 boson mass fits consistent with tracking and E/p-based calibrations

CDF II L ~200/pb
200 400 — ®
i T _ @wﬁ_ma on : — mwmﬂ_maos

M, = (91184 + 43) MeV

v*ldof =32/ 30

-

o

o
N
o
o

Events / 0.5 GeV

M(up) (GeV)



events / 0.5 GeV

1000
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W Transverse Mass Fits
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events / 0.25 GeV
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Transverse Mass Fit Uncertainties (MeV)
(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

electrons MUONS common
W statistics 48 4 0
Lepton energy scale 30 17 17
Lepton resolution 9 3 -3
Recoil energy scale 9 9 9
Recoil energy resolution 7 7 7
W charge Selection bias 3 1 0
asymmetry Lepton removal 8 5 5
from Tevatron — Backgrounds 8 9 0
helps with PDEs 1o quction dynamics 3 3 3
T Parton dist. Functions 11 11 11
QED rad. Corrections 11 12 11
Total systematic 39 27 26
Total 62 60

Systematic uncertainties shown in green: statistics-limited by control data samples



Improvement of My, Uncertainty with Sample Statistics
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Next target: 15-20 MeV measurement of M~ from the Tevatron



Events / 10 MeV (GeV/c?)

Preliminary Studies of 2.3 fb-! Data from CDF

CDF has started the analysis of 2.3 fb-! of data, with the goal of measuring
M,y with precision better than 25 MeV

Lepton resolutions as good as they were in 200 pb-! sample
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Events / 0.01

Preliminary Studies of 2.3 fb-! Data

Statistical errors on all lepton
calibration fits have scaled with
statistics

Detector and data quality
maintained over time

detailed calibrations 1n progress
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Preliminary Studies of 2.3 ftb-! Data

Events / 0.5 GeV/c?

Recoil resolution not
significantly degraded
at higher instantaneous
luminosity

Events / 0.5 GeV/c?
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M,, Measurement at LHC
Very high statistics samples of W and Z bosons

- 10 b at 14 TeV: 40 million W boson and 4 million Z boson
candidates per decay channel per experiment

Statistical uncertainty on W mass fit ~ 2 MeV

Calibrating lepton energy response using the Z — [/ mass resonance,
best-case scenario of statistical limit ~ 5 MeV precision on calibrations

Calibration of the hadronic calorimeter based on transverse momentum
balance in Z — [/ events also ~ 2 MeV statistical limit

Total uncertainty on M, ~ 5 MeV it Z — [l data can measure all the W
boson systematics



Zé Measurement at LHC

Can the Z — /[ data constrain all the relevant W boson systematics?
Production and decay dynamics are slightly different

— Different quark parton distribution functions
— Non-perturbative (e.g. charm mass effects in cs — W) effects

— QCD effects on polarization of W vs Z affects decay kinematics

Lepton energies different by ~10% in W vs Z events
Presence of second lepton influences the Z boson event relative to W
Reconstructed kinematic quantity different (invariant vs transverse mass)

Subtle differences in QED radiative corrections

....... (A.V. Kotwal and J. Stark, Ann. Rev. Nucl. Part. Sci., vol. 58, Nov 2008)



Zé Measurement at LHC

e (Can the Z — [/ data constrain all the relevant W boson systematics?

e (Can we add other constraints from other mass resonances and tracking
detectors ?

* With every increase in statistics of the data samples, we climb a new
learning curve on the systematic effects
- Improved calculations of QED radiative corrections available

— Better understanding of parton distributions from global fitting
groups (CTEQ, MSTW, Giele et al)

» large sample statistics at the LHC imply the potential is there for 5-10
MeV precision on M



Summary

The W boson mass is a very interesting parameter to measure with
increasing precision

CDF Run 2 W mass result with 200 pb-! data:
- My, = 80413 £ 48 MeV

DO Run 2 W mass result with 1 fb! data:
_ M, = 80401 + 43 MeV

Most systematics limited by statistics of control samples

— CDF and DO are both working on 0My;, <25 MeV measurements
from ~ 2 fb"! (CDF) and ~ 4 fb"! (DO0)

Learning as we go: Tevatron — LHC may produce 0M,, ~ 5-10 MeV



A possible Future Scenario
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Higgs discovery with a large Higgs mass



