University of Maryland / Johns Hopkins University High Energy Physics Seminar December 2, 2009

Duke University

Measurement of the W Boson Mass at the Tevatron and LHC

Ashutosh Kotwal

Spontaneous Symmetry Breaking

2008 Nobel Prize in Physics

in subatomic physics" "for the discovery of the mechanism of spontaneously broken symmetry

Yoichiro Nambu

- Symmetry Breaking in the Standard Model of Particle Physics Experimentally, jury is still out on Higgs mechanism of Electroweak

Outline

- sectors of the Standard Model Importance of precision electroweak observables in the gauge and Higgs
- Current and future measurements of the W boson mass at the Tevatron
- W boson mass measurement at the LHC
- potential for high precision
- issues to address
- Summary

Motivation

- The electroweak gauge sector of the standard model is constrained by three precisely known parameters
- $\alpha_{\rm EM} \,({\rm M_Z}) = 1 \,/\, 127.918(18)$
- G_F = 1.16637 (1) x 10⁻⁵ GeV⁻² M_Z = 91.1876 (21) GeV
- At tree-level, these parameters are related to M_W by

$$- M_W^2 = \pi \alpha_{\text{EM}} / \sqrt{2}G_F \sin^2 \vartheta_W$$

Where ϑ_W is the weak mixing angle, defined by (in the onshell scheme)

$$\cos \vartheta_{\rm W} = M_{\rm W}/M_{\rm Z}$$

Motivation

Radiative corrections due to heavy quark and Higgs loops and exotica

Motivate the introduction of the ρ parameter: $M_W^2 = \rho [M_W(tree)]^2$ with the predictions $(\rho - 1) \sim M_{top}^2$ and $(\rho - 1) \sim \ln M_H$

In conjunction with M_{top}, the W boson mass constrains the mass of the Higgs boson, and possibly new particles beyond the standard model

Progress on M_{top} at the Tevatron

- equivalent $\delta M_W = 8$ MeV for the same Higgs mass constraint

Current world average $\delta M_W = 23 \text{ MeV}$

- progress on δM_W now has the biggest impact on Higgs constraint!

- From the Tevatron, $\delta M_{top} = 1.3 \text{ GeV} \Rightarrow \delta M_H / M_H = 11\%$

- $\delta \alpha_{EM}$ dominated by uncertainty from non-perturbative contributions: hadronic loops in photon propagator at low Q^2
- equivalent $\delta M_W \approx 4$ MeV for the same Higgs mass constraint
- Was equivalent $\delta M_W \approx 15$ MeV a decade ago !

Contributions from Supersymmetric Particles

(or any other model of new physics with calculable radiative corrections)

- doublet Radiative correction depends on mass splitting between squarks in SU(2)
- can contribute 100-200 MeV to M_w After folding in limits on SUSY particles from direct searches, SUSY loops
- Ratio of squark masses > 2.5 already disfavored by precision electroweak

measurements

would create an interesting landscape Higgs discovery with a large Higgs mass (measured with say 25% precision)

Current Higgs Constraint from SM Electroweak Fit

- Can the χ^2 parabola in ln M_H be narrowed?
- Where will it minimize in the future?
- Can Tevatron exclude the Higgs in the preferred ($M_H < 200 \text{ GeV}$) range?
- range? Will LHC see the (SM or non-SM) Higgs inside or outside the preferred mass

- Tevatron sensitivity within factor of 2 of standard model for $M_{H} < 185 \text{ GeV}$
- Doubling of dataset (10 fb⁻¹ per experiment) quite likely by 2011
- Analysis improvements have contributed as much as luminosity increases
- More analysis improvements being developed

Motivation II

- SM Higgs fit: $M_{H} = 83^{+30}_{-23}$ GeV (gfitter.desy.de)
- LEPII direct searches: $M_{H} > 114.4 \text{ GeV} (a) 95\% \text{ CL} (PLB 565, 61)$

Motivation II

- SM Higgs fit: $M_{H} = 83^{+30}_{-23}$ GeV (gfitter.desy.de)
- LEPII direct searches: $M_H > 114.4$ GeV @ 95% CL (PLB 565, 61)

In addition to the Higgs, is there another missing piece in this puzzle?

$$A_{FB}^{b} \nu s A_{LR}: 3.2\sigma$$
)

Must continue improving precision of M_W , M_{top} ...

other precision measurements constrain Higgs, equivalent

to $\delta M_W \sim 15 \text{ MeV}$

Motivate direct measurement of M_W at the 15 MeV level and better

Motivation II

Separate fits for M_{H} using only leptonic and only hadronic

mass (from M. Chanowitz, February 2007 Seminar, Fermilab) measurements of asymmetries: marginal difference in preferred Higgs

χ² Distributions: Leptonic vs. Hadronic

 χ^2

Possible explanations: Statistical fluctuation Systematic experimental bias New physics contributions:

MSSMAltarelli et. al. 4^{th} familyOkun et. al.Opaque branesCarena et. al.To raise M_H prediction of leptonicasymmetries

New physics in b-quark asymmetry requires large modification to Zbb vertex

Motivation III

- boson self-energies: S, T, U parameters Generic parameterization of new physics contributing to W and Z
- Does not parameterize new physics in boson-fermion vertices

Motivational Summary

- At the dawn of the LHC era, we don't know
- Mechanism of electroweak symmetry breaking
- Solution to electroweak scale vs Planck scale hierarchy
- ا :
- If there is new physics, there is a large range of models
- Precision electroweak measurements have provided much guidance
- But some intriguing tension in electroweak fits already
- Will LHC discoveries decrease or increase this tension?
- Higher precision on electroweak observables makes LHC discoveries even more interesting:
- Guide interpretation of what we see
- Triangulate for what is not yet seen
- I M_w has become a major player, and becomes more powerful as precision keeps improving

W Boson Mass Analysis Strategy

calorimeter (calibrated to $\sim 1\%$) Pollutes W mass information, fortunately $p_T(W) \ll M_W$ Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in

calorimeter (calibrated to $\sim 1\%$) Pollutes W mass information, fortunately $p_T(W) \ll M_W$ Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in

Select W and Z bosons with central ($|\mathbf{n}| < 1$) leptons

Quadrant of Collider Detector at Fermilab (CDF)

Collider Detector at Fermilab (CDF)

Muon detector

Central outer tracker (COT) Central hadronic calorimeter

(D0 Run II: PRL 103:141801, 2009) (CDF Run II: PRL 99:151801, 2007; PRD 77:112001, 2008)

Signal Simulation and Template Fitting

- All signals simulated using a custom Monte Carlo
- Generate finely-spaced templates as a function of the fit variable
- perform binned maximum-likelihood fits to the data
- Custom fast Monte Carlo makes smooth, high statistics templates
- And provides analysis control over key components of the simulation

mass, charged lepton p_T and neutrino p_T CDF and D0 extract the W mass from three kinematic distributions: Transverse

Energy scale and resolution at DØ

• Calibrate EM energy scale using $Z \rightarrow ee$ decays and LEP value for m_Z

$$R_{EM}(R_0) = \alpha \times E_0 + \beta$$

- ∆mw=34 MeV
- Dominant systematic, limited by Z statistics
- Parameterize energy resolution as constant term and sampling term
- Sampling term driven by knowledge of amount of material in CAL
- Constant term from Z peak
- Obtain C=(2.05±0.1)%
- ∆*m*_W=2 MeV

W mass measurement: DØ

	$\sigma(m_W) \text{ MeV } m_T$
Experimental Electron Energy Scale	34
Electron Energy Resolution Model	2
Electron Energy Nonlinearity	4
W and Z Electron energy	4
loss differences	
Recoil Model	6
Electron Efficiencies	া
Backgrounds	2
Experimental Total	33
W production and	
decay model	
PDF	9
QED	-1
Boson pr	2
W model Total	12
Total	37

- Electron channel with 1 fb⁻¹
- Combines all 3 fits

m_W=80401±21(stat)±38(syst) MeV/c²

- Single best measurement of mw
- Both CDF and DØ looking at larger datasets

miss*E*₇

80.402±0.050 GeV

~25 MeV precision

Outline of CDF Analysis

Energy scale measurements drive the W mass measurement

- Tracker Calibration
- alignment of the central drift chamber (COT with ~2400 cells) using cosmic rays
- I COT momentum scale and tracker non-linearity constrained using $J/\psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ mass fits
- Confirmed using Z→µµ mass fit
- EM Calorimeter Calibration
- I COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around E/p ~ 1
- Calorimeter energy scale confirmed using $Z \rightarrow ee$ mass fit
- Tracker and EM Calorimeter resolutions
- Hadronic recoil modelling
- Characterized using p_T -balance in $Z \rightarrow ll$ events

Internal Alignment of COT

alignment Use a clean sample of $\sim 200k$ cosmic rays for cell-by-cell internal

- Fit COT hits on both sides simultaneously to a single helix (AK, H. Gerberich and C. Hays, NIMA 506, 110 (2003))
- Time of incidence is a floated parameter
- Same technique being used on ATLAS and CMS

Cross-check of COT alignment

- difference of <E/p> for positrons vs electrons (red points) Final cross-check and correction to track curvature based on
- Smooth ad-hoc curvature corrections applied $\Rightarrow \delta M_W = 6 MeV$
- Systematic effects also relevant for LHC trackers

Signal Simulation and Fitting

Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
- I Tracks and photons propagated through detector geometry

Tracking Momentum Calibration

- Set using $J/\Psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ resonances
- Consistent within total uncertainties
- Use J/Y to study and calibrate non-linear response of tracker
- $\Delta p/p_{\uparrow}$ -0.003∟ 0 -0.002 -0.001 CDFI J/ Ψ mass independent of $p_T(\mu)$ Systematics-dominated, improved detector modelling required Scale correction = $(-1.64\pm0.01_{stat}\pm0.06_{slope})x10^{-3}$ J/Ψ→µµ data $L dt \approx 200 \text{ pb}^{-1}$ events / 15 MeV 2000 1000 CDF II Δ p/p = (-1.376 \pm 0.064_{stat}) x 10⁻³ mass fit χ^2 /dof = 26 / 18 L dt ≈ 200 pb⁻¹

 $<1/p_{T}^{0.2}(\mu)>(GeV^{0.4})$

0.(<1/p[#]> (GeV⁻¹)

9

9.5

10 m_{µµ} (GeV)

Electromagnetic Calorimeter Calibration

- relative to the tracker E/p peak from $W \rightarrow ev$ decays provides EM calorimeter calibration
- Calibration performed in bins of electron energy

Z boson mass fits consistent with tracking and E/p-based calibrations

events / 0.5 GeV

W Lepton p_T Fits

	Transverse Mass Fit Uncertainties (MeV) (CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)	Uncertaintie Phys. Rev. D 77:1	s (MeV) 12001, 2008)	
		electrons	muons	common
	W statistics	48	54	0
	Lepton energy scale	30	17	17
	Lepton resolution	9	ω	ىك
	Recoil energy scale	9	9	9
	Recoil energy resolution	7	7	Γ
W charge	Selection bias	ω		0
asymmetry	Lepton removal	8	S	S
from Tevatron	Backgrounds	8	9	0
helps with PDFs	production dynamics	ω	ω	ယ
	► Parton dist. Functions	11	11	11
	QED rad. Corrections	11	12	11
	Total systematic	39	27	26
	Total	62	60	
2	•	· • • •	- - -	

Systematic uncertainties shown in green: statistics-limited by control data samples

Improvement of M_W Uncertainty with Sample Statistics

 M_W with precision better than 25 MeV CDF has started the analysis of 2.3 fb⁻¹ of data, with the goal of measuring

Lepton resolutions as good as they were in 200 pb⁻¹ sample

M_w Measurement at LHC

- Very high statistics samples of W and Z bosons
- I 10 fb⁻¹ at 14 TeV: 40 million W boson and 4 million Z boson candidates per decay channel per experiment
- Statistical uncertainty on W mass fit $\sim 2 \text{ MeV}$
- best-case scenario of statistical limit ~ 5 MeV precision on calibrations Calibrating lepton energy response using the $Z \rightarrow ll$ mass resonance,
- Calibration of the hadronic calorimeter based on transverse momentum balance in $Z \rightarrow ll$ events also ~ 2 MeV statistical limit
- Total uncertainty on $M_w \sim 5$ MeV if $Z \rightarrow ll$ data can measure all the W boson systematics

M_w Measurement at LHC

- Can the $Z \rightarrow ll$ data constrain all the relevant W boson systematics?
- Production and decay dynamics are slightly different
- Different quark parton distribution functions
- Non-perturbative (e.g. charm mass effects in $cs \rightarrow W$) effects
- QCD effects on polarization of W vs Z affects decay kinematics
- Lepton energies different by $\sim 10\%$ in W vs Z events
- Presence of second lepton influences the Z boson event relative to W
- Reconstructed kinematic quantity different (invariant vs transverse mass)
- Subtle differences in QED radiative corrections
- •
- (A.V. Kotwal and J. Stark, Ann. Rev. Nucl. Part. Sci., vol. 58, Nov 2008)

M_w Measurement at LHC

- Can the $Z \rightarrow ll$ data constrain all the relevant W boson systematics?
- Can we add other constraints from other mass resonances and tracking detectors ??
- With every increase in statistics of the data samples, we climb a new learning curve on the systematic effects
- Improved calculations of QED radiative corrections available
- Better understanding of parton distributions from global fitting groups (CTEQ, MSTW, Giele et al)
- large sample statistics at the LHC imply the potential is there for 5-10 MeV precision on M_w

Summary

- The W boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result with 200 pb⁻¹ data:
- $M_W = 80413 \pm 48 \text{ MeV}$
- D0 Run 2 W mass result with 1 fb⁻¹ data:
- $M_W = 80401 \pm 43 \text{ MeV}$
- Most systematics limited by statistics of control samples
- CDF and D0 are both working on $\delta M_W < 25$ MeV measurements from ~ 2 fb⁻¹ (CDF) and ~ 4 fb⁻¹ (D0)
- Learning as we go: Tevatron \rightarrow LHC may produce $\delta M_W \sim 5-10$ MeV

Higgs discovery with a large Higgs mass