W Boson Mass Measurements at the Tevatron Ashutosh Kotwal Duke University

For the CDF and D0 Collaborations

Large Hadron Collider Physics Conference Barcelona, May 17, 2013 Motivation for Precision Electroweak Measurements

• Radiative corrections due to heavy quark and Higgs loops and exotica

Motivate the introduction of the ρ parameter: $M_W^2 = \rho [M_W(\text{tree})]^2$ with the predictions $\Delta \rho = (\rho-1) \sim M_{\text{top}}^2$ and $\Delta \rho \sim \ln M_H$

- In conjunction with M_{top} and the Higgs boson mass, the W boson mass stringently tests the SM
- A discrepancy with the SM can be used to test new physics models

Contributions from Supersymmetric Particles

- Radiative correction depends on mass splitting (Δm^2) between squarks in SU(2) doublet
- After folding in limits on SUSY particles from direct searches, SUSY loops can contribute 100 MeV to M_w

Progress on M_{top} at the Tevatron and LHC

- From the Tevatron and LHC (which is approaching Tevatron precision), $\Delta M_{top} < 0.9 \text{ GeV} => \Delta M_H / M_H < 8\%$
- equivalent $\Delta M_W < 6$ MeV for the same Higgs mass constraint
- Current world average $\Delta M_W = 15 \text{ MeV}$
 - progress on ΔM_W has the biggest impact on precision electroweak fit

Motivation

• Generic parameterization of new physics contributing to W and Z boson self-energies: *S*, *T*, *U* parameters (Peskin & Takeuchi)

 M_{w} and Asymmetries are the most powerful observables in this parameterization

W Boson Production at the Tevatron

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrated to ~0.5%)

Quadrant of Collider Detector at Fermilab (CDF)

Select W and Z bosons with central ($|\mathbf{\eta}| < 1$) leptons

D0 Detector at Fermilab

Electron Energy Scale at D0

- Correct for low-energy non-linearity
 - Energy loss due to upstream dead material (ionization, bremsstrahlung)
 - Modeling of underlying event energy flow in electron towers
 - Electronics noise and pileup
- Straight-line model for calorimeter response

 $R_{EM}(E_{true}) = \alpha \cdot (E_{true} - \bar{E}_{true}) + \beta + \bar{E}_{true}$ Offset, ^{0.3} 0.550 0.12 0.12 D0 Run II, 4.3 fb⁻¹ Tune on $Z \rightarrow ee$ mass exploiting electron energy spread => measure m_w/m_z L<0.72 0.075 0.72<L<1.4 1.4<L<2.2 Calibration procedure checked with L>2.2 closure test performed with 1.01 1.02 1.03 1.04 1.05 GEANT pseudo-data Scale, α

$Z \rightarrow ee \text{ data } at D0$

Good agreement between data and parameterised Monte Carlo.

CDF Electron and Muon Measurement

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
 - Tracks and photons propagated through a high-granularity 3-D lookup table of material properties for silicon detector and drift chamber

Internal Alignment of CDF Drift Chamber

• Use a clean sample of ~400k cosmic rays for cell-by-cell internal alignment

- Fit hits on both sides simultaneously to a single helix (A. Kotwal, H. Gerberich and C. Hays, NIMA 506, 110 (2003))
 - Time of incidence is a floated parameter in this 'dicosmic fit'

CDF Tracking Momentum Scale

Set using $J/\psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ resonance and $Z \rightarrow \mu\mu$ masses

- Extracted by fitting J/ ψ mass in bins of 1/p_T(μ), and extrapolating momentum scale to zero curvature
- J/ $\psi \rightarrow \mu\mu$ mass independent of $p_T(\mu)$ after 4% tuning of energy loss

CDF Tracking Momentum Scale

$\Upsilon \rightarrow \mu\mu$ resonance provides

- Momentum scale measurement at higher p_T
- Validation of beam-constaining procedure (upsilons are promptly produced)
- Cross-check of non-beam-constrained (NBC) and beam-constrained (BC) fits

 $Z \rightarrow \mu \mu$ Mass Cross-check & Combination at CDF

- Using the J/ ψ and Y momentum scale, performed "blinded" measurement of Z mass
 - Z mass consistent with PDG value (91188 MeV) (0.7 σ statistical)

CDF Tracker Linearity Cross-check & Combination

- Final calibration using the J/ψ , Υ and Z bosons for calibration
- Combined momentum scale correction :

EM Calorimeter Energy Calibration at CDF

• E/p peak from $W \rightarrow ev$ decays provides measurements of EM calorimeter scale and its (E_T-dependent) non-linearity

$$\Delta S_E = (9_{\text{stat}} \pm 5_{\text{non-linearity}} \pm 5_{X0} \pm 9_{\text{Tracker}}) \times 10^{-5}$$

Setting S_E to 1 using E/p calibration from combined $W \rightarrow ev$ and $Z \rightarrow ee$ samples

 $Z \rightarrow ee$ Mass Cross-check and Combination at CDF

- Performed "blind" measurement of Z mass using E/p-based calibration
 - Consistent with PDG value (91188 MeV) within 1.4 σ (statistical)

-
$$M_Z = 91230 \pm 30_{stat} \pm 10_{calorimeter} \pm 8_{momentum} \pm 5_{QED} \pm 2_{alignment} MeV$$

• Combine E/p-based calibration with $Z \rightarrow ee$ mass for maximum precision

 $\Delta M_{\rm W} = 10 {\rm MeV}$

Recoil Response Model at D0 (similar to CDF)

- Hadronic response model motivated from "first principles"
 - "jet response" + spectator interaction + additional interactions and noise

W Mass Fits at D0

Fitted result: $m_W = 80371 \pm 13$ (stat) MeV Fitted result: $m_W = 80343 \pm 14$ (stat) MeV

W Mass Fits at CDF

Neutrino p_{T} fits also performed by both experiments to check consistency

Transverse Mass Fit Uncertainties (MeV)

Source	CDF $m_T(\mu, u)$	$CDF\ m_T(e, u)$	$D {oldsymbol {Q}} \ m_T(e, u)$					
Experimental – Statistical power of the calibration sample.								
Lepton Energy Scale	7	10	16					
Lepton Energy Resolution	1	4	2					
Lepton Energy Non-Linearity			4					
Lepton Energy Loss			4					
Recoil Energy Scale	5	5						
Recoil Energy Resolution	7	7						
Lepton Removal	2	3						
Recoil Model			5					
Efficiency Model			1					
Background	3	4	2					
W production and decay model – Not statistically driven.								
PDF	10	10	11					
QED	4	4	7					
Boson p_T	3	3	2					

Combined W Mass Result, Error Scaling (CDF)

W Boson Mass Measurements from Different Experiments

PDF Uncertainties – scope for improvement

- Factor of 5 bigger samples of W and Z bosons available at Tevatron
- Newer PDF sets, *e.g.* CT10W include more recent data, such as Tevatron W charge asymmetry data
- Dominant sources of W mass uncertainty are the d_{valence} and \overline{d} - \overline{u} degrees of freedom
 - Understand consistency of data constraining these d.o.f.
 - PDF fitters increase tolerance to accommodate inconsistent datasets
- Tevatron and LHC measurements that can further constrain PDFs:
 - Z boson rapidity distribution
 - W $\rightarrow l\nu$ lepton rapidity distribution
 - W boson charge asymmetry

Test of Electroweak Quantum Loops at High Energy

The top quark mass, the W boson mass and the mass of the Higgs boson provides a stringent test of the standard model at loop level

Current M_W vs M_{top}

Improved $M_W vs M_{top}$ (half the current uncertainties)

Summary

- The W boson mass is a very interesting parameter to measure with increasing precision
- New Tevatron W mass result from 2.2 fb⁻¹ 5.3 fb⁻¹ (PRL 108, 151803 & 151804)

 $- M_W = 80385 \pm 15 \text{ MeV}$

• New global electroweak fit $M_{\rm H} = 94^{+29}_{-24}$ GeV @ 68% CL (LEPEWWG)

– Consistent with directly measured $M_{_{\rm H}} \sim 125 \text{ GeV}$

• Looking forward to $\Delta M_W < 10$ MeV from 10 fb⁻¹ of Tevatron data

– Could LHC achieve $\Delta M_W \sim 5$ MeV given huge statistics ?

Backup

Constraining Boson p_T Spectrum

• Fit the non-perturbative parameter g_2 and QCD coupling α_s in RESBOS to $p_T(ll)$ spectra: $\Delta M_w = 5 \text{ MeV}$

Measurement of EM Calorimeter Non-linearity

- Perform E/p fit-based calibration in bins of electron E_T
- GEANT-motivated parameterization of non-linear response: $S_E = 1 + \beta \log(E_T / 39 \text{ GeV})$
- Tune on W and Z data: $\beta = (5.2 \pm 0.7_{stat}) \times 10^{-3}$

 $=>\Delta M_W = 4 \text{ MeV}$

Tuning Recoil Resolution Model with Z events

At low $p_T(Z)$, p_T -balance constrains hadronic resolution due to underlying event

At high $p_T(Z)$, p_T -balance constrains jet resolution

Testing Hadronic Recoil Model with W events

Recoil projection (GeV) on lepton direction

Systematic Uncertainties in QED Radiative Corrections

	CDF0	CDFIa	CDFIb	$CDFII 200 pb^{-1}$	$CDFII 2.3 fb^{-1}$	$DØ 1 fb^{-1}$
effects:						
single photon				\checkmark		\checkmark
exact $\mathcal{O}(\alpha)$	_	—	—			—
$\operatorname{multi-photon}$	_	_	_	_		\checkmark
ISR	_	_	_	_		_
uncertainties:						
2γ emission				\checkmark		\checkmark
ISR	—	—		\checkmark	\checkmark	\checkmark
$\alpha \alpha_s$	_	_	_	\checkmark	\checkmark	—
SV cut-off	—	—	—	\checkmark	\checkmark	\checkmark
Z/W correl.	—	—	—	\checkmark	\checkmark	\checkmark
beyond 2γ	_	_	—	—		—
H.O. SV corr.	_	_	—	_		—
pair creation	—	_	—	—		—
Breit-Wigner	_	_	_	_		_
EWK scheme	_	_	_	_		_

Parton Distribution Functions

- Affect W kinematic lineshapes through acceptance cuts
- We use CTEQ6 as the default PDF
- Use ensemble of 'uncertainty' PDFs
 - Represent variations of eigenvectors in the PDF parameter space
 - compute δM_W contribution from each error PDF
- Using MSTW2008 PDF ensemble defined for 68% CL, obtain systematic uncertainty of 10 MeV
- Comparing CTEQ and MSTW at 90% CL, yield similar uncertainty (CTEQ is 10% larger)
 - Cross-check: default MSTW2008 relative to default CTEQ6 yields 6 MeV shift in W mass

Generator-level Signal Simulation

- Generator-level input for W & Z simulation provided by RESBOS (C. Balazs & C.-P. Yuan, PRD56, 5558 (1997) and references therein), which
 - Calculates triple-differential production cross section, and p_T-dependent double-differential decay angular distribution
 - calculates boson p_T spectrum reliably over the relevant p_T range: includes tunable parameters in the non-perturbative regime at low p_T
- Multiple radiative photons generated according to PHOTOS (P. Golonka and Z. Was, Eur. J. Phys. C 45, 97 (2006) and references therein)