## Measurement of the W Boson Mass at the Tevatron

## Ashutosh Kotwal Duke University for the CDF and D0 Collaborations



34<sup>th</sup> International Conference on High Energy Physics University of Pennsylvania 30 July 2008

# Motivation

• The electroweak gauge sector of the standard model is constrained by three precisely known parameters

$$- \alpha_{\rm EM} ({\rm M_Z}) = 1 / 127.918(18)$$

 $-G_{\rm F} = 1.16637 (1) \times 10^{-5} \,{\rm GeV^{-2}}$ 

 $M_Z = 91.1876 (21) \text{ GeV}$ 

• At tree-level, these parameters are related to  $M_W$  by

$$- M_W^2 = \pi \alpha_{\rm EM} / \sqrt{2G_F \sin^2 \theta_W}$$

• Where  $\theta_W$  is the weak mixing angle, defined by  $\cos \theta_W = M_W / M_Z$ 

# Motivation

• Radiative corrections due to heavy quark and Higgs loops and exotica



Motivate the introduction of the  $\rho$  parameter:  $M_W^2 = \rho [M_W(\text{tree})]^2$ with the predictions  $(\rho-1) \sim M_{\text{top}}^2$  and  $(\rho-1) \sim \ln M_H$ 

• In conjunction with M<sub>top</sub>, the W boson mass constrains the mass of the Higgs boson, and possibly new particles beyond the standard model

# Progress on $M_{top}$ at the Tevatron



- From the Tevatron,  $\delta M_{top} = 1.4 \text{ GeV} \Rightarrow \delta M_H / M_H = 12\%$
- equivalent  $\delta M_W = 8$  MeV for the same Higgs mass constraint
- Current world average  $\delta M_W = 25 \text{ MeV}$ 
  - progress on  $\delta M_W$  now has the biggest impact on Higgs constraint!

# Motivation

- SM Higgs fit:  $M_{\rm H} = 87^{+36}_{-27}$  GeV (LEPEWWG & TeVEWWG, M. Grunewald)
- LEPII direct searches:  $M_H > 114.4 \text{ GeV} @ 95\% \text{ CL} (PLB 565, 61)$



In addition to the Higgs, is there another missing piece in this puzzle?

$$(A_{FB}^{b} vs A_{LR}^{c}: 3.2\sigma)$$

Must continue improving precision of  $M_W, M_{top}$ ...

other precision measurements constrain Higgs, equivalent to  $\delta M_W \sim 20$  MeV

Motivate direct measurement of M<sub>W</sub> at the 20 MeV level

## W Boson Production at the Tevatron



Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrated to ~1%) Pollutes *W* mass information, fortunately  $p_T(W) \ll M_W$ 

## W Boson Production at the Tevatron



Lepton p<sub>T</sub> carries most of *W* mass information, can be measured precisely (achieved 0.03%)

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrated to ~1%) Pollutes *W* mass information, fortunately  $p_T(W) \ll M_W$ 

### Constraining Boson p<sub>T</sub> Spectrum

- Fit the well-measured dilepton  $p_T(ll)$  spectra for non-perturbative model parameter (D0 Collaboration, PRL 100, 102002; CDF Collaboration, PRD 77:112001)  $\Delta M_w = 3 \text{ MeV}$ 
  - Consistent with global fits (Landry et al, PRD67, 073016 (2003))

Position of peak in boson  $p_T$  spectrum depends on non-perturbative parameter



## Tracking Momentum Scale

- Set using  $J/\psi \rightarrow \mu\mu$  and  $Y \rightarrow \mu\mu$  resonance and  $Z \rightarrow \mu\mu$  masses - All are individually consistent with each other
- $J/\psi$ :  $\Delta p/p = (-1.64 \pm 0.06_{stat} \pm 0.24_{sys}) \times 10^{-3}$ 
  - Extracted by fitting  $J/\psi$  mass in bins of  $<1/p_T(\mu)>$ , and extrapolating momentum scale to high momentum



## $Z \rightarrow \mu \mu$ Mass Cross-check & Combination

- Using the J/ $\psi$  and Y momentum scale, measured Z mass is consistent with PDG value
- Final combined:  $\Delta p/p = (-1.50 \pm 0.15_{independent} \pm 0.13_{QED} \pm 0.07_{align}) \times 10^{-3}$



### **EM Calorimeter Scale**

• E/p peak from  $W \rightarrow ev$  decays provides measurements of EM calorimeter scale and its (E<sub>T</sub>-dependent) non-linearity

 $-S_{\rm E} = 1 \pm 0.00025_{\rm stat} \pm 0.00011_{\rm X0} \pm 0.00021_{\rm Tracker}$ 

• Setting  $S_E$  to 1 using E/p calibration



## Z-ee Mass Cross-check and Combination

- Z mass consistent with E/p-based measurements
- Combining E/p-derived scale & non-linearity measurement with *Z*→*ee* mass yields the most precise calorimeter energy scale:



## W Boson Mass Fits

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)



## *W* Lepton p<sub>T</sub> Fits (CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)



#### Transverse Mass Fit Uncertainties (MeV) (CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

|                                                           |                          | electrons | muons | common |
|-----------------------------------------------------------|--------------------------|-----------|-------|--------|
|                                                           | W statistics             | 48        | 54    | 0      |
| W charge<br>asymmetry<br>from Tevatron<br>helps with PDFs | Lepton energy scale      | 30        | 17    | 17     |
|                                                           | Lepton resolution        | 9         | 3     | -3     |
|                                                           | Recoil energy scale      | 9         | 9     | 9      |
|                                                           | Recoil energy resolution | 7         | 7     | 7      |
|                                                           | Selection bias           | 3         | 1     | 0      |
|                                                           | Lepton removal           | 8         | 5     | 5      |
|                                                           | Backgrounds              | 8         | 9     | 0      |
|                                                           | pT(W) model              | 3         | 3     | 3      |
|                                                           | Parton dist. Functions   | 11        | 11    | 11     |
|                                                           | QED rad. Corrections     | 11        | 12    | 11     |
|                                                           | Total systematic         | 39        | 27    | 26     |
|                                                           | Total                    | 62        | 60    |        |

Systematic uncertainties shown in green: statistics-limited by control data samples

# Comparisons



The CDF Run 2 result is the most precise single measurement of the W mass (PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

M<sub>W</sub> vs M<sub>top</sub>





CDF has started the analysis of 2.3 fb<sup>-1</sup> of data, with the goal of measuring  $M_W$  with precision better than 25 MeV

Tracker alignment with cosmic rays has been completed for this dataset

Lepton resolutions as good as they were in 200 pb<sup>-1</sup> sample



Statistical errors on all lepton calibration fits have scaled with statistics

Detector and data quality maintained over time

detailed calibrations in progress

**CDF II preliminary** 

W->ev

Events / 0.01

40000

20000

L dt ≈ **2.4 fb**<sup>-1</sup>

 $\chi^2$ /dof = 33 / 16

1.5





# Summary

- The *W* boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result is the most precise single measurement:

$$- M_{W} = 80413 \pm 34_{stat} \pm 34_{syst} \text{ MeV}$$
$$= 80413 \pm 48 \text{ MeV}$$

# Summary

- The *W* boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result is the most precise single measurement:

$$- M_{W} = 80413 \pm 34_{stat} \pm 34_{syst} \text{ MeV}$$
$$= 80413 \pm 48 \text{ MeV}$$

- Most systematics limited by statistics of control samples
  - Looking forward to  $\delta M_W < 25$  MeV from ~ 2 fb<sup>-1</sup> of CDF data
- Measurement from D0 imminent in the electron channel with 1 fb<sup>-1</sup> data sample

#### Combined Results

- Combined electrons (3 fits):  $M_W = 80477 \pm 62 \text{ MeV}, P(\chi^2) = 49\%$
- Combined muons (3 fits):  $M_W = 80352 \pm 60 \text{ MeV}, P(\chi^2) = 69\%$
- All combined (6 fits):  $M_W = 80413 \pm 48 \text{ MeV}, P(\chi^2) = 44\%$

#### Lepton $p_T$ and Missing $E_T$ Fit Uncertainties

| Uncertainty (p <sub>T</sub> ) | Electrons | Muons | Common |
|-------------------------------|-----------|-------|--------|
| Lepton Scale                  | 30        | 17    | 17     |
| Lepton Resolution             | 9         | 3     | 0      |
| Recoil Scale                  | 17        | 17    | 17     |
| Recoil Resolution             | 3         | 3     | 3      |
| Lepton Removal                | 0         | 0     | 0      |
| u <sub>II</sub> Efficiency    | 5         | 6     | 0      |
| Backgrounds                   | 9         | 19    | 0      |
| p <sub>T</sub> (W)            | 9         | 9     | 9      |
| PDF                           | 20        | 20    | 20     |
| QED                           | 13        | 13    | 13     |
| Total Systematic              | 45        | 40    | 35     |
| Statistical                   | 58        | 66    | 0      |
| Total                         | 73        | 77    | 35     |

**CDF II preliminary** 

CDF II preliminary

| Uncertainty (MET)          | Electrons | Muons | Common |
|----------------------------|-----------|-------|--------|
| Lepton Scale               | 30        | 17    | 17     |
| Lepton Resolution          | 9         | 5     | 0      |
| Recoil Scale               | 15        | 15    | 15     |
| <b>Recoil Resolution</b>   | 30        | 30    | 30     |
| Lepton Removal             | 16        | 10    | 10     |
| u <sub>ll</sub> Efficiency | 16        | 13    | 0      |
| Backgrounds                | 7         | 11    | 0      |
| p <sub>⊤</sub> (W)         | 5         | 5     | 5      |
| PDF                        | 13        | 13    | 13     |
| QED                        | 9         | 10    | 9      |
| Total Systematic           | 54        | 46    | 42     |
| Statistical                | 57        | 66    | 0      |
| Total                      | 79        | 80    | 42     |