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Spontaneous Symmetry Breaking 

2008 Nobel Prize in Physics 

"for the discovery of the mechanism of spontaneously broken symmetry 
in subatomic physics"

Experimentally, jury is still out on Higgs mechanism of Electroweak 
Symmetry Breaking in the Standard Model of Particle Physics

Yoichiro Nambu
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Outline 

Standard Model of Particle Physics – how did we get here?

Why is the Higgs mechanism so important to confirm?

How my research is related to investigations of the Higgs mechanism

Checking the consistency of the Higgs mechanism using precise 
measurements of Standard Model parameters

W boson mass

Top quark mass

Direct search for the Higgs boson

Physics beyond Higgs – extra dimensional Gravity

Peter Higgs 
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Search for New Symmetries Beyond Standard Model

Theories of unification of forces predict new force-mediating particles 

Heavy graviton states in extra-dimensional theories of gravity

PRL 102, 091805 (2009)

Larger fermionic representations  exotic fermion states

Exotic electron states (H. Gerberich Ph.D.): PRL 94, 101802 (2005)

Exotic muon states (E. Daverman, undergrad): PRL 97, 191802 
(2006)

Spontaneous symmetry breaking of parity in the weak interaction

Doubly charged particles (J. Tuttle M.Sc): PRL 95, 071801 (2005)
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A Century of Particle Physics: Standard Model

Quark constituents of nucleons established in high 
energy electron scattering experiments at Stanford Linear 
Accelerator Center (SLAC), 1966-1978

Point-like particles explain high scattering rate at large 
energy and angle
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A Century of Particle Physics: Standard Model

Success # 1: discovery of 6 quarks and 6 leptons

12 fundamental matter particles (and their antimatter 
counterparts) fit neatly into an elegant mathematical 
framework

pattern of masses
not fully understood 
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A Century of Particle Physics: Standard Model

The  “charm quark” (c) discovered at SLAC in 1974

The heaviest lepton, “ ” was also discovered at SLAC in 

1975
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A Century of Particle Physics: Standard Model

The heaviest “top 
quark” (t) discovered at 
Fermilab in 1995

The next heaviest, 
“bottom quark” (b) was 
also discovered at 
Fermilab in 1977

Appearance of  lepton 

in  beam established 

at Fermilab  
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A Century of Particle Physics: Standard Model

Success # 2: gauge invariance predicts the properties of 
fundamental forces

matter particles (quarks and leptons) transform in internal spaces

Electroweak: SU(2) x U(1) 

QCD: SU(3)

Analogous to the Coriolis and 
Centrifugal forces generated in 
rotating frames of reference
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The “Problem”, thus Excitement, of Particle Physics

As generators of gauge transformations, gauge bosons should be 
massless

Obviously not true in nature for weak interaction

W and Z gauge bosons very massive (W ~ 80 GeV, Z ~ 91 GeV)

Unconfirmed postulate of scalar Higgs field which develops a 
vacuum expectation value via spontaneous symmetry breaking

(from David Miller, UCL)
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Crossing the Energy Threshold for Higgs Excitations

Higgs boson (or alternative) should show up at mass  1 TeV or lower

Accelerators at Fermilab (running now with 2 TeV energy) and 
CERN (LHC running with 7  14 TeV energy) are at the energy
at which the Higgs Boson is expected to show up 

CERN, 
Switzerland

FERMILAB

Search for Higgs boson is a key mission of the High Energy Physics program

Large Hadron Collider
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 Collider Detector at Fermilab (CDF)

Central
hadronic
calorimeter

Muon
detector

Central
outer
tracker
(COT)
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 CDF Tracking Chamber

Reconstruction of particle trajectories, calibration to ~2 m accuracy: 

AVK, H. Gerberich and C. Hays, NIM A506, 110 (2003)

 C. Hays et al, NIM A538, 249 (2005)  
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Precision Standard Model Measurements 
Constraining the Higgs and New Physics
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Radiative corrections due to heavy quark and Higgs loops and exotica

Precision Measurements of W boson and top quark masses

Top quark mass and W boson mass constrain the mass of the Higgs 
boson, and possibly new particles beyond the standard model

Part of my research focuses on the precise mass measurements of 
these two particles
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SM Higgs fit: MH = 83+30

-23 GeV (gfitter.desy.de)

LEPII direct searches: MH > 114.4 GeV @ 95% CL (PLB 565, 61)

Motivation

In addition to the Higgs, 
is there another missing piece 
in this puzzle?

( AFB
b vs ALR: 3.2  )

Must continue improving
precision of MW , Mtop ...

other precision measurements
constrain Higgs, equivalent
 to MW ~ 15 MeV

Motivate direct measurement of MW at the 15 MeV level
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SM Higgs fit: MH = 83+30

-23 GeV (gfitter.desy.de)

LEPII direct searches: MH > 114.4 GeV @ 95% CL (PLB 565, 61)

Motivation

?
MW

GF

Sin2
W

Mtop MZ

In addition to the Higgs, 
is there another missing piece 
in this puzzle?

( AFB
b vs ALR: 3.2  )

Must continue improving
precision of MW , Mtop ...

other precision measurements
constrain Higgs, equivalent
 to MW ~ 15 MeV

Motivate direct measurement of MW at the 15 MeV level

N
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W Boson Mass Measurement
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W Boson Production

N
eutrino

Lepton
W

Gluon
Quark

Antiquark

Quark-antiquark annihilation
dominates (80%)

Lepton pT carries most of W mass 

information, can be measured precisely (achieved 0.05% precision)

Ph.D. Student Yu Zeng working on factor of 2 improvement in precision

e
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 MW vs Mtop

Standard Model

SuperSymmetric Extension

Lightest neutral supersymmetric particle could be dark matter candidate
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Top Quark Mass Measurement
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Top Quark Pair Production
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Top Mass Measurement in Dilepton Decay Channel
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Likelihood Fitting for Top Mass

Use differential cross-section to calculate probability of event 
coming from Mtop 
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Likelihood Fitting for Top Mass

Advantage of this method: use all information from standard 
model about top quark and backgrounds, with Mtop as only free 
parameter 

 M
top

 measurement in dilepton channel: 

M
top

 = 164.5 ± 3.9(stat) ± 3.9(syst) GeV

PRD 75, 031105 (R) (2007)
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Artificial Neural Networks: use to construct non-linear function of 
event kinematics

Optimizing Event Selection for Top Mass Measurement

First use in particle physics: training neural network using genetic 
evolution algorithm
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Goal: single multi-variate selection criterion 
yielding most precise measurement of the top 
quark mass

Genetic evolution:
Random initial set of neural networks

Evaluate resulting M
top

 precision using 

each network

Discard networks yielding low precision 

Mutate and breed high-precision networks

Genetic Neuro-Evolution

Slide 27 



Measurement of Mtop in the dilepton channel

Neural Network for optimized event selection

Best M
top

 measurement in dilepton channel: M
top

 = 171.2 ± 4.0 GeV

PRL 102, 152001 (2009)
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Standard Model Higgs Boson Production and Decay
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Light Higgs Boson Production and Decay

W, Z decay to electrons, 
muons, , and/or neutrinos

Higgs boson decays to bottom quarks
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Simulated Higgs Signal on Expected Backgrounds

 Key requirements for observing signal:

 Excellent lepton identification, good calorimeters for jet and Missing ET                     

      reconstruction, excellent silicon detectors for b jet identification

      Good reconstruction of decay particle momentum vectors

 Good simulation of signal and background events
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SM Higgs: ZH  llbb

Ravi Shekhar 
M.Sc. Thesis

PRD 80, 071101 (R)
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SM Higgs: ZH  llbb

Signal vs background discriminant = ( P
s
 – P

b 
) / L

Shown  for simulated events and data events

ZH signal 
expectation

backgrounds
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Searches for new particles and forces at LHC
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Searching for new heavy particles
Gravity also enters the game

Randall-Sundrum model of “gravity unification”

a.k.a. “why is gravity so much weaker than electroweak force?”

Suggested solution: its not really, but just appears to be so weak...

Randall and Sundrum,
 PRL 83 (1999) 3370

4 4
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Prediction for Heavy Graviton
Randall-Sundrum prescription

Construct Gravitational Lagrangian in bulk and on branes

Derive equation of motion for the metric, from principle of stationary 
action

Solve for metric gμ : 
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Heavy Gravitons 
Randall-Sundrum prediction:

Ground-state wave function of graviton small on our brane, ie 
gravity appears weak

But excited states of graviton wave function has big overlaps, ie. 
Massive gravitons with electroweak-strength couplings to standard 
model particles on our brane
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Large Hadron Collider at CERN, Geneva, Switzerland
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ATLAS Experiment at Large Hadron Collider

I am currently leading the heavy graviton search on ATLAS
Students: Ben Cerio (PhD) and Siyuan Sun (undergraduate)
Plenty of opportunities for students: precision measurements and direct searches
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