Measurement of the W Boson Mass

Ashutosh Kotwal Duke University

High Energy Physics Seminar DESY July 14-15, 2009

Motivation

• The electroweak gauge sector of the standard model is constrained by three precisely known parameters

$$- \alpha_{\rm EM} ({\rm M_Z}) = 1 / 127.918(18)$$

 $-G_{\rm F} = 1.16637 (1) \times 10^{-5} \,{\rm GeV^{-2}}$

 $M_Z = 91.1876 (21) \text{ GeV}$

• At tree-level, these parameters are related to M_W by

$$- M_W^2 = \pi \alpha_{\rm EM} / \sqrt{2G_F \sin^2 \theta_W}$$

• Where θ_W is the weak mixing angle, defined by $\cos \theta_W = M_W / M_Z$

Motivation

• Radiative corrections due to heavy quark and Higgs loops and exotica

Motivate the introduction of the ρ parameter: $M_W^2 = \rho [M_W(\text{tree})]^2$ with the predictions $(\rho-1) \sim M_{\text{top}}^2$ and $(\rho-1) \sim \ln M_H$

• In conjunction with M_{top}, the W boson mass constrains the mass of the Higgs boson, and possibly new particles beyond the standard model

Progress on M_{top} at the Tevatron

- From the Tevatron, $\delta M_{top} = 1.3 \text{ GeV} \Rightarrow \delta M_H / M_H = 11\%$
- equivalent $\delta M_W = 8$ MeV for the same Higgs mass constraint
- Current world average $\delta M_W = 23 \text{ MeV}$
 - progress on δM_W now has the biggest impact on Higgs constraint!

Motivation

- SM Higgs fit: $M_{\rm H} = 83^{+30}_{-23}$ GeV (gfitter.desy.de)
- LEPII direct searches: $M_H > 114.4 \text{ GeV} @ 95\% \text{ CL} (PLB 565, 61)$

Motivate direct measurement of M_W at the 15 MeV level

Motivation

- SM Higgs fit: $M_{\rm H} = 83^{+30}_{-23}$ GeV (gfitter.desy.de)
- LEPII direct searches: $M_H > 114.4 \text{ GeV} @ 95\% \text{ CL} (PLB 565, 61)$

In addition to the Higgs, is there another missing piece in this puzzle?

$$(A_{FB}^{b} vs A_{LR}^{c}: 3.2\sigma)$$

Must continue improving precision of M_W, M_{top} ...

other precision measurements constrain Higgs, equivalent to $\delta M_W \sim 15$ MeV

Motivate direct measurement of M_W at the 15 MeV level

M_{top} vs M_{Higgs}

(LEP & SLD Collaborations and LEPEWWG, SLD EW & HF Groups, Physics Reports, Vol. 427 Nos. 5-6, 257 (May 2006))

 M_W and $sin^2\theta_{eff}$ provide complementary constraints on M_{Higgs}

Analysis Strategy

W Boson Production at the Tevatron

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrated to ~1%) Pollutes *W* mass information, fortunately $p_T(W) \ll M_W$

W Boson Production at the Tevatron

Lepton p_T carries most of *W* mass information, can be measured precisely (achieved 0.03%)

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrate to ~1%) Pollutes *W* mass information, fortunately $p_T(W) \ll M_W$

Quadrant of Collider Detector at Fermilab (CDF)

Select W and Z bosons with central ($|\eta| < 1$) leptons

Collider Detector at Fermilab (CDF)

CDF W & Z Data Samples

- W, Z, J/ ψ and Upsilon decays triggered in the dilepton channel
- Analysis of 2.3 fb⁻¹ data in progress
- CDF's analysis published in 2007, based on integrated luminosity (collected between February 2002 September 2003):

	Sample	Candidates
- Electron channel: $\mathcal{L} = 218 \text{ pb}^{-1}$	$W \to e\nu$	63964
	$W \to \mu \nu$	51128
- Muon channel: $\mathcal{L} = 191 \text{ pb}^{-1}$	$Z \rightarrow e^+ e^-$	2919
	$Z ightarrow \mu^+ \mu^-$	4960

- Event selection gives fairly clean samples
 - W boson samples' mis-identification backgrounds ~ 0.5%

Outline of Analysis

Energy scale measurements drive the W mass measurement

- Tracker Calibration
 - alignment of the COT (~2400 cells) using cosmic rays
 - COT momentum scale and tracker non-linearity constrained using $J/\psi \rightarrow \mu\mu$ and $Y \rightarrow \mu\mu$ mass fits
 - Confirmed using $Z \rightarrow \mu \mu$ mass fit
- EM Calorimeter Calibration
 - COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around E/p ~ 1
 - Calorimeter energy scale confirmed using $Z \rightarrow$ ee mass fit
- Tracker and EM Calorimeter resolutions
- Hadronic recoil modelling
 - Characterized using p_T -balance in $Z \rightarrow ll$ events

Drift Chamber (COT) Alignment

Internal Alignment of COT

• Use a clean sample of ~200k cosmic rays for cell-by-cell internal alignment

- Fit COT hits on both sides simultaneously to a single helix (AK, H. Gerberich and C. Hays, NIMA 506, 110 (2003))
 - Time of incidence is a floated parameter in this 'dicosmic fit'

Residuals of COT cells after alignment

Final relative alignment of cells $\sim 5 \,\mu m$ (initial alignment $\sim 50 \,\mu m$)

Cross-check of COT alignment

- Final cross-check and correction to beam-constrained track curvature based on difference of <E/p> for positrons *vs* electrons
- Smooth ad-hoc curvature corrections fitted and applied as a function of polar and azimuthal angle: statistical errors => $\delta M_W = 6 \text{ MeV}$

Signal Simulation and Fitting

Signal Simulation and Template Fitting

- All signals simulated using a fast Monte Carlo
 - Generate finely-spaced templates as a function of the fit variable
 - perform binned maximum-likelihood fits to the data
- Custom fast Monte Carlo makes smooth, high statistics templates
 - And provides analysis control over key components of the simulation

• We will extract the W mass from six kinematic distributions: Transverse mass, charged lepton p_T and neutrino p_T using both electron and muon channels

Generator-level Signal Simulation

- Generator-level input for W & Z simulation provided by RESBOS (C. Balazs & C.-P. Yuan, PRD56, 5558 (1997) and references therein), which
 - Calculates triple-differential production cross section, and p_T-dependent double-differential decay angular distribution
 - calculates boson p_T spectrum reliably over the relevant p_T range: includes tunable parameters in the non-perturbative regime at low p_T
- Radiative photons generated according to energy *vs* angle lookup table from WGRAD (U. Baur, S. Keller & D. Wackeroth, PRD59, 013002 (1998))

Constraining Boson p_T Spectrum

- Fit the non-perturbative parameter g_2 in RESBOS to $p_T(ll)$ spectra: find $g_2 = 0.685 \pm 0.048$ $\Delta M_w = 3 \text{ MeV}$
 - Consistent with global fits (Landry et al, PRD67, 073016 (2003))
- Negligible effect of second non-perturbative parameter g₃

Position of peak in boson p_T spectrum depends on g_2

Fast Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
 - Tracks and photons propagated through a high-resolution 3-D lookup table of material properties for silicon detector and COT
 - At each material interaction, calculate
 - Ionization energy loss according to complete Bethe-Bloch formula
 - Generate bremsstrahlung photons down to 4 MeV, using detailed cross section and spectrum calculations
 - Simulate photon conversion and compton scattering
 - Propagate bremsstrahlung photons and conversion electrons
 - Simulate multiple Coulomb scattering, including non-Gaussian tail
 - Deposit and smear hits on COT wires, perform full helix fit including optional beam-constraint

Fast Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
 - Tracks and photons propagated through a high-resolution 3-D lookup table of material properties for silicon detector and COT

 Deposit and smear hits on COT wires, perform full helix fit including optional beam-constraint

- Set using J/ψ→μμ and Y→μμ resonance and Z → μμ masses
 All are individually consistent with each other
- J/ψ : $\Delta p/p = (-1.64 \pm 0.06_{stat} \pm 0.24_{sys}) \times 10^{-3}$
 - Extracted by fitting J/ψ mass in bins of $<1/p_T(\mu)>$, and extrapolating momentum scale to zero curvature

- $Y \rightarrow \mu\mu$ resonance provides
 - Momentum scale measurement at higher p_T
 - Validation of beam-constaining procedure (upsilons are promptly produced)
 - Non-beam-constrained and beam-constrained (BC) fits statistically consistent

Tracking Momentum Scale Systematics

Source	$J/\psi~(\times 10^{-3})$	$\Upsilon~(\times 10^{-3})$	Common $(\times 10^{-3})$
QED and energy loss model	0.20	0.13	0.13
Magnetic field nonuniformities	0.10	0.12	0.10
Beam constraint bias	N/A	0.06	0
Ionizing material scale	0.06	0.03	0.03
COT alignment corrections	0.05	0.03	0.03
Fit range	0.05	0.02	0.02
p_T threshold	0.04	0.02	0.02
Resolution model	0.03	0.03	0.03
Background model	0.03	0.02	0.02
World-average mass value	0.01	0.03	0
Statistical	0.01	0.06	0
Total	0.25	0.21	0.17

Systematic uncertainties on momentum scale

Uncertainty dominated by QED radiative corrections and magnetic field non-uniformity

$Z \rightarrow \mu \mu$ Mass Cross-check & Combination

- Using the J/ ψ and Y momentum scale, measured Z mass is consistent with PDG value
- Final combined: $\Delta p/p = (-1.50 \pm 0.15_{independent} \pm 0.13_{QED} \pm 0.07_{align}) \times 10^{-3}$

EM Calorimeter Response

EM Calorimeter Scale

• E/p peak from $W \rightarrow ev$ decays provides measurements of EM calorimeter scale and its (E_T-dependent) non-linearity

 $-S_{\rm E} = 1 \pm 0.00025_{\rm stat} \pm 0.00011_{\rm X0} \pm 0.00021_{\rm Tracker}$

• Setting S_E to 1 using E/p calibration

Consistency of Radiative Material Model

- Excellent description of E/p spectrum tail
- radiative material tune factor: $S_{X0} = 1.004 \pm 0.009_{stat} \pm 0.002_{background}$ achieves consistency with E/p spectrum tail
 - CDFSim geometry confirmed as a function of pseudorapidity: S_{MAT} independent of $\mid \eta \mid$

Measurement of EM Calorimeter Non-linearity

- Perform E/p fit-based calibration in bins of electron E_T
- Pameterize non-linear response as: $S_E = 1 + \xi (E_T/GeV 39)$
- Tune on W and Z data: $\xi = (6 \pm 7_{stat}) \times 10^{-5}$

 $- \Rightarrow \Delta M_W = 23 \text{ MeV}$

$Z \rightarrow$ ee Mass Cross-check and Combination

- Z mass consistent with E/p-based measurements
- Combining E/p-derived scale & non-linearity measurement with *Z*→*ee* mass yields the most precise calorimeter energy scale:

Hadronic Recoil Model

Constraining the Hadronic Recoil Model

Transverse momentum of Hadronic recoil (*u*) calculated as 2-vector-sum over calorimeter towers

Tuning Recoil Response Model with Z events

Project the vector sum of $p_T(ll)$ and u on a set of orthogonal axes defined by lepton directions

η

Mean and rms of projections as a function of $p_T(ll)$ provide information hadronic model parameters

Tuning Recoil Resolution Model with Z events

At low $p_T(Z)$, p_T -balance constrains hadronic resolution due to underlying event

At high $p_T(Z)$, p_T -balance constrains jet resolution

Testing Hadronic Recoil Model with Wevents

W Mass Fits

Blind Analysis Technique

- All W mass fit results were blinded with a random [-100,100] MeV offset hidden in the likelihood fitter
- Blinding offset removed after the analysis was declared frozen
- Technique allows to study all aspects of data while keeping W mass result unknown within 100 MeV

W Transverse Mass Fits

W Lepton p_T Fits

Transverse Mass Fit Uncertainties (MeV) (CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

		electrons	muons	common
	W statistics	48	54	0
Lepton energy scale	30	17	17	
	Lepton resolution	9	3	-3
	Recoil energy scale	9	9	9
	Recoil energy resolution	7	7	7
W charge	Selection bias	3	1	0
asymmetry	Lepton removal	8	5	5
from Tevatron	Backgrounds	8	9	0
helps with PDFs pT(W) r Parton d QED rad Total sy Total	pT(W) model	3	3	3
	Parton dist. Functions	11	11	11
	QED rad. Corrections	11	12	11
	Total systematic	39	27	26
	Total	62	60	

Systematic uncertainties shown in green: statistics-limited by control data samples

Tevatron Run 1 (100 pb⁻¹) W Mass Systematic Uncertainties (MeV)

	CDF µ	CDF e	D0 <i>e</i>
W statistics	100	65	60
Lepton energy scale	85	75	56
Lepton resolution	20	25	19
Recoil model	35	37	35
pT(W)	20	15	15
Selection bias	18	-	12
Backgrounds	25	5	9
Parton dist. Functions	15	15	8
QED rad. Corrections	11	11	12
$\Gamma(W)$	10	10	10
Total	144	113	84

For comparison to run 2 analysis

Comparisons

(CDF Run II: PRL 99:151801, 2007; PRD 77:112001, 2008)

M_W vs M_{top}

Standard Model Higgs Constraints

Improvement of M_W Uncertainty with Sample Statistics

Preliminary Studies of 2.3 fb⁻¹ Data

CDF has started the analysis of 2.3 fb⁻¹ of data, with the goal of measuring M_W with precision better than 25 MeV

Tracker alignment with cosmic rays has been completed for this dataset

Lepton resolutions as good as they were in 200 pb⁻¹ sample

Preliminary Studies of 2.3 fb⁻¹ Data

 $L dt \approx 2.3 \text{ fb}^{-1}$ **CDF II preliminary** Statistical errors on all lepton Events / 0.5 GeV/c² **4500** calibration fits have scaled with 4000 data Δm_7^{stat} = 12 MeV /c² statistics 3500 χ^2 /dof = 27 / 29 MC 3000 2500 Ζ->μμ Detector and data quality 2000 maintained over time 1500 1000 **500**⊟ detailed calibrations in progress °°° 75 80 85 90 95 100 105 110 m_{μ⁺μ}. (GeV/c²) L dt ≈ **2.4 fb**⁻¹ **CDF II preliminary CDF II preliminary 2200** GeV/c^z W->ev 2000 40000 data 1800 data Δm_z^{stat} = 20 MeV /c² MC 1600 0.5 χ^2 /dof = 44 / 37 MC background 1400 1200 Events / Z->ee 1000 20000 $\Delta m_W^{\text{scale(stat)}} = 5 \text{ MeV/c}^2$ 800 χ^2 /dof = 33 / 16 600 400 200 **9**[™] 1.5 75 90 95 105 80 85 100 110 E/pc (W \rightarrow ev) $m_{e^+e^-}$ (GeV/c²)

Events / 0.01

Preliminary Studies of 2.3 fb⁻¹ Data

Summary

- The *W* boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result with 200 pb⁻¹ data:

$$- M_{W} = 80413 \pm 34_{stat} \pm 34_{syst} \text{ MeV} \\= 80413 \pm 48 \text{ MeV}$$

• D0 Run 2 W mass result with 1 fb⁻¹ data:

-
$$M_W = 80401 \pm 21_{stat} \pm 38_{syst} \text{ MeV}$$

= 80401 ± 43 MeV

- Most systematics limited by statistics of control samples
 - CDF and D0 are both working on $\delta M_W < 25$ MeV measurements from ~ 2 fb⁻¹ (CDF) and ~ 4 fb⁻¹ (D0)

Source	$\sigma(m_W)$ MeV m_T
Experimental	
Electron Energy Scale	34
Electron Energy Resolution Model	2
Electron Energy Nonlinearity	4
W and Z Electron energy	4
loss differences	
Recoil Model	6
Electron Efficiencies	5 L
Backgrounds	2
Experimental Total	35
W production and	
decay model	
PDF	9
QED	-
Boson p_T	2
W model Total	12
Total	37

- Electron channel with 1 fb⁻¹
- Combines all 3 fits

m_{W} =80401±21(stat)±38(syst) MeV/c²

- Single best measurement of mw
- Both CDF and DØ looking at larger datasets

80.402±0.050 GeV

miss*E*⊤

~25 MeV precision

Energy scale and resolution at DØ

<u>-20</u>

- Calibrate EM energy scale using $Z \rightarrow ee$ decays and LEP value for m_Z $R_{EM}(R_0) = \alpha \times E_0 + \beta$
- Δm_W=34 MeV
- Dominant systematic, limited by Z statistics
- Parameterize energy resolution as constant term and sampling term

 Sampling term driven by knowledge of amount of material in CAL

- Constant term from Z peak
 Obtain C=(2.05±0.1)%
- Δm_W=2 MeV

E/p Calibration vs Z→ee mass consistency

- Inclusion of hadronic calorimeter leakage distribution has a ~150 MeV effect on the fitted EM calorimeter scale from the E/p distribution
- Modelling the bremsstrahlung spectrum down to 4 MeV (from 40 MeV cutoff) has a ~60 MeV effect on the E/p calibration
- Modelling the calorimeter non-linearity as a property of individual particles has a ~30 MeV effect
- Collectively, these simulated effects in the Run 2 analysis affect the consistency of the Z mass by ~240 MeV

- $Y \rightarrow \mu\mu$ resonance provides
 - Momentum scale measurement at higher p_T
 - Validation of beam-constaining procedure (upsilons are promptly produced)
 - Non-beam-constrained and beam-constrained fits statistically consistent

W Mass Measurement at the Tevatron

W mass information contained in location of transverse Jacobian edge

 $M_{T} = \sqrt{(2 p_{T}^{\ l} p_{T}^{\ v} (1 - \cos \phi_{lv}))}$ Insensitive to $p_{T}(W)$ to first order Reconstruction of $p_{T}^{\ v}$ sensitive to hadronic response and multiple interactions

p_T(*l*) fit: provides cross-check of production model:
 Needs theoretical model of p_T(*W*)
 P_T(v) fit provides cross-check of hadronic modelling

Lepton Resolutions

- Tracking resolution parameterized in the fast Monte Carlo by
 - Drift chamber hit resolution $\sigma_h = 150 \pm 3_{stat} \ \mu m$
 - Beamspot size $\sigma_b = 39 \pm 3_{stat} \ \mu m$
 - Tuned on the widths of the $Z \rightarrow \mu\mu$ (beam constrained) and $Y \rightarrow \mu\mu$ (both beam constrained and non-beam constrained) mass peaks

 $\Rightarrow \Delta M_W = 3 \text{ MeV} (\text{muons})$

- Electron cluster resolution parameterized in the fast Monte Carlo by
 - 13.5% / $\sqrt{E_T}$ (sampling term)

-

- Primary constant term $\kappa = 0.89 \pm 0.15_{\text{stat}} \%$
- Secondary photon resolution $\kappa_{\gamma} = 8.3 \pm 2.2_{stat}$ %
- Tuned on the widths of the E/p peak and the Z→ee peak (selecting radiative electrons)

$$\Rightarrow \Delta M_W = 9 \text{ MeV} \text{ (electrons)}$$

Lepton Tower Removal

- We remove the calorimeter towers containing lepton energy from the hadronic recoil calculation
 - Lost underlying event energy is measured in ϕ -rotated windows $\Delta M_w = 8 \text{ MeV}$

Calorimeter Simulation for Electrons and Photons

Distributions of energy loss calculated based on expected shower profiles as a function of E_T

- Energy-dependent gain (non-linearity) parameterized and fit from data
- Energy resolution parameterized as fixed sampling term and two tunable constant terms
 - Constant terms are fit from the width of E/p peak and $Z \rightarrow$ ee mass peak

Combined Results

- Combined electrons (3 fits): $M_W = 80477 \pm 62 \text{ MeV}, P(\chi^2) = 49\%$
- Combined muons (3 fits): $M_W = 80352 \pm 60 \text{ MeV}, P(\chi^2) = 69\%$
- All combined (6 fits): $M_W = 80413 \pm 48 \text{ MeV}, P(\chi^2) = 44\%$

Lepton p_T and Missing E_T Fit Uncertainties

Uncertainty (p _T)	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	17	17	17
Recoil Resolution	3	3	3
Lepton Removal	0	0	0
u _{II} Efficiency	5	6	0
Backgrounds	9	19	0
p _T (W)	9	9	9
PDF	20	20	20
QED	13	13	13
Total Systematic	45	40	35
Statistical	58	66	0
Total	73	77	35

CDF II preliminary

CDF II preliminary

Uncertainty (MET)	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	5	0
Recoil Scale	15	15	15
Recoil Resolution	30	30	30
Lepton Removal	16	10	10
u _{ll} Efficiency	16	13	0
Backgrounds	7	11	0
p _⊤ (W)	5	5	5
PDF	13	13	13
QED	9	10	9
Total Systematic	54	46	42
Statistical	57	66	0
Total	79	80	42

Backgrounds in the W sample

Source	Fraction (electrons)	Fraction (muons)
Z -> <i>ll</i>	$0.24 \pm 0.04 \%$	$6.6 \pm 0.3 \%$
$W \rightarrow \tau v$	$0.93 \pm 0.03 \%$	0.89 ± 0.02 %
Mis-identified QCD jets	$0.25 \pm 0.15 \%$	$0.1 \pm 0.1 \%$
Decays-in-flight		$0.3 \pm 0.2 \%$
Cosmic rays		$0.05 \pm 0.05 \%$

Backgrounds are small (except $Z \rightarrow \mu\mu$ with a forward muon)

backgrounds contribute systematic uncertainty of 9 MeV on transverse mass fit