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Tevatron at Fermilab

Tevatron is routinely exceeding nominal Run II instantaneous luminosity
target of 2x1032 /cm2/s 

Recently achieved 3.4x1032 /cm2/s 



Tevatron at Fermilab

Tevatron has delivered  5 fb-1 of integrated luminosity

On track to deliver 8-9 fb-1 by 2010



Standard Model Higgs Boson Production and Decay



Higgs Boson Production and Decay

� High mass: H→WW→lνlν decay available

� Take advantage of large gg→H production cross section

Low Mass: H→bb, QCD bb background overwhelming 
Use associated production with W or Z for background discrimination

WH→lνbb, ZH→ννbb (MET+bb), ZH→llbb
Also: Vector Boson Fusion Production,VH→qqbb, H→ττ (with 2 
jets), H→γγ, WH->WWW, ttH



Light Higgs Boson Production and Decay

W, Z decay to electrons, 
muons, τ, and/or neutrinos

Higgs boson decays to bottom quarks



Simulated Higgs Signal on Expected Backgrounds

 Key requirements for observing signal:

 Excellent lepton identification, good calorimeters for jet and Missing ET                    
       reconstruction, excellent silicon detectors for b jet identification

      Good reconstruction of decay particle momentum vectors

 Good simulation of signal and background events
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Tagging of b-quark jets

 DØ: Neural Network tagger with multiple 
operating points

CDF: Secondary Vertex tagger, jet probability 
tagger, and Neural Network flavor separators

50-70% Efficient with 0.3-5% mistag rate
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Multivariate Techniques for Signal/Background Discrimination

� Likelihood discriminants: Often using 
Standard Model Matrix Elements to compute 
differential probability distributions for 
kinematics � Artificial Neural Networks: construct non-
linear function of kinematics

� Decision trees: event classification using 
sequential cuts

Decision Tree



SM Higgs: ZH→llbb

Z+2jets             Neural Network Output              ZH

Top quark  background
suppressed by another
neural network

Z + 2 jets background dominant



SM Higgs: VH→ννbb

W (-> lν)  + Higgs with lepton undetected also
included in signal

Key issue: modelling the shape of QCD background 

Higgs x10



SM Higgs: WH→lνbb
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Key issue: shape of W+bb
background

obtained from simulation,
with normalization from
data control regions

most sensitive channel
for low-mass Higgs at
Tevatron



Heavy Higgs Boson Production and Decay
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Spin correlation: Charged leptons

 go in the same direction

Most sensitive channel at the 
Tevatron

Key issue: maximizing lepton acceptance

Higgs



Heavy Higgs Boson Production and Decay

Most sensitive channel at the 
Tevatron

Key issue: maximizing lepton acceptance
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SM Higgs Boson Production Limits
Comparison of Higgs boson production cross section 
upper limit to the theoretical expectation

Expected Limits on ratio: 1.2 @ 165, 1.4 @ 170 GeV

Observed Limit
 1.0 @ 170 GeV

Tevatron excludes at 95% C.L. the production 
of a SM Higgs boson of 170 GeV



SM Higgs Boson Production Limits
Comparison of Higgs boson production cross section 
upper limit to the theoretical expectation

J Low mass combination difficult due to ~70 channels

K Expected sensitivity of CDF/DØ combined: <3.0xSM @ 115GeV 



Tevatron Higgs Search Projections

L Improvements for low-mass Higgs also in progress

M Dijet mass resolution, increased lepton acceptance and           
b-tagging efficiency 



Milestones in Standard Model Observations 
towards the Higgs 



Single Top Production

N Top quark discovered in 1995 at the Tevatron using the pair production mode

O Important measurement of the t-b coupling

P Similar final state as WH -> lv + bb search

Q Therefore also a key milestone in the Higgs search



Single Top Production – Multivariate Techniques

R Small Signal/Background: ½ of top pair production cross section

S Fewer particles in the final state that top pair production

T Full power of diverse techniques employed:

U Likelihoods based on SM matrix element probabilities

V Neural networks

W Decision trees

Single top
data

Backgrounds

Matrix Element



Single Top Production – Cross Sections

  
 Obs
 (exp)

3.4σ
(2.1σ)

2.9σ
(1.8σ)

2.4σ
(1.3σ)

CDF results from 2.2 fb-1 accepted for
publication in PRL (arXiv:0809.2581v2)



Single Top Production & |Vtb|

X CKM matrix element Vtb

Y CDF: Vtb = 0.88 ± 0.14 (stat+syst) ± 0.07 (theory)

Z 1 > Vtb > 0.66 (95% CL)

[ D0: Vtb = 1.3 ± 0.2 

\ 1 > Vtb > 0.68 (95% CL)

] No assumption on CKM unitarity or number of quark families



Observation of W+Z Associated Production

^ Recent confirmation of this 
fundamental prediction of the 
standard model provided by 1-2 fb-1 
of D0 and CDF data

_ Published results from both experiments: another key 
milestone in the Higgs boson search

WZ: Z signal in 
W events
 

ZZ signal
 



Precision Standard Model Measurements 
Constraining the Higgs and New Physics



Progress on Mtop at the Tevatron

Reconstructed top mass in 
680 pb-1of CDF data, fit with
simulated lineshape

CDF Run 2

CDF Run 2 

Improved top mass precision due
to in-situ calibration of jet energy
using W->jj decays in the same
events



Progress on Mtop at the Tevatron

` Exploiting all top quark decay channels

a Lepton + jets + missing ET (one W decays hadronically, one 
leptonically, most sensitive channel)

b Dilepton + 2 b-quark jets (largest signal/background ratio)

c All-jets (both W's decay hadronically, largest signal)

d...and different techniques

e Fitting reconstructed top mass with simulated templates

f Maximizing dynamical likelihood computed using SM matrix 
elements

g Neutrino-weighting

h Ideogram method



Progress on Mtop at the Tevatron

2D fit for W->jj mass (to obtain
jet energy scale JES) and top quark
 mass

Neural Network for optimized
event selection
Matrix-element-based likelihood
fitting in dilepton channel



Progress on Mtop at the Tevatron

CDF lepton+jets systematics
(preliminary)

Dominant systematic uncertainties
can be reduced with improved 
understanding of the data and 
generator models

δMtop < 1 GeV may be possible



i Radiative corrections due to heavy quark and Higgs loops and exotica

Motivation for W Boson Mass Measurement

Motivate the introduction of the ρ parameter:  MW
2 = ρ [MW(tree)]2

with the predictions (ρ−1) ∼ Μtop
2
  and (ρ−1) ∼ ln MH

j In conjunction with Mtop, the W boson mass constrains the mass of the 
Higgs boson, and possibly new particles beyond the standard model



Progress on Mtop at the Tevatron

k From the Tevatron, δMtop = 1.2 GeV => δMH / MH = 10%

l equivalent δMW = 7 MeV for the same Higgs mass constraint

m Current world average δMW = 25 MeV

n progress on δMW now has the biggest impact on Higgs constraint!

68% CL preliminary



o SM Higgs fit: MH = 84+34
-26 GeV (LEPEWWG & TeVEWWG)

p LEPII direct searches: MH > 114.4 GeV @ 95% CL (PLB 565, 61)

Motivation for MW measurement

?
MW

GF

Sin2θW

Mtop MZ

In addition to the Higgs, 
is there another missing piece 
in this puzzle?

( AFB
b vs ALR: 3.2σ )

Must continue improving
precision of MW , Mtop ...

other precision measurements
constrain Higgs, equivalent
 to δMW ~ 20 MeV

Motivate direct measurement of MW at the 20 MeV level

νN



Standard Model Higgs Constraint

∆χ
2

MW and leptonic measurements of sin2θ prefer low SM Higgs mass, 

hadronic (heavy flavor) measurements of sin2θ prefer higher SM Higgs 
mass (Ab

FB prefers ~ 500 GeV Higgs)



Tracking Momentum Scale

q Set using J/ψ      µµ  and Υ      µµ resonance and Z       µµ masses

r All are individually consistent with each other

s J/ψ:

tExtracted by fitting J/ψ mass in bins of <1/pT(µ)>, and extrapolating 
momentum scale to high momentum

∆p/p = ( -1.64  ±  0.06stat  ±  0.24sys ) x 10 -3

<1/pT(µ)> (GeV-1)

∆p/p
J/ψ     µµ mass independent of pT(µ)

J/ψ     µµ mass fit

Data
Simulation

CDFII preliminary                  L ~ 200 pb-1



Z     µµ  Mass Cross-check & Combination

u Using the J/ψ and Υ momentum scale, measured Z mass is consistent with 
PDG value

v Final combined:� ∆p/p = ( -1.50 ± 0.15independent ± 0.13QED ± 0.07align ) x 10 -3

M(µµ) (GeV)

Data
Simulation

CDF II preliminary                                     L ~ 200/pb

∆MW = 17 MeV
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EM Calorimeter Scale

w E/p peak from W      eν decays provides measurements of EM calorimeter 
scale and its (ET-dependent) non-linearity

x SE = 1 ± 0.00025stat ± 0.00011X0 ± 0.00021Tracker

y Setting SE to 1 using E/p calibration

Data
Simulation Tail region of E/p spectrum

used for tuning model of
radiative material

ECAL / ptrack



Z     ee Mass Cross-check and Combination

z Z mass consistent with E/p-based measurements

{ Combining E/p-derived scale & non-linearity measurement with Z     ee 
mass yields the most precise calorimeter energy scale:

| SE = 1.00001 ± 0.00037 

M(ee) ( GeV)

Data
Simulation

∆MW = 30 MeV



  W Boson Mass Fits

Muons Data
Simulation

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)



  W Lepton pT Fits

Muons

Data
Simulation

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)



Transverse Mass Fit Uncertainties (MeV)

electrons   common
W statistics 48 54 0
Lepton energy scale 30 17 17
Lepton resolution 9 3 -3
Recoil energy scale 9 9 9
Recoil energy resolution 7 7 7
Selection bias 3 1 0
Lepton removal 8 5 5
Backgrounds 8 9 0
pT(W) model 3 3 3
Parton dist. Functions 11 11 11
QED rad. Corrections 11 12 11}�~ �� � �� � �� � � � ��� �� �� ��
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 muons

Systematic uncertainties shown in green: statistics-limited by control data samples 

W charge 
asymmetry
from Tevatron
helps with PDFs

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)



Comparisons

The CDF Run 2 result is the most precise single measurement of the W mass
(PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

... and factor of 10 more data being analyzed now!



Updated MW vs Mtop MW vs Mtop



Preliminary MW Studies of 2.4 fb-1 Data from Tevatron

∆MW~25 MeV

2 fb-1



Preliminary Studies of 2.4 fb-1 Data at CDF

W->eν

statistical errors on W and Z
boson  mass fits and calibrations
are scaling with statistics

CDF has started the analysis 
of 2.4 fb-1 of data, with the 
goal of measuring MW with 
precision better than 25 MeV

Ζ->µµ



Large Hadron Collider Prospects

�prospects for W boson mass measurement: 20 million W's / fb-1 

per leptonic decay channel

� Consider statistical and systematic uncertainties that can be 
calibrated with Z boson data

� estimated W mass uncertainty of 7 MeV

� Key issues: backgrounds, production and decay model uncertainties, 
cross-checks on calibrations

� prospects for top mass measurement: 800,000 tt pairs / fb-1 per 
leptonic decay channel

� Suggested top mass precision ~ 1 GeV

�References: SN-ATLAS-2008-070; Eur. Phys. J. C 41 (2005), s19-s33; 
CMS-NOTE-2006-061; CMS-NOTE-2006-066; arXiv:0812.0470 



Summary

� CDF and D0 experiments at Fermilab Tevatron in pursuit of direct 
observation of standard model Higgs in the 115-200 GeV range

� SM Higgs excluded at 170 GeV @ 95% CL  

� Production of single top quarks observed at the Tevatron

� Production of WZ and ZZ production observed at the Tevatron

� Top quark mass Mtop= 172.4 ± 0.7stat ± 1.0syst GeV = 172.4 ± 1.2 GeV 

� CDF Run 2 W mass result is the most precise single measurement:

� MW = 80413 ± 34stat ± 34syst MeV                                                             
= 80413 ± 48 MeV

� Tevatron pushing towards δMW < 25 MeV and δMtop < 1 GeV



NuTeV Measurement of sin2θW
Using neutrino and anti-neutrino beams at Fermilab, NuTeV measured

 With a standard model prediction of 0.2227 ± 0.0003,   ~3σ deviation

Minimizes sensitivity to charm quark production and sea quarks
no obvious experimental problem in the measurement
Beyond SM Physics explanations are not easy to construct
QCD effects are a possibility: large isospin violation, nuclear effects, 
NLO effects...QED radiative corrections also large
Large amount of literature generated, studying various hypotheses!
NuSonG: Neutrino Scattering on Glass (experiment proposed at Fermilab)
Global Electroweak fit for SM Higgs not  changed much by inclusion 
of NuTeV and other low Q2 measurements of sin2θW 


