Status and Prospects of Standard Electroweak Physics

> Ashutosh Kotwal Duke University

DAE Symposium on High Energy Physics Varanasi, 18 December 2008

Electroweak Symmetry Breaking

Searches for standard model Higgs at the Tevatron

Precision measurements and Electroweak Fits

Tevatron at Fermilab

Tevatron is routinely exceeding nominal Run II instantaneous luminosity target of $2x10^{32}$ /cm²/s

Recently achieved 3.4x10³² /cm²/s

Tevatron at Fermilab

Tevatron has delivered 5 fb⁻¹ of integrated luminosity

On track to deliver 8-9 fb⁻¹ by 2010

Collider Run II Integrated Luminosity

Standard Model Higgs Boson Production and Decay

Higgs Boson Production and Decay

- High mass: $H \rightarrow WW \rightarrow |v|v$ decay available
 - Take advantage of large $gg \rightarrow H$ production cross section
- Low Mass: H→bb, QCD bb background overwhelming
 - Use associated production with W or Z for background discrimination
 - WH \rightarrow lvbb, ZH \rightarrow vvbb (MET+bb), ZH \rightarrow llbb
- Also: Vector Boson Fusion Production, $VH \rightarrow qqbb$, $H \rightarrow \tau\tau$ (with 2 jets), $H \rightarrow \gamma\gamma$, WH->WWW, ttH

Light Higgs Boson Production and Decay

Simulated Higgs Signal on Expected Backgrounds

Key requirements for observing signal:

Excellent lepton identification, good calorimeters for jet and Missing E_T

reconstruction, excellent silicon detectors for b jet identification

Good reconstruction of decay particle momentum vectors

Good simulation of signal and background events

Collider Detector at Fermilab (CDF)

D0 Detector

Tagging of b-quark jets

Multivariate Techniques for Signal/Background Discrimination

- Likelihood discriminants: Often using Standard Model Matrix Elements to compute differential probability distributions for kinematics
- Artificial Neural Networks: construct no: linear function of kinematics
- Decision trees: event classification using sequential cuts

A simple neural network output layer

input layer hidden layer

SM Higgs: VH→vvbb

W (-> lv) + Higgs with lepton undetected also included in signal

Key issue: modelling the shape of QCD background

SM Higgs: WH→lvbb

Results at mH = 115GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF NN	2.7	8.3	5.8	5.0
CDF ME+BDT	2.7	7.8	5.6	5.7
DØ NN	1.7	7.5	8.5	9.3

WH(115) CDF Run II Preliminary, L=2.7 fb⁻¹ W+light W+charm 30 W+bottom Non-W Diboson 25 Candidate Events Z+jets 1.5 Single_top Top_pair Events 20 -Data WH(115)×10 0.5 Normalized to Predictio 15 0.6 0.7 0.8 0.9 0.5 BDT 10 5 -0.5 0 0.5 ME+BDT 2tag

Key issue: shape of W+bb background

obtained from simulation, with normalization from data control regions

most sensitive channel for low-mass Higgs at Tevatron

Heavy Higgs Boson Production and Decay

0.5

0

1.5

1

2

2.5

3

 $\Delta \phi (0)$

Spin correlation: Charged leptons go in the same direction

Heavy Higgs Boson Production and Decay

Most sensitive channel at the Tevatron

Results at mH = 165GeV : 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF ME+NN	3.0	17.2	1.6	1.6
DØ NN	3.0	15.6	1.9	2.0

Key issue: maximizing lepton acceptance

SM Higgs Boson Production Limits

Comparison of Higgs boson production cross section upper limit to the theoretical expectation

Expected Limits on ratio: 1.2 @ 165, 1.4 @ 170 GeV

SM Higgs Boson Production Limits

Comparison of Higgs boson production cross section upper limit to the theoretical expectation

- Low mass combination difficult due to ~70 channels
- Expected sensitivity of CDF/DØ combined: <3.0xSM @ 115GeV

Tevatron Higgs Search Projections

- Improvements for low-mass Higgs also in progress
 - Dijet mass resolution, increased lepton acceptance and b-tagging efficiency

Milestones in Standard Model Observations towards the Higgs

Single Top Production

- Top quark discovered in 1995 at the Tevatron using the pair production mode
- Important measurement of the *t*-*b* coupling
- Similar final state as WH $\rightarrow lv + bb$ search
 - Therefore also a key milestone in the Higgs search

Single Top Production – Multivariate Techniques

- Small Signal/Background: ¹/₂ of top pair production cross section
- Fewer particles in the final state that top pair production
- Full power of diverse techniques employed:
 - Likelihoods based on SM matrix element probabilities
 - Neural networks
 - Decision trees

Single Top Production – Cross Sections

CDF results from 2.2 fb⁻¹ accepted for publication in PRL (arXiv:0809.2581v2)

Single Top Production & $|V_{tb}|$

- CKM matrix element V_{tb}
 - CDF: $V_{tb} = 0.88 \pm 0.14$ (stat+syst) ± 0.07 (theory)
 - $1 > V_{tb} > 0.66 (95\% \text{ CL})$
 - D0: $V_{tb} = 1.3 \pm 0.2$
 - $1 > V_{tb} > 0.68 (95\% \text{ CL})$
- No assumption on CKM unitarity or number of quark families

Observation of W+Z Associated Production

 Recent confirmation of this fundamental prediction of the standard model provided by 1-2 fb⁻¹ of D0 and CDF data

• Published results from both experiments: another key milestone in the Higgs boson search

Precision Standard Model Measurements Constraining the Higgs and New Physics

Progress on M_{top} at the Tevatron

Progress on M_{top} at the Tevatron

- Exploiting all top quark decay channels
 - Lepton + jets + missing E_T (one W decays hadronically, one leptonically, most sensitive channel)
 - Dilepton + 2 b-quark jets (largest signal/background ratio)
 - All-jets (both W's decay hadronically, largest signal)
- •...and different techniques
 - Fitting reconstructed top mass with simulated templates
 - Maximizing dynamical likelihood computed using SM matrix elements
 - Neutrino-weighting
 - Ideogram method

Progress on M_{top} at the Tevatron

2D fit for W->jj mass (to obtain jet energy scale JES) and top quark mass Neural Network for optimized event selection Matrix-element-based likelihood fitting in dilepton channel

Progress on M_{top} at the Tevatron

Motivation for W Boson Mass Measurement

• Radiative corrections due to heavy quark and Higgs loops and exotica

Motivate the introduction of the ρ parameter: $M_W^2 = \rho [M_W(\text{tree})]^2$ with the predictions $(\rho-1) \sim M_{\text{top}}^2$ and $(\rho-1) \sim \ln M_H$

• In conjunction with M_{top}, the W boson mass constrains the mass of the Higgs boson, and possibly new particles beyond the standard model

Progress on M_{top} at the Tevatron

- From the Tevatron, $\delta M_{top} = 1.2 \text{ GeV} \Rightarrow \delta M_H / M_H = 10\%$
- equivalent $\delta M_W = 7$ MeV for the same Higgs mass constraint
- Current world average $\delta M_W = 25 \text{ MeV}$
 - progress on δM_W now has the biggest impact on Higgs constraint!

Motivation for M_W measurement

- SM Higgs fit: $M_{\rm H} = 84^{+34}_{-26}$ GeV (LEPEWWG & TeVEWWG)
- LEPII direct searches: $M_H > 114.4 \text{ GeV} @ 95\% \text{ CL} (PLB 565, 61)$

In addition to the Higgs, is there another missing piece in this puzzle?

$$(A_{FB}^{b} vs A_{LR}^{c}: 3.2\sigma)$$

Must continue improving precision of M_W, M_{top} ...

other precision measurements constrain Higgs, equivalent to $\delta M_W \sim 20$ MeV

Motivate direct measurement of M_W at the 20 MeV level

Standard Model Higgs Constraint

 M_w and leptonic measurements of $\sin^2\theta$ prefer low SM Higgs mass, hadronic (heavy flavor) measurements of $\sin^2\theta$ prefer higher SM Higgs mass (A^b_{FB} prefers ~ 500 GeV Higgs) Fits to +A°_{FF} leptonic data = 154 GeV July 2008 6 neory unce<mark>rtain:</mark> 6 5 $\Delta \chi^2$ 8±0.00035 02749±0.00012 •••• incl. low Q² data 4 $\Delta \chi^2$ 3 2 2 1 Excluded Preliminary 0 0 -20 70 100 10 30 50 200 300 30 300100 $m_{\rm H}({\rm GeV})$ m_H [GeV] M. Chanowitz, PRL 97 (2001) 231802

Tracking Momentum Scale

- Set using J/ψ→μμ and Y→μμ resonance and Z→μμ masses
 All are individually consistent with each other
- J/ψ : $\Delta p/p = (-1.64 \pm 0.06_{stat} \pm 0.24_{sys}) \times 10^{-3}$
 - Extracted by fitting J/ψ mass in bins of $<1/p_T(\mu)>$, and extrapolating momentum scale to high momentum

$Z \rightarrow \mu \mu$ Mass Cross-check & Combination

- Using the J/ ψ and Y momentum scale, measured Z mass is consistent with PDG value
- Final combined: $\Delta p/p = (-1.50 \pm 0.15_{\text{independent}} \pm 0.13_{\text{QED}} \pm 0.07_{\text{align}}) \times 10^{-3}$

EM Calorimeter Scale

• E/p peak from $W \rightarrow ev$ decays provides measurements of EM calorimeter scale and its (E_T-dependent) non-linearity

 $-S_{\rm E} = 1 \pm 0.00025_{\rm stat} \pm 0.00011_{\rm X0} \pm 0.00021_{\rm Tracker}$

• Setting S_E to 1 using E/p calibration

Z-ee Mass Cross-check and Combination

- Z mass consistent with E/p-based measurements
- Combining E/p-derived scale & non-linearity measurement with *Z*→*ee* mass yields the most precise calorimeter energy scale:

W Boson Mass Fits

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

W Lepton p_T Fits (CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

Transverse Mass Fit Uncertainties (MeV) (CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

		electrons	muons	common
	W statistics	48	54	0
Lee Lee Ree Ree Ree Ree See asymmetry from Tevatron helps with PDFs Pa QI Te Te	Lepton energy scale	30	17	17
	Lepton resolution	9	3	-3
	Recoil energy scale	9	9	9
	Recoil energy resolution	7	7	7
	Selection bias	3	1	0
	Lepton removal	8	5	5
	Backgrounds	8	9	0
	pT(W) model	3	3	3
	Parton dist. Functions	11	11	11
	QED rad. Corrections	11	12	11
	Total systematic	39	27	26
	Total	62	60	

Systematic uncertainties shown in green: statistics-limited by control data samples

Comparisons

The CDF Run 2 result is the most precise single measurement of the W mass (PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008) and factor of 10 more data being analyzed now!

... and factor of 10 more data being analyzed now!

Preliminary M_w Studies of 2.4 fb⁻¹ Data from Tevatron

Preliminary Studies of 2.4 fb⁻¹ Data at CDF

Large Hadron Collider Prospects

•prospects for W boson mass measurement: 20 million W's / fb⁻¹ per leptonic decay channel

- Consider statistical and systematic uncertainties that can be calibrated with Z boson data
- estimated W mass uncertainty of 7 MeV
- Key issues: backgrounds, production and decay model uncertainties, cross-checks on calibrations

• prospects for top mass measurement: 800,000 tt pairs / fb⁻¹ per leptonic decay channel

• Suggested top mass precision ~ 1 GeV

•References: SN-ATLAS-2008-070; Eur. Phys. J. C 41 (2005), s19-s33; CMS-NOTE-2006-061; CMS-NOTE-2006-066; arXiv:0812.0470

Summary

- CDF and D0 experiments at Fermilab Tevatron in pursuit of direct observation of standard model Higgs in the 115-200 GeV range
 - SM Higgs excluded at 170 GeV @ 95% CL
- Production of single top quarks observed at the Tevatron
- Production of WZ and ZZ production observed at the Tevatron
- Top quark mass $M_{top} = 172.4 \pm 0.7_{stat} \pm 1.0_{syst} \text{ GeV} = 172.4 \pm 1.2 \text{ GeV}$
- CDF Run 2 W mass result is the most precise single measurement:

$$- M_{W} = 80413 \pm 34_{stat} \pm 34_{syst} \text{ MeV}$$
$$= 80413 \pm 48 \text{ MeV}$$

• Tevatron pushing towards $\delta M_W < 25$ MeV and $\delta M_{top} < 1$ GeV

NuTeV Measurement of $\sin^2\theta_W$

Using neutrino and anti-neutrino beams at Fermilab, NuTeV measured $\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0013(\text{stat.}) \pm 0.0009(\text{syst.})$ With a standard model prediction of 0.2227 ± 0.0003 , ~3 σ deviation

Paschos - Wolfenstein Relation $R^{-} = \frac{\sigma_{NC}^{v} - \sigma_{NC}^{\overline{v}}}{\sigma_{CC}^{v} - \sigma_{CC}^{\overline{v}}} = \rho^{2} \left(\frac{1}{2} - \sin^{2} \theta_{W}\right) = g_{L}^{2} - g_{R}^{2} \qquad g_{L,R}^{2} = u_{L,R}^{2} + d_{L,R}^{2}$

Minimizes sensitivity to charm quark production and sea quarks no obvious experimental problem in the measurement Beyond SM Physics explanations are not easy to construct QCD effects are a possibility: large isospin violation, nuclear effects, NLO effects...QED radiative corrections also large Large amount of literature generated, studying various hypotheses! NuSonG: Neutrino Scattering on Glass (experiment proposed at Fermilab) Global Electroweak fit for SM Higgs not changed much by inclusion of NuTeV and other low Q² measurements of $\sin^2\theta_W$