Precision Electroweak Measurements at e⁺e⁻ colliders -Determining the Next Energy Scale

Ashutosh Kotwal Duke University

(Summary of Snowmass 2013 Studies)

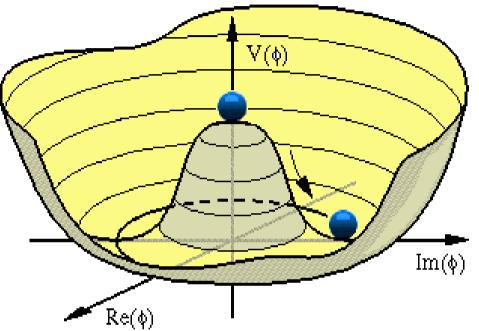
Beijing-Chicago Workshop 14-15 September 2015

Precision Electroweak Measurements at e⁺e⁻ colliders -Determining the Next Energy Scale

Ashutosh Kotwal Duke University

(Summary of Snowmass 2013 Studies)

Beijing-Chicago Workshop 14-15 September 2015

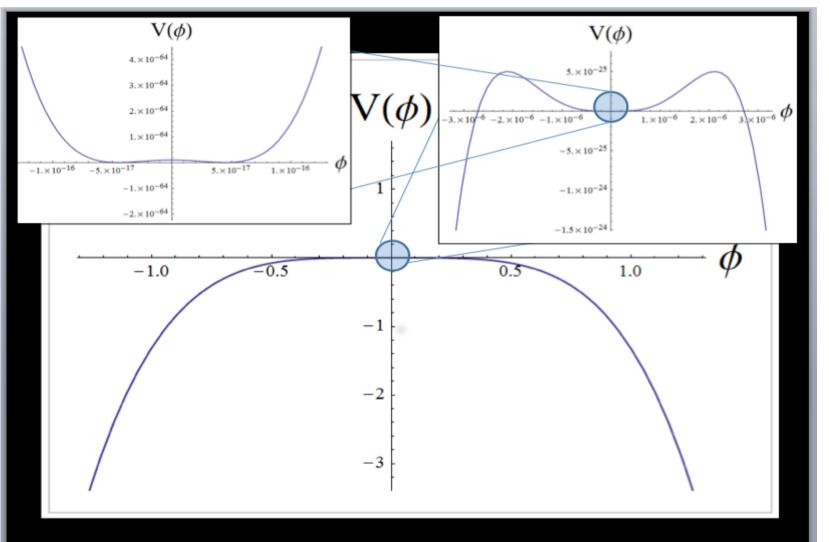

Spontaneous Symmetry Breaking

• Is the mechanism of Electroweak Symmetry Breaking, the Standard Model Higgs mechanism? Or is there more to it ??

Spontaneous Symmetry Breaking of Gauge Symmetry

• The Higgs potential in the SM is a parameterization that respects certain rules of QFT

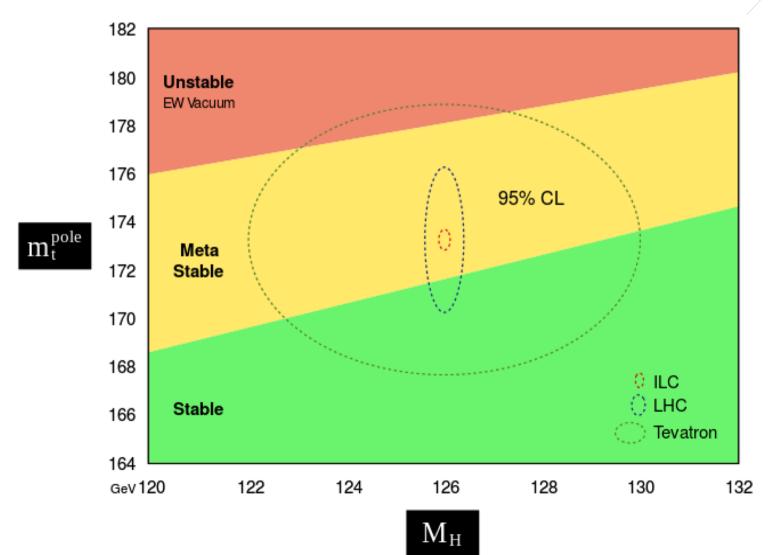
- Phase transition \rightarrow vacuum state possesses non-trivial quantum numbers
 - Dynamical origin of this phase transition is not known
 - Implies vacuum is a condensed, superconductor-like state
- Discovery of the "radial excitation" a.k.a the Higgs boson means that we have taken the first, big step in establishing the properties of this potential


Next Big Question: Why is the Higgs Boson so Light?

The Higgs boson ought to be a very heavy particle, naturally

However, observed $m_{_{\rm H}} << \Lambda$

Radiative Corrections to Higgs Self-Coupling • $\lambda |\phi|^4$


receives radiative corrections from Higgs and top loops

Paul Steinhardt's talk on 7/15/2013 at Argonne USATLAS Workshop

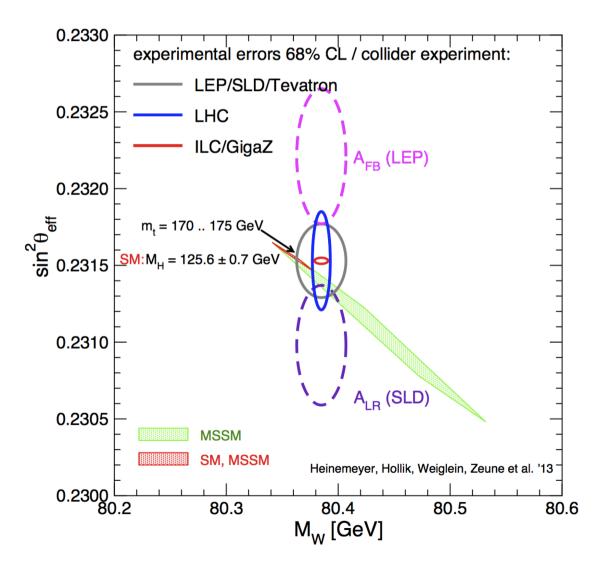
Radiative Corrections to Higgs Self-Coupling

• $\lambda |\phi|^4$ receives radiative corrections from Higgs and top loops

Next Steps for Electroweak Measurements

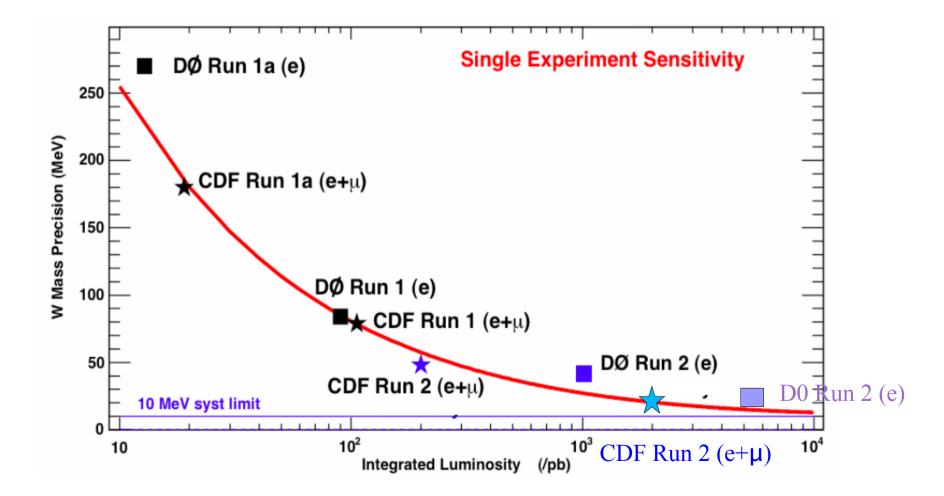
- For the first time: All SM fields in the Electroweak sector are detected and parameters are measured
 - Since Higgs boson mass is measured to $\sim 1 \text{ GeV}$

- We must over-constrain SM by measuring electroweak observables as precisely as possible
 - Complementary to direct searches for new particles
 - New physics may be revealed through precision measurements of W and Z bosons


Next Steps for Electroweak Measurements

- Electroweak observables access all the mechanisms that can stabilize / explain the light Higgs mass
 - Is it stabilized by a symmetry such as SuperSymmetry ?
 - Is the Higgs boson a pseudo Nambu-Goldstone Boson?
 - Is there new strong dynamics ?
 - Do extra-dimensional models bring the Planck scale close to Electroweak scale?

- Our Snowmass report discusses two areas of electroweak physics
 - Electroweak precision observables (EWPOs) : M_{W} and $\sin^2\theta_{III}$
 - $\bullet \ \Diamond \ J \sqcup T A \Xi \cap A O K \ O \sqcup T J \exists K B \sqsubseteq K \ f \ T \exists \Xi \cap A O K \ M E A \ f \ P \sqcup T A K$


$Sin^2\theta_{eff}$ and M_w

- Both EWPOs are now precisely predicted in the SM
 - And correlated range predicted in beyond-SM models such as MSSM

Projecting the M_{W} Precision

- Tevatron experience:
 - Larger calibration and control samples of data + increasing experience

Projecting the M_{W} Precision at Tevatron

- Tevatron experience:
 - Larger calibration and control samples of data + increasing experience

ΔM_W [MeV]	CDF	D0	$\operatorname{combined}$	final CDF	final D0	$\operatorname{combined}$
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.2	4.3(+1.1)	7.6	10	10	20
PDF	10	11	10	5	5	5
QED rad.	4	7	4	4	3	3
$p_T(W) \mod$	5	2	2	2	2	2
other systematics	10	18	9	4	11	4
W statistics	12	13	9	6	8	5
Total	19	26(23)	16	10	15	-9

Table 1-4. Current and projected uncertainties in the measurement of M_W at the Tevatron.

• Tevatron final uncertainty of 9-10 MeV

Assuming factor of two improvement in PDF uncertainty (possible with LHC measurements of boson distributions)

LHC Target for M_w Precision

• Larger PDF sensitivity than Tevatron by factor of ~2

LHC)
8	14	14
20	300	3000
10	5	3
4	3	2
2	1	1
10	5	3
1	0.2	0
15	8	5
	20 10 4 2 10 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• Target LHC uncertainty of 5 MeV

requires further factor of ~3 improvement in PDFs improved generators and radiative corrections

M_w Precision at Lepton Colliders

- WW threshold scan being revisited at ILC: new estimates in progress
 - 3-4 MeV complementary measurements possible with kinematic fitting and final-state reconstruction

ΔM_W [MeV]	LEP2	ILC	ILC	
$\sqrt{s} [\text{GeV}]$	161	161	161	
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	0.040	100	480	
$P(e^{-})$ [%]	0	90	90	
$P(e^+)$ [%]	0	60	60	
systematics	70			
statistics	200		Worl	k in progress
experimental total	210	3.9	1.9	(from Graham Wilson)
beam energy	13	0.8	0.8	
theory	-	1.0	1.0	
total	210	4.1	2.3	

- CEPC/TLEP promises higher statistics: 25 million *WW* pairs at threshold Warrants detailed investigation of systematics, beam energy calibration and polarization: could deliver ~1 MeV measurement of M_w
- Lepton colliders heading towards ~2 MeV measurement of M_w ? or better ? 14

$\sin^2\theta_{J\Box}$ Precision at Hadron Colliders

• Tevatron projection: $\sim 40 \times 10^{-5}$

$\Delta \sin^2 \theta_{\text{eff}}^l [10^{-5}]$	CDF	D0	final CDF	final CDF	final CDF
final state	e^+e^-	e^+e^-	$\mu^+\mu^-$	e^+e^-	combined
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.1	5.0	9.0	9.0	9.0 $\mu\mu$ + 9 e^+e^-
PDF	12	48	12	12	12
higher order corr.	13	8	13	13	13
other systematics	5	38	5	5	5
statistical	90	80	80	40	40
total $\Delta \sin^2 \theta_{\text{eff}}^l$	92	101	82	44	41

(from Arie Bodek)

Table 1-6. Current and target uncertainties in the measurement of $\sin^2 \theta_{\text{eff}}^l$ at the Tevatron.

$\Delta \sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	ATLAS	CMS	LHC/per experiment		
\sqrt{s} [TeV]	7	7	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	4.8	1.1	20	300	3000
PDF	70	130	35	25	10
higher order corr.	20	110	20	15	10
other systematics	70	181	60(35)	20	15
statistical	40	200	20	5	2
Total	108	319	75(57)	36	21

(ATLAS preliminary from Regino Caputo)

Table 1-7. Current and target uncertainties in the measurement of $\sin^2 \theta_{\text{eff}}^l$ at the LHC.

- LHC may reach ~ 20×10^{-5} if current PDF uncertainties reduced by factor ~ 7
- Moller Experiment (polarized *ee* scattering) at JLAB also targets $\sim 20 \times 10^{-5}$
- Interesting to compare LEP, SLC precision ~ 27×10^{-5} with 3σ difference $_{15}$

$\sin^2\theta_{J\Box}$ Precision at Lepton Colliders

• ILC/GigaZ projection: $\sim 1.3 \times 10^{-5}$

$\Delta \sin^2 \theta_{\text{eff}}^l \ [10^{-5}]$	ILC/GigaZ	TLEP(Z)
systematics	1.2	
statistical	0.5	0.2
total	1.3	

Table 1-11. Projected uncertainties in the measurement of $\sin^2 \theta_{\text{eff}}^l$ at lepton colliders.

- CEPC/TLEP has further statistical potential: 100B to trillion Z bosons polarization to be investigated: could achieve precision ~ 1 to 3 x 10^{-6}
- More than factor of 10 improvement over LEP, SLC precision with ILC/GigaZ
- Factor of 50 with CEPC/TLEP

Parametric and Theoretical Uncertainties

• Anticipate missing higher-order corrections will be calculated

	$\Delta m_t = 0.9~{\rm GeV}$	$\Delta(\Delta\alpha_{\rm had}) = 1.38(1.0)\cdot 10^{-4}$	$\Delta M_Z = 2.1~{\rm MeV}$	missing h.o.	total
ΔM_W [MeV]	5.4	2.5(1.8)	2.6	4.0	7.6(7.4)
$\Delta \sin^2 \theta_{\text{eff}}^{\ell}[10^{-5}]$	2.8	4.8(3.5)	1.5	4.5	7.3(6.5)
Table 1-2	. Current parametr	ic and theory uncertainties of S	M predictions of M_W	and $\sin^2 \theta_{\text{eff}}^{\ell}$.	
				ł	
	$\Delta m_t = 0.6(0.1) \ \mathrm{C}$	GeV $\Delta(\Delta \alpha_{\rm had}) = 5 \times 10^{-5}$	$\Delta M_Z = 2.1~{\rm MeV}$	missing h.o.	total
ΔM_W [MeV]	3.6(0.6)	1.0	2.6	1.0	4.7(3.0)
$\Delta \sin^2 \theta_{\rm eff}^{\ell} [10^{-5}]$	1.9(0.3)	1.8	1.5	1.0	3.2(2.6)

Table 1-3. Anticipated parametric and theory uncertainties of SM predictions.

Parametric and Theoretical Uncertainties

• Anticipate missing higher-order corrections will be calculated

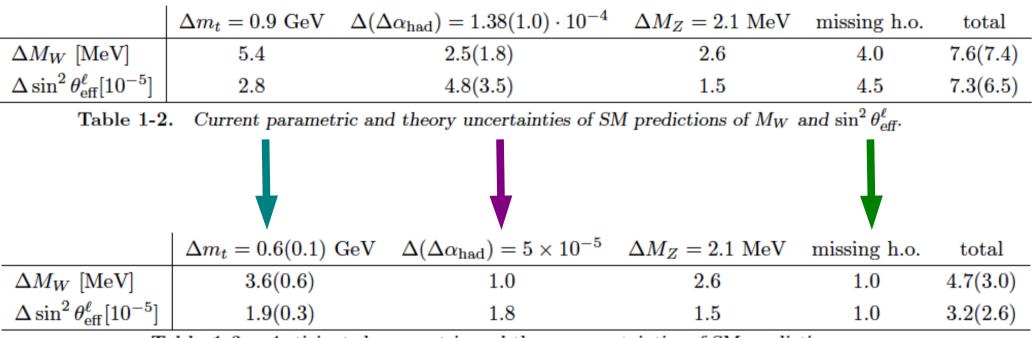
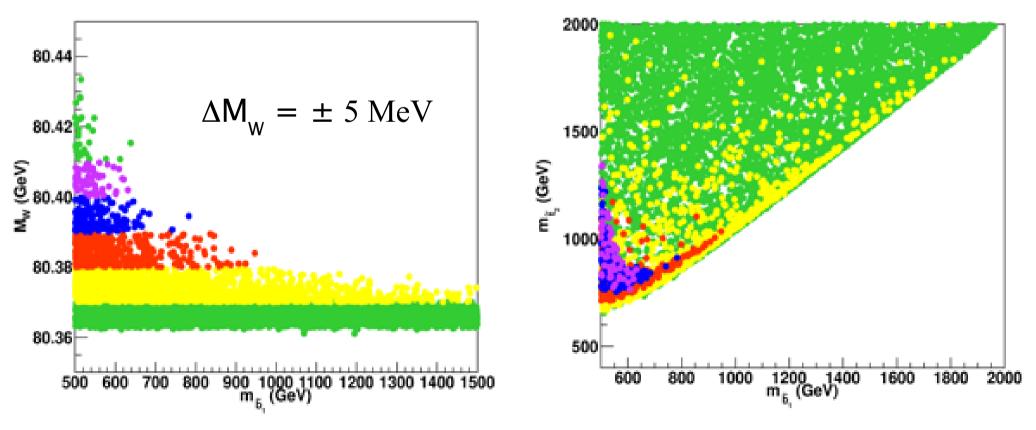
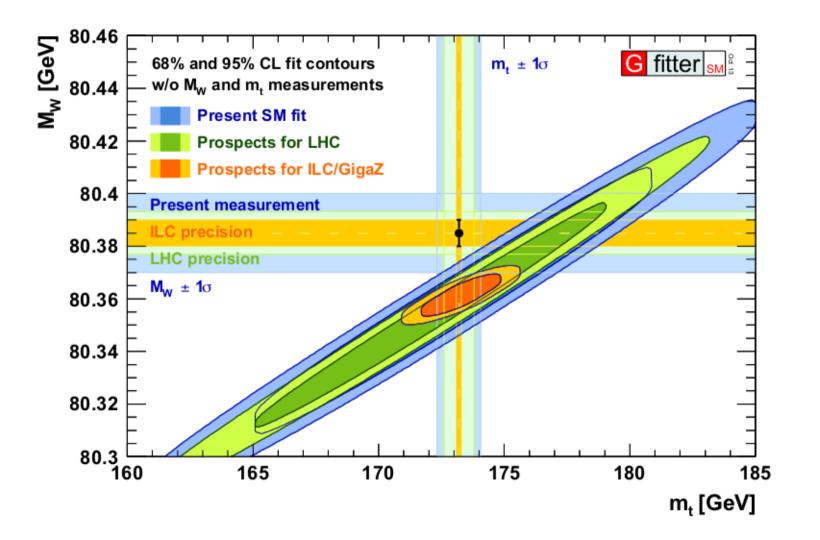
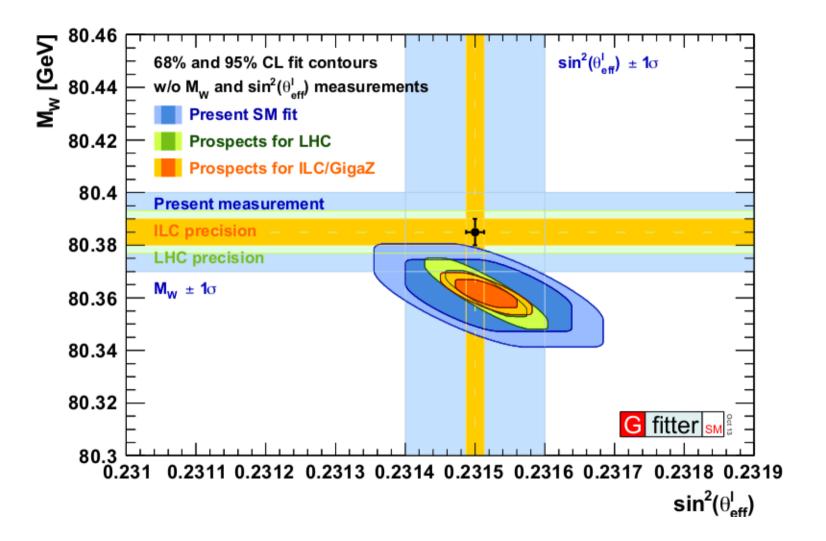



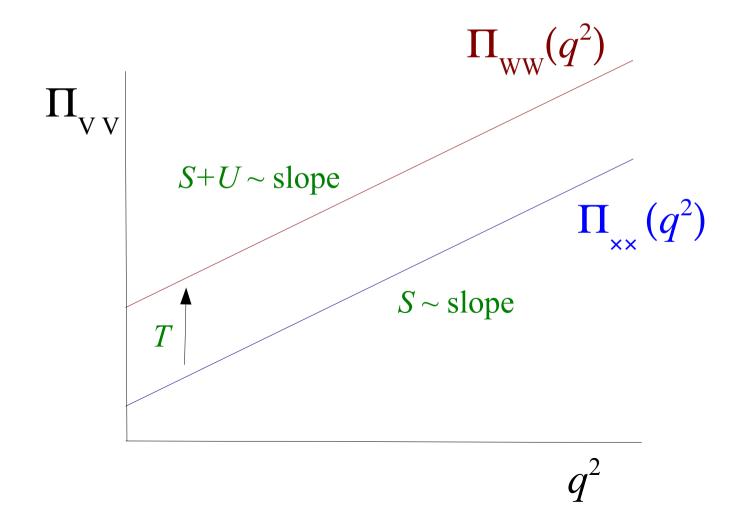
Table 1-3. Anticipated parametric and theory uncertainties of SM predictions.


- Desirable to improve m_{top} precision below 0.5 GeV Non-perturbative QCD effects in connecting reconstructed and pole mass
- Hadronic loops in running $\alpha_{_{\rm EM}} \rightarrow$ need factor 2-3 improvement (lattice?)

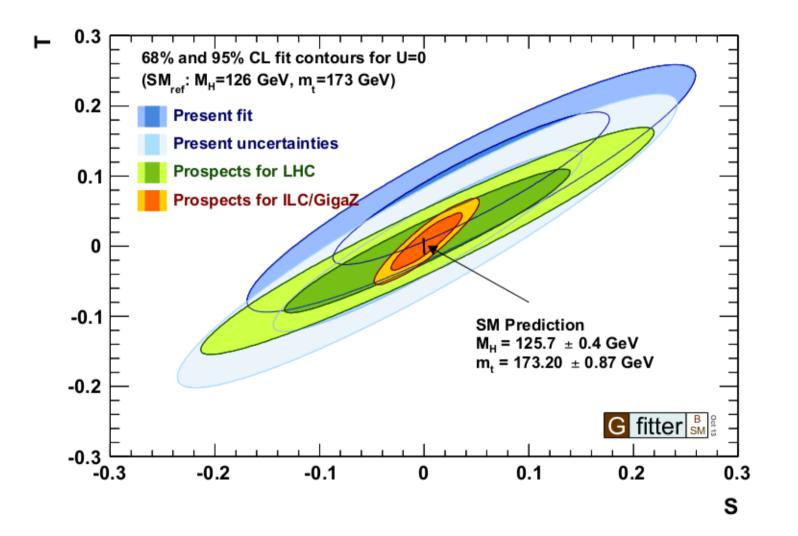
What could we learn ?


- SUSY-breaking parameter space is large
- Consider scenario after light stop discovery with mass = (400 ± 40) GeV
- MW predicts correlation with sbottom mass and heavy stop mass in MSSM
 - Parameter space shrinks rapidly depending on value and precision of $M_{_{\rm W}}$

Summary - EWPOs



Summary - EWPOs



STU Parameterization

- Generic parameterization of new physics contributing to W and Z boson self-energies through radiative corrections in propagators
 - S, T, U parameters (Peskin & Takeuchi, Marciano & Rosner, Kennedy & Langacker, Kennedy & Lynn)

Summary - EWPOs

$$\begin{split} \frac{G_{\mu}}{\sqrt{2}} &= \frac{\pi \alpha M_Z^2}{2M_W^2 (M_Z^2 - M_W^2)} (1 + \Delta r) \\ \Delta r &\approx \Delta r^{\rm SM} + \frac{\alpha}{2s_W^2} \Delta S - \frac{\alpha c_W^2}{s_W^2} \Delta T + \frac{s_W^2 - c_W^2}{4s_W^4} \Delta U, \\ \sin^2 \theta_{\rm eff}^\ell &\approx (\sin^2 \theta_{\rm eff}^\ell)^{\rm SM} + \frac{\alpha}{4(c_W^2 - s_W^2)} \Delta S - \frac{\alpha s_W^2 c_W^2}{c_W^2 - s_W^2} \Delta T, \end{split}$$

 $\Delta S = 0.04, \Delta T = 0 \implies \Delta M_{W} = 27 \text{ MeV}, \Delta \sin^{2}\Theta = 14 \text{ x } 10^{-5}$ (1-2 sigma of current uncertainties)

 $\Delta S = 0, \Delta T = 0.03 \implies \Delta M_{W} = 32 \text{ MeV}, \Delta \sin^2 \Theta = 8 \times 10^{-5}$

Note: world average measurement: $\Delta M_{W} = 15 \text{ MeV}$

(from Giudice et al, "The Strongly-Interacting Light Higgs", hep-ph/0703164)

$$\mathcal{L}_{\text{SILH}} = \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overrightarrow{D}_{\mu} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \overline{f_L} H f_R + \text{h.c.} \right) + \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) + \frac{i c_H W g}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i \left(D^{\nu} H \right) W_{\mu\nu}^i + \frac{i c_{HB} g'}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu} + \frac{c_{\gamma} g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}.$$
(15)

$$\Delta \rho \equiv \widehat{T} = c_T \xi,$$

$$\xi \equiv \frac{v^2}{f^2}, \quad v = \left(\sqrt{2}G_F\right)^{-1/2} = 246 \,\mathrm{GeV}$$

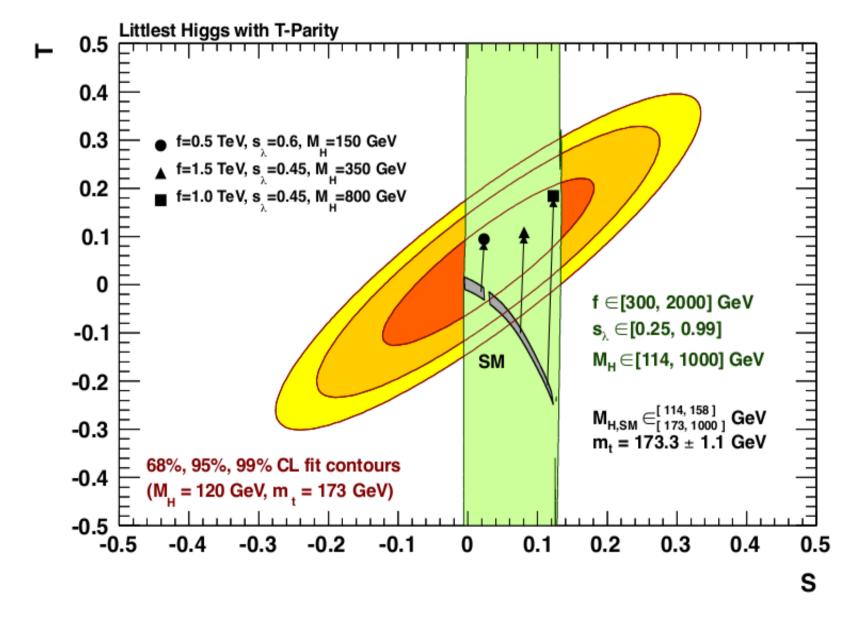
Higgs couplings change by factor $1 - \xi c_H/2$

 $\widehat{S} = (c_W + c_B) \, \frac{m_W^2}{m_o^2}$

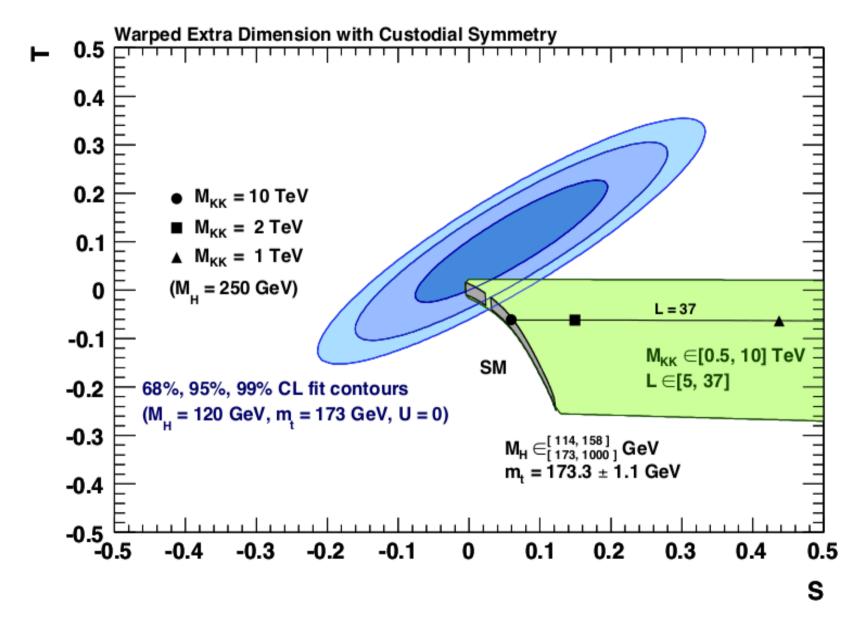
$$\Delta S = 0.04, \Delta T = 0 \implies \text{if } C_w + C_B = 1, m_\rho = 4.5 \text{ TeV}$$

 $\Delta S = 0, \Delta T = 0.03 \implies if c_T = 1, f = 15 \text{ TeV}$

Higgs coupling change by 6% (1.5%) <=> if $c_{_{H}} = 1$, f = 1 (2) TeV

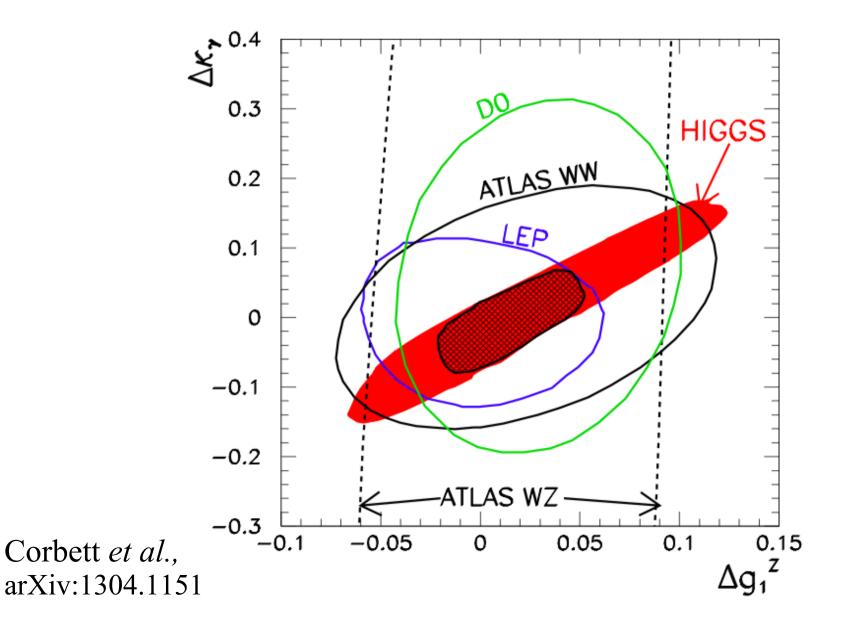

Conclusion: interpreted in a dimension-6 operator framework, EWPOs are already probing multi-TeV scale

Equivalent to Higgs coupling change of order 0.5 %


(caveat: different operators, different coefficients)

10,000 times the LEP statistics \rightarrow EWPO improved by ~100 (statistical error)

 \rightarrow new physics energy scale probed factor of 10 higher \rightarrow 50–100 TeV


Gfitter Group

Gfitter Group

Combined Fit to Higgs and Anomalous Trilinear Gauge Couplings

• Illustrates the complementary of approaches to new physics via coupling deviations (equivalent to dimension-6 operators)

LHC and ILC Comparison for Anomalous Trilinear Gauge Couplings

• equivalent to dimension-6 operator coefficients

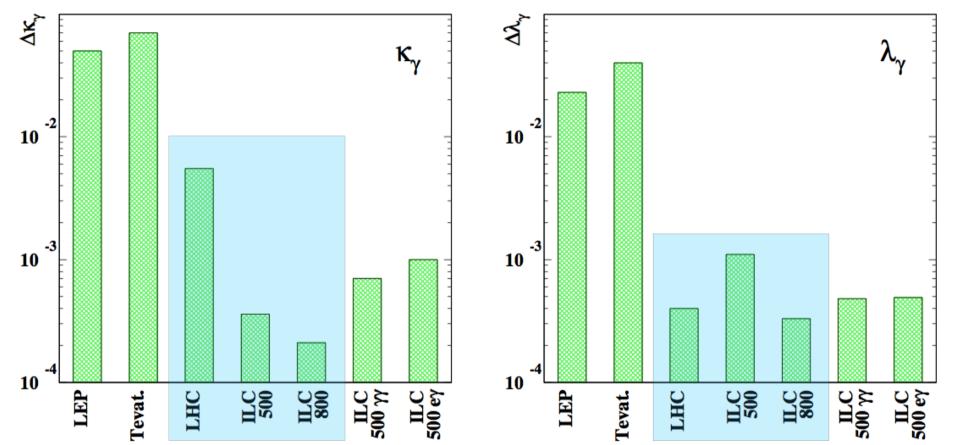


Figure 1-22. Comparison of $\Delta \kappa_{\gamma}$ and $\Delta \lambda_{\gamma}$ at different machines. For LHC and ILC three years of running are assumed (LHC: 300 fb⁻¹, ILC $\sqrt{s} = 500$ GeV: 500 fb⁻¹, ILC $\sqrt{s} = 800$ GeV: 1000 fb⁻¹). If available the results from multi-parameter fits have been used. Taken from Ref. [193, 194].

Generally, electron-positron collider probes dimension-6 operators, through diboson production, much better than LHC

Conclusions

- Electroweak physics is directly connected with the next big question after Higgs discovery: the mechanism for stabilizing the Higgs potential
- Electroweak Precision Measurements can test SM and probe BSM parameter space
 - High precision measurements of M_W (factor of 5 improvement $\rightarrow \sim 3$ MeV) and $\sin^2\theta_{eff}$ (factor of 10 improvement $\rightarrow \sim 1.3 \times 10^{-5}$) are good goals for ILC/GigaZ
 - CEPC/TLEP gives high statistics potential: factor 3-10 higher precision than ILC/GigaZ possible including systematics
 - < 1 MeV precision on M_{W}
 - 1-3 x 10⁻⁶ precision on $\sin^2 \theta_{eff}$

Conclusions

- Complementary approaches to precision measurements for estimating the energy scale of new physics
 - Higgs branching ratios
 - Z-pole measurements
 - W mass measurement at WW threshold
 - Diboson measurements and anomalous couplings

 Precision measurements can probe energy scales of many TeV to many 10's of TeV

Conclusions – parametric uncertainties

Measurements of M_W at the few MeV level, and $\sin^2 \theta_{\text{eff}}^{\ell}$ at the level of 10^{-5} , require that the parametric uncertainties from m_{top} , M_Z , and $\Delta \alpha_{had}$ (the contribution to the running of α_{EM} from hadronic loops) as well as the missing higher order calculations be addressed. Parametric uncertainties from m_{top} and $\Delta \alpha_{had}$, if reduced by a factor of 2 compared to current uncertainties, will prevent them from exceeding the anticipated total precision on M_W at the LHC. At the ILC and TLEP a factor of 5 and 10 improvement, respectively, in the parametric uncertainties is needed, which is only achievable if the precision on M_Z is considerably improved as well. TLEP can improve the M_Z precision by a factor of at least 10. It is anticipated that calculations in the coming years will reduce the effect of missing higher-order calculations by a factor of 4 which is sufficient for the LHC and ILC target uncertainties, but further effort will be needed for TLEP.

THANK YOU

• Thanks to the Snowmass Energy Frontier Electroweak working group members !

Conveners: A. Kotwal and D. Wackeroth

M. Baak, A. Blondel, A. Bodek, R. Caputo, T. Corbett, C. Degrande, O. Eboli, J. Erler, B. Feigl,
A. Freitas, J. Gonzalez Fraile, M.C. Gonzalez-Garcia, J. Haller, J. Han, S. Heinemeyer, A. Hoecker,
J. L. Holzbauer, S.-C. Hsu, B. Jäger, P. Janot, W. Kilian, R. Kogler, P. Langacker, S. Li, L. Linssen,
M. Marx, O. Mattelaer, J. Metcalfe, K. Mönig, G. Moortgat-Pick, M.-A. Pleier, C. Pollard,
M. Ramsey-Musolf, M. Rauch, J. Reuter, J. Rojo, M. Rominsky, W. Sakumoto, M. Schott, C. Schwinn,
M. Sekulla, J. Stelzer, E. Torrence, A. Vicini, G. Weiglein, G. Wilson, L. Zeune

Electroweak Report posted at:

http://snowmass2013.org/tiki-index.php?page=Precision+Study+of+Electroweak+Interactions

and arXiv:1310.6708