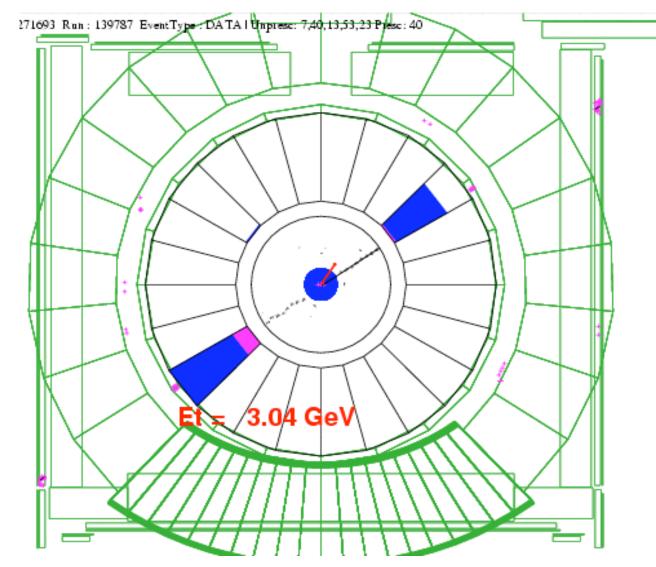
Measurement of the W Boson Mass at CDF Ashutosh Kotwal Duke University

We present a techniques used for precise measurements of the W boson mass at the CDF experiment at Fermilab. We present the results and the prospects for future improvements at Fermilab and the LHC.

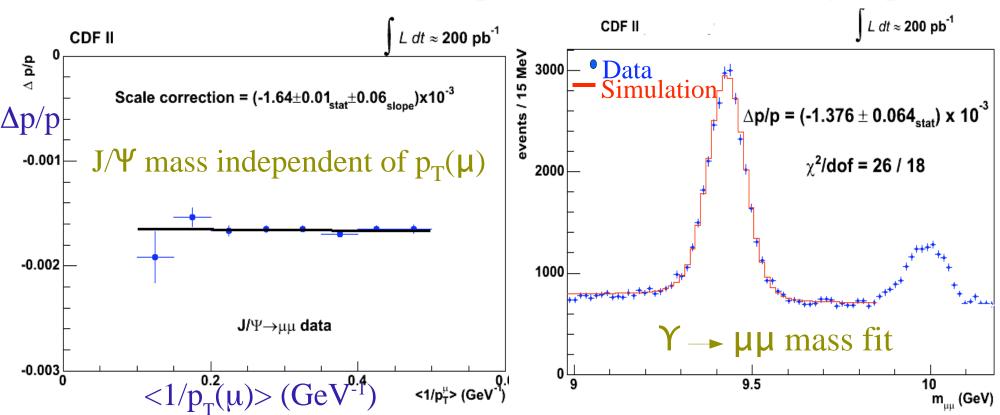
> Riken Brookhaven Research Center Workshop June 24-25, 2010


Outline of CDF Analysis

Energy scale measurements drive the W mass measurement

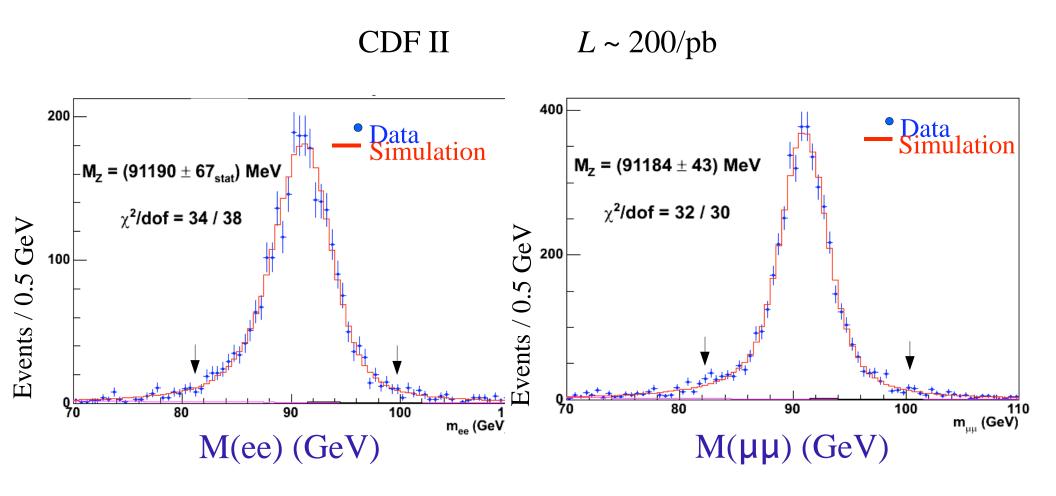
- Tracker Calibration
 - alignment of the central drift chamber (COT with ~2400 cells) using cosmic rays
 - COT momentum scale and tracker non-linearity constrained using $J/\psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ mass fits
 - Confirmed using $Z \rightarrow \mu \mu$ mass fit
- EM Calorimeter Calibration
 - COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around E/p ~ 1
 - Calorimeter energy scale confirmed using $Z \rightarrow ee$ mass fit
- Tracker and EM Calorimeter resolutions
- Hadronic recoil modelling
 - Characterized using p_T -balance in $Z \rightarrow ll$ events

Internal Alignment of COT


• Use a clean sample of ~200k cosmic rays for cell-by-cell internal alignment

- Fit COT hits on both sides simultaneously to a single helix (A.Kotwal, H. Gerberich and C. Hays, NIMA 506, 110 (2003))
 - Time of incidence is a floated parameter
- Same technique being used on ATLAS and CMS

Tracking Momentum Calibration


- Set using $J/\Psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ resonances
 - Consistent within total uncertainties
- Use J/Ψ to study and calibrate non-linear response of tracker

• Systematics-dominated, improved detector modelling required

$Z \rightarrow ll$ Mass Cross-checks

• Z boson mass fits consistent with tracking and E/p-based calibrations

Summary

- The *W* boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result with 200 pb⁻¹ data:

 $- M_W = 80413 \pm 48 \text{ MeV}$

• D0 Run 2 W mass result with 1 fb⁻¹ data:

 $- M_{W} = 80401 \pm 43 \text{ MeV}$

- Most systematics limited by statistics of control samples
 - CDF and D0 are both working on $\delta M_W < 25$ MeV measurements from ~ 2 fb⁻¹ (CDF) and ~ 4 fb⁻¹ (D0)
- Learning as we go: Tevatron \rightarrow LHC may produce $\delta M_W \sim 5-10 \text{ MeV}$