W Boson Mass Measurement at CDF and Tevatron-LHC Combination

Ashutosh Kotwal

25 May 2018

LHC precision EW workshop, Orsay

W Boson Mass Measurement at CDF

- Published measurement using 2.2/fb of integrated luminosity
 - About 500K W boson events in each of electron and muon channels
 - PRL 2012
 - PRD 2014
 - $MW = 80387 \pm 19 MeV$

Currently ongoing analysis of full Tevatron Run2 dataset, 8.8/fb of integrated luminosity

Combination of Tevatron and LHC Measurements

PDF uncertainty

- In principle, correlation between Tevatron and LHC for PDF uncertainty in $M_{\rm W}$ can be derived from a common framework, using common PDF set and eigenvectors / replicas
- CDF and D0 assumed 100% correlation because of identical partonic x sampled
- Tevatron and LHC may not be 100% correlated because of different x sampled
 - Correlation may be weak, or possibly negative, which would be good fortune
- Need to publish M_w variation with eigenvectors / replicas

PDF uncertainty improvements

- May use NNPDF3.1
- Replicas can be reweighted, incorporating weights from posterior fit to W charge asymmetry, forward-backward asymmetry off Z-boson mass peak, etc.
- May measure central (η <1) to forward (η >1) ratio of electron rates from W boson decay, as additional PDF constraint

Combination of Tevatron and LHC Measurements

- $-P_{T}(W)$ uncertainty
 - Correlation between Tevatron and LHC for $P_T(W)$ uncertainty in M_W should be negligible, to the extent the model parameters are tuned on Z boson data
 - Tevatron uses RESBOS to fit and tune parameters of P_T(V)
 - $P_T(W)/P_T(Z)$ ratio may be correlated between Tevatron and LHC
 - Need to settle on theoretical framework / program to extract $P_T(W)/P_T(Z)$ ratio uncertainty