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A Century of Particle Physics
● Success # 1: discovery of 6 quarks and 6 leptons

● 12 fundamental fermions: matter particles (and their antimatter
counterparts) derived by combining quantum mechanics and special
relativity 

But the intriguing pattern 
of mass values is assigned 
to their Higgs interaction   
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How to Predict Fundamental Forces

“fcttous” forces observed in acceleratng frame of reference
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Manifestaton of Coriolis Force

Hurricanes appear to rotate in Earth’s frame of reference
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A Century of Particle Physics

● Success # 2: principle of gauge invariance for predicting the nature of
fundamental forces

– matter particles (quarks and leptons) transform in curved internal spaces

– The equations of motion predict terms that describe particle interactions
with force fields
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How does the W boson Acquire Mass?

• Fill all of space with “Higgs” feld

• Partcles propagatng through “empty space” 
actually propagatng though Higgs feld

• Interacton of partcles with Higgs feld slows down
the partcle  impartng the property of mass to it
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Light versus Heavy Partcles – 
like moving through water

Streamlined
●  Moves fast through water
●  analogous to light partcle 

Not streamlined
●  Moves slowly  through water
●  analogous to heavy partcle 
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Quantum Ground State Breaks Gauge Symmetry

● Gauge Symmetry predicts all particles should be massless

● Solution: scalar Higgs field develops a ground state that violates the
symmetry and generates particle masses via Higgs interactions  

● Phase transition → vacuum state possesses non-trivial quantum numbers

– Dynamical origin of this phase transition is not known 

– Implies vacuum is a condensed, superconductor-like state 
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Fundamental vs Parametric Physics

● Fundamental principles lead to

– Chiral fermions from irreducible representations of Lorentz group

● fermions as spin ½ representations of Lorentz group
● Fermi-Dirac statistics → Pauli Exclusion Principle
● why matter occupies volume

– Massless force mediators (gauge bosons) from gauge invariance

– Massive gauge bosons and fermions from spontaneous breaking of gauge
symmetry

● In comparison, the breaking of gauge symmetry by the Higgs is
parametrically induced

– No dynamic or underlying principle behind it in the Standard Model
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Why is Higgs Puzzling
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Why is Higgs Puzzling

Ad-hoc potential, similar to and motivated by Landau-Ginzburg theory of  
superconductivity

Standard Model Higgs potential can be extrapolated to the high-energy of quantum 
gravity without additional parameters

but no a-priori reason for a parameterization to respect this condition     
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Why is the Higgs Boson so Light?

∫   d4k (k2 - m
H

2)-1λ

Λ

~ Λ2 λ 

2 2

For the first time, we have additive corrections to parameters which are
quadratically divergent

The Higgs boson ought to be a very heavy particle, naturally

However, observed m
H
 <<  Λ 
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Fine-tuning Problem of Higgs Boson Mass

● The large quantum corrections must be regulated by
some very high-energy physics such as energy
associated with quantum gravity, M

planck
 ~ 1019 GeV

●

●

Top quark loop
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Higgs boson puzzles

● First fundamental (?) scalar field to be discovered

● Spontaneous symmetry breaking by development of a ground state

– But ground state is induced parametrically by ad-hoc Higgs potential, no
dynamics

● Parameters of Higgs potential are not stable under quantum corrections

– First time that the quantum correction to a particle mass is additive and
quadratically divergent

– Gauge boson masses are protected by gauge invariance

– Fermion masses are protected by chiral symmetry of massless fermions

● Single scalar Higgs field is a strange beast, compared to fermions and
gauge bosons

● Additional symmetries and/or dynamics strongly motivated by Higgs
discovery            
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Detecting New Physics through Precision Measurements

● Willis Lamb (Nobel Prize 1955) measured the difference between
energies of 2S

½
 and 2P

½ 
states of hydrogen atom

– 4 micro electron volts diference compared to few
electron volts binding energy

– States should be degenerate in energy according to tree-
level calculation

● Harbinger of vacuum fluctuations to be calculated by Feynman
diagrams containing quantum loops

– Modern quantum field theory of electrodynamics followed
( Nobel Prize 1965 for Schwinger, Feynman, Tomonaga)
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Parameters of  Electro-Weak Interactions

● Gauge symmetries related to the electromagnetic and weak forces in the
standard model, extension of QED

– U(1)
hypercharge

 gauge group with gauge coupling g

– SU(2)
weak

 gauge group with gauge coupling g'

● And gauge symmetry-breaking via vacuum expectation value of Higgs
field v ≠ 0

● Another interesting phenomenon in nature: the U(1) generator and the
neutral generator of SU(2) get mixed (linear combination) to yield the
observed gauge bosons

– Photon for electromagnetism

– Z boson as one of the three gauge bosons of weak interaction

● Linear combination is given by Weinberg mixing angle ϑW
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Parameters of  Electro-Weak Interactions
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Radiative Corrections to Electromagnetic Coupling

2
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Radiative Corrections to W Boson Mass
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Contributions from Supersymmetric Particles

● Quantum correction to W boson mass depends on mass splitting (Δm2)
between supersymmetric quarks

● SUSY loops can contribute tens of MeV to M
W 

– Even with significant exclusions from Large Hadron Collider

– Supersymmetric particle could constitute dark matter   
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● Generic parameterization of new physics contributing to W and Z
boson self-energies through radiative corrections in propagators

– S, T, U parameters (Peskin & Takeuchi, Marciano & Rosner, Kennedy
& Langacker, Kennedy & Lynn)

Motivation

q2

Π
V V

 
   

Π
WW

(q2)
 
   

 

Π
ZZ 

(q2)    

T
S ~ slope

S+U ~ slope
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● Asymmetries definable in electron-positron scattering sensitive to
Weinberg mixing angle ϑW

● Fermions, Higgs (and possible new physics) also contribute radiative
corrections to ϑW via quantum loops

● A
FB

 is the angular (forward – backward) asymmetry of the final state

● A
LR

 is the asymmetry in the total scattering probability for different

polarizations of the initial state (measured very precisely at SLAC's
SLC by SLD)

A
FB

 and A
LR

 Observables
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● Generic parameterization of new physics contributing to W and Z
boson self-energies: S, T, U parameters

S-T plane

 M
W

 and Asymmetries are the most powerful observables

(From PDG 2021)

Additionally, M
W

 is the

only measurement which
constrains U

U=0 assumed
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● The electroweak gauge sector of the standard model  is
constrained by precisely known parameters

– αEM (MZ) = 1 / 127.918(18)

– GF = 1.16637 (1) x 10-5 GeV-2

– MZ = 91.1876 (21) GeV

– mtop = 172.89 (59) GeV

– MH = 125.25 (17) GeV

● At tree-level, these parameters are related to MW 

– MW
2 = παEM / √2GF sin2ϑW 

● Where ϑW is the Weinberg mixing angle, defined by 

          cos ϑW = MW/MZ  

Motivation for Precision Measurements



26

● Radiative corrections due to heavy quark and Higgs loops and
(potentially) undiscovered particles

Motivation for Precision Measurements

Motivate the introduction of the ρ parameter:  MW
2 = ρ [MW(tree)]2

with the predictions Δρ = (ρ-1) ~ Mtop
2
  and Δρ ~ ln MH
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● The mass of the W boson is tightly constrained by the symmetries of
the standard model, in conjunction with Mtop and M

Higgs
 

– The Higgs boson was the last missing component of the model

– Following the observation of the Higgs boson, a measurement of the W-
boson mass provides a stringent test of the model

● The W boson mass is presently constrained by SM global fits to a
relative precision of 0.01%

– provides a strong motivation to test the SM by measuring the mass to the
same level of precision

– SM expectation M
W

 = 80,357 ± 4
inputs

 ± 4
theory

 MeV

– Inputs include Z- and Higgs boson and top-quark masses, EM coupling
and muon lifetime measurements 

Motivation for Precision Measurements
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● Hypotheses to provide a deeper explanation of the Higgs field, its
potential and the Higgs boson, include 

– Supersymmetry

– Compositeness

– New strong interactions

– Extended Higgs sector

● Hypothetical sources of particulate dark matter 

● Extended gauge sector

Beyond-SM Modifications to Expected M
W
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W mass measurement – decay kinematics
● Main complication: invariant mass cannot be reconstructed from 2-body

leptonic decay mode

– Because neutrino is not detectable directly  

● Exploit the “Jacobian edge” in lepton transverse momentum spectrum

W boson rest frame
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W mass measurement – decay kinematics
● Main complication: invariant mass cannot be reconstructed from 2-body

leptonic decay mode

– Because neutrino is not detectable directly  

● Exploit the “Jacobian edge” in lepton transverse momentum spectrum

Invariant under 
longitudinal boost
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W mass measurement – decay kinematics
● Main complication: invariant mass cannot be reconstructed from 2-body

leptonic decay mode

– Because neutrino is not detectable directly  

● Exploit the “Jacobian edge” in lepton transverse momentum spectrum
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W mass measurement – decay kinematics

● Lepton transverse momentum not invariant under transverse boost

● But measurement resolution on leptons is good

Black curve: truth level, no p
T
(W)

Blue points: detector-level with
lepton resolution and selection, 
But no p

T
(W)

Shaded histogram: with p
T
(W)   
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W mass measurement – decay kinematics

● Define “transverse mass” → approximately invariant under transverse boost

● But measurement resolution of “neutrino”  is not as good due to recoil

Black curve: truth level, no p
T
(W)

Blue points: detector-level with
lepton resolution and selection, 
But no p

T
(W)

Shaded histogram: with p
T
(W)   
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Signal Simulation and Template Fitting
● All signals simulated using a Custom Monte Carlo

– Generate finely-spaced templates as a function of the fit variable

– perform binned maximum-likelihood fits to the data

● Custom fast Monte Carlo makes smooth, high statistics templates

– And provides analysis control over key components of the simulation  

● We will extract the W mass from six kinematic distributions: Transverse mass,
charged lepton pT and missing ET using both electron and muon channels

MW = 80 GeV

MW = 81 GeV
Monte Carlo template
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W Boson Production at the Tevatron

Neutrino

Lepton
W

GluonsQuark

Antiquark

Quark-antiquark annihilation
dominates (80%)

Lepton pT carries most of W mass 
information, can be measured precisely (achieved 0.004%)

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in
calorimeter (calibrated to ~0.2%)
dilutes W mass information, fortunately pT(W) << MW
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W Boson Production at the Tevatron

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in
calorimeter (calibrated to ~0.2%)
dilutes W mass information, fortunately pT(W) << MW
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 Quadrant of Collider Detector at Fermilab (CDF)

.η = 1
Central electromagnetic calorimeter

Central hadronic calorimeter

Select W and Z bosons with central ( | η | < 1 ) leptons

COT provides
precise lepton
track momentum
measurement

EM calorimeter 
provides precise
electron energy
measurement

Calorimeters measure 
hadronic recoil particles
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 Collider Detector at Fermilab (CDF)

Central
hadronic
calorimeter

Muon
detector

Central
outer
tracker
(COT)

Central EM
calorimeter
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 CDF Particle Tracking Chamber

Reconstruction of particle trajectories, calibration to ~1 μm accuracy: 

AVK, H. Gerberich and C. Hays, NIM A506, 110 (2003)

 C. Hays et al, NIM A538, 249 (2005)  
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 W boson Production Event

hadronic
calorimeter

Central
outer
tracker
(COT)

electron
calorimeter

electron

inferred neutrino
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Event Selection

● Goal: Select events with high pT leptons and small hadronic recoil activity 

– to maximize W mass information content and minimize backgrounds 

● Inclusive lepton triggers: loose lepton track and muon stub / calorimeter
cluster requirements, with lepton pT > 18 GeV

– Kinematic efficiency of trigger ~100% for offline selection

● Offline selection requirements: 

– Electron cluster ET > 30 GeV, track pT > 18 GeV

– Muon track pT > 30 GeV

– Loose identification requirements to minimize selection bias

● W boson event selection: one selected lepton, |u| < 15 GeV & pT(ν) > 30 GeV

– Z boson event selection: two selected leptons
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W & Z Data Samples

● Integrated Luminosity (collected between February 2002 – September 2011):

– Electron and muon channels: L = 8.8 fb-1

– Identical running conditions for both channels, guarantees cross-calibration

● Event selection gives fairly clean samples

– Mis-identification backgrounds ~ 0.5%  

Sample Candidates 

W → electron 1 811 700

Z → electrons 66 180

W → muon 2 424 486

Z → muons 238 534
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Analysis Strategy
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 Strategy

Maximize the number of internal constraints and cross-checks

Driven by three goals:

1) Robustness: constrain the same parameters in as many different
ways as possible 

2) Precision: combine independent measurements after showing
consistency

3) minimize bias: blinded measurements of M
Z
 and M

W 
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Outline of Analysis
Energy scale measurements drive the W mass measurement

● Tracker Calibration

– alignment of the COT (2,520 cells; 30,240 sense wires) using cosmic rays

– COT momentum scale and tracker non-linearity constrained using
J/ψ      μμ  and ϒ     μμ mass fits

– Confirmed  using Z       μμ mass fit

● EM Calorimeter Calibration

–  COT momentum scale transferred to EM calorimeter using a fit to the peak
of the E/p spectrum, around E/p ~ 1

– Calorimeter energy scale confirmed using  Z       ee mass fit

● Tracker and EM Calorimeter resolutions

● Hadronic recoil modeling

– Characterized using pT-balance in  Z       ll events
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Drift Chamber (COT) Alignment

COT endplate
geometry
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Internal Alignment of COT
● Use a clean sample of ~480k cosmic rays for cell-by-cell internal

alignment

● Fit COT hits on both
sides simultaneously
to a single helix (AVK,
H. Gerberich and C. Hays,
NIMA 506, 110 (2003))

– Time of incidence is a
floated parameter in
this 'di-cosmic fit'



48

Residuals of COT cells after alignment

(AVK & CH, NIM A 762 (2014)  pp 85-99)
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Consistency check of COT alignment procedure

Fit separate
helices to
cosmic ray
tracks

Compare track
parameters of
the two tracks:
a measure of
track parameter
bias

(AVK & CH, NIM A 762 (2014)  pp 85-99)
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Consistency check of COT alignment procedure

track parameter
bias versus
azimuth

solid = before
alignment

open = after
alignment 

(AVK & CH, NIM A 762 (2014)  pp 85-99)

azimuth

azimuth

azimuth
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Cross-check of COT alignment

● Cosmic ray alignment removes most deformation degrees of freedom, but
“weakly constrained modes” remain

● Final cross-check and correction to beam-constrained track curvature
based on difference of <E/p> for positrons vs electrons

● Smooth ad-hoc curvature corrections as a function of polar and azimuthal
angle: statistical errors => ΔMW = 1 MeV

q/p
T
 (measured) = 

c
0
 + c

1
 q/p

T
 + c

2
 (q/p

T
)2

+ …

c
1
 measures momentum scale

c
2
 includes energy loss

c
0
 = 0
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Signal Simulation and Fitting
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Generator-level Signal Simulation

● Generator-level input for W & Z simulation provided by RESBOS
(C. Balazs & C.-P. Yuan, PRD56, 5558 (1997) and references therein), which

– Fully differential production and decay distributions

– Benchmarked to RESBOS2 (J. Isaacson, Y. Fu & C.-P. Yuan, arXiv:2205.02788)

● Multiple radiative photons generated according to PHOTOS                   
(P. Golonka and Z. Was, Eur. J. Phys. C 45, 97 (2006) and references therein)

– Calibrated to HORACE  (C.M. Carloni Calame, G. Montagna, O. Nicrosini
and A. Vicini, JHEP 0710:109,2007)

RESBOS

PHOTOS
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Constraining Boson pT Spectrum

● Fit the non-perturbative parameter g2  and QCD coupling α
S
  in

RESBOS to pT(ll) spectra: ΔMW = 1.8 MeV
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Outline of Analysis
Energy scale measurements drive the W mass measurement

● Tracker Calibration

– alignment of the COT (~2400 cells, ~30k sense wires) using cosmic rays

– COT momentum scale and tracker non-linearity constrained using
J/ψ      μμ  and ϒ     μμ mass fits

– Confirmed  using Z       μμ mass fit

● EM Calorimeter Calibration

–  COT momentum scale transferred to EM calorimeter using a fit to the peak
of the E/p spectrum, around E/p ~ 1

– Calorimeter energy scale confirmed using  Z       ee mass fit

● Tracker and EM Calorimeter resolutions

● Hadronic recoil modeling

– Characterized using pT-balance in  Z       ll events
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Custom Monte Carlo Detector Simulation
● A complete detector simulation of all quantities measured in the data

● First-principles simulation of tracking

–  Tracks and photons propagated through a high-resolution 3-D lookup table of
material properties for silicon detector and COT

– At each material interaction, calculate

● Ionization energy loss according to detailed formulae and Landau
distribution

● Generate bremsstrahlung photons down to 0.4 MeV, using detailed cross
section and spectrum calculations

● Simulate photon conversion and Compton scattering

● Propagate bremsstrahlung photons and conversion electrons 

● Simulate multiple Coulomb scattering, including non-Gaussian tail

– Deposit and smear hits on COT wires, perform full helix fit including
optional beam-constraint  
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Custom Monte Carlo Detector Simulation
● A complete detector simulation of all quantities measured in the data

● First-principles simulation of tracking

–  Tracks and photons propagated through a high-resolution 3-D lookup table of
material properties for silicon detector and COT

– At each material interaction, calculate

● Ionization energy loss according to complete Bethe-Bloch formula

● Generate bremsstrahlung photons down to 4 MeV, using detailed cross
section and spectrum calculations

● Simulate photon conversion and compton scattering

● Propagate bremsstrahlung photons and conversion electrons 

● Simulate multiple Coulomb scattering, including non-Gaussian tail

– Deposit and smear hits on COT wires, perform full helix fit including
optional beam-constraint  

e-

e-

e+
Calorim

eter

e-


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Tracking Momentum Scale
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Tracking Momentum Scale

Set using J/ψ      μμ  and ϒ      μμ resonance and Z       μμ masses

– Extracted by fitting J/ψ mass in bins of  1/p
T
(μ), and extrapolating

momentum scale to zero curvature

– J/ψ      μμ mass independent of pT(μ) after 2.6% tuning of energy loss
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Tracking Momentum Scale

   BC ϒ     μμ 
   mass fit

ϒ      μμ resonance provides

– Cross-check of non-beam-constrained (NBC) and beam-constrained
(BC) fits

– Consistent measurements after incorporating silicon detector passive
energy loss in extrapolator code of track reconstruction 

Data
Simulation

Fig. S12
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Tracking Momentum Scale Systematics
Systematic uncertainties on momentum scale (parts per million)

Uncertainty dominated by magnetic field non-uniformity, passive material
energy loss, low p

T
 modeling and ϒ mass world average  

ΔMW,Z = 2 MeV
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Z     μμ  Mass Cross-check & Combination
● Using the J/ψ and ϒ momentum scale, performed “blinded” measurement of

Z boson mass

–  Z mass consistent with PDG value (91188 MeV)  (0.7σ statistical)

– M
Z
 = 91192.0 ± 6.4

stat
 ± 2.3

momentum
 ± 3.1

QED
 ± 1

alignment
 MeV

Data
Simulation

M(μμ) (GeV)
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 Tracker Linearity Cross-check & Combination

● Final calibration using the J/ψ, ϒ and Z bosons for calibration

● Combined momentum scale correction:

Δp/p = ( -1389 ± 25syst ) parts per million

ΔMW = 2 MeV

Fig. 2

pe
r 

m
il

le
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EM Calorimeter Response
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EM Calorimeter Scale

● E/p peak from W      eυ decays provides measurements of EM calorimeter
scale and its (ET-dependent) non-linearity

ΔSE = (43stat ±30non-linearity 
±34X0 ±45Tracker)parts per million

Setting SE to 1 using E/p calibration from combined  W      eυ and  Z      ee samples 

ΔM
W 
= 6 MeV

ECAL / ptrack

Data

Simulation

Low tail used for tuning
calorimeter thickness 

High tail of used for
tuning model of
radiative material

Fig. 2



Measurement of EM Calorimeter Non-linearity

● Perform E/p fit-based calibration in bins of electron ET 

● GEANT-motivated parameterization of non-linear response:
 SE = 1 + β log(ET / 39 GeV)

● Tune on W and Z data: β = (7.2±0.4stat) x 10-3
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Z     ee Mass Cross-check and Combination
● Performed “blind” measurement of Z mass using E/p-based calibration

– Consistent with PDG value (91188 MeV)  within 0.5σ (statistical)

– M
Z
=91194.3±13.8

stat
±6.5

calorimeter
±2.3

momentum
±3.1

QED
±0.8

alignment
 MeV

● Combine E/p-based calibration  with Z     ee mass for maximum precision 

ΔMW = 5.8 MeV

ΔSE = -14 ± 72 ppm

M(ee) ( GeV)

Data
Simulation

Fig. 3
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Hadronic Recoil Model
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Constraining the Hadronic Recoil Model

Exploit similarity in production
and decay of W and Z bosons

Detector response model for
hadronic recoil tuned using
pT-balance in Z     ll events

Transverse momentum of Hadronic recoil (u) calculated as 2-vector-
sum over calorimeter towers
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Constraining the Hadronic Recoil Model

Exploit similarity in production
and decay of W and Z bosons

Detector response model for
hadronic recoil tuned using
pT-balance in Z     ll events

Transverse momentum of Hadronic recoil (u) calculated as 2-vector-
sum over calorimeter towers
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Tuning Recoil Response Model with Z events

Project the vector sum of pT(ll) and u on a set of orthogonal axes defined
by boson p

T

Mean and rms of projections as a function of pT(ll) provide
information on hadronic model parameters



Tuning Recoil Response Model with Z events

Project the vector sum of pT(ll) and u on a set of orthogonal axes defined
by boson p

T
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Tuning Recoil Resolution Model with Z events

At low pT(Z), pT-balance constrains hadronic resolution due to underlying event
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Tuning Recoil Resolution Model with Z events

As a function of pT(Z), dijet event fraction varies between 0.4 % & 1.2 % 



Tuning Recoil Resolution Model with Z events
Model of p

T
-dependent collimation of jet(s) recoiling against boson
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Testing Hadronic Recoil Model with W boson events

Recoil projection (GeV) on lepton direction 

u (recoil)

l

Recoil projection (GeV) perpendicular to lepton
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● NEW: In addition to the p
T
(Z) data constrain on the boson p

T
 spectrum, 

the ratio of the p
T
(W) / p

T
(Z) spectra is also constrained from the p

T
(W) data

● DyqT : triple-differential cross section calculation at NNLO-QCD used to 
model  scale variation of ratio

● p
T
(W) data is used as constraint on ratio model

● correlation with hadronic recoil model is taken into account 

Additional Constraint on p
T
(W) Model with W boson events

Data
Simulation

 pT(W), muon channel  pT(W), electron channel
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Parton Distribution Functions and Backgrounds
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Parton Distribution Functions

● Affect W kinematic lineshapes through acceptance cuts

● In the rest frame, p
T
 = m sin θ* / 2 

● Longitudinal cuts on lepton in the lab frame sculpt the distribution of
θ*, hence biases the distribution of lepton p

T

– Relationship between lab frame and rest frame depends on the boost of
the W boson along the beam axis

● Parton distribution functions control the longitudinal boost

● Uncertainty due to parton distribution functions evaluated by fitting
pseudo-experiments (simulated samples with the same statistics and
selection as data) with varied parton distribution functions
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Parton Distribution Functions
● Affect W boson kinematic line-shapes through acceptance cuts

● We use NNPDF3.1 as the default NNLO PDFs

● Use ensemble of  25 'uncertainty' PDFs => 3.9 MeV   

– Represent variations of eigenvectors in the PDF parameter space

–  compute δMW contribution from each error PDF

● Central values from NNLO PDF sets CT18, MMHT2014 and
NNPDF3.1 agree within 2.1 MeV of their midpoint

● As an additional check, central values from NLO PDF sets ABMP16,
CJ15, MMHT2014 and NNPDF3.1 agree within 3 MeV of their
midpoint

● Missing higher-order QCD effects estimated to be 0.4 MeV 

– varying the factorization and renormalization scales

– comparing two event generators with different resummation and
non-perturbative schemes. 
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Backgrounds in the W boson sample

●  Z → ll events with only one reconstructed leptons:
● efficiency and calorimeter response mapped using control samples of

     Z → ll data, and modeled in the custom simulation
● background estimates validated using a full GEANT-based CDF detector simulation
● the only large background is Z → μμ with geometrical acceptance loss of forward

muons

● W → τυ → lυυυ background estimated using custom simulation

● QCD jet background estimated using control samples of data, anti-      
selected on lepton quality  requirements

● Pion and kaon decays-in-flight to mis-reconstructed muons 
●  Estimated using control samples of data, anti-selected on muon track-quality

requirements

●  Cosmic ray muons estimated using a dedicated track-finding algorithm 
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Backgrounds in the W boson sample
Muon channel



88

W Mass Fits
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Blind Analysis Technique

● All W and Z mass fit results were blinded with a random [-50,50] MeV
offset hidden in the likelihood fitter

● Blinding offset removed after the analysis was declared frozen

● Technique allows to study all aspects of data while keeping Z boson
mass and W boson mass result unknown within ±50 MeV





  W Charged Lepton p
T
 Fits



  W Neutrino p
T
 Fits
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  Summary of W Mass Fits

Consistency between two channels and three kinematic fits
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Combinations of Fit Results

● Combined electrons (3 fits): MW = 80424.6 ± 13.2 MeV, P(χ2) = 19%

● Combined muons (3 fits): MW = 80437.9 ± 11.0 MeV, P(χ2) = 17%

● All combined (6 fits): MW = 80433.5 ± 9.4 MeV, P(χ2) = 20%

citation: Science 376, 170 (April 7, 2022); DOI: 10.1126/science.abk1781 
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Previous CDF Result (2.2 fb-1)   
Combined Fit Systematic Uncertainties
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New CDF Result (8.8 fb-1)   
Combined Fit Systematic Uncertainties
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CDF MW vs mtop

Understanding Tevatron-LHC correlations and combination with ATLAS in progress
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W Boson Mass Measurements from Different Experiments

SM expectation: M
W

 = 80,357 ± 4
inputs

 ± 4
theory

 (PDG 2020)
LHCb measurement : M

W
 = 80,354 ± 23

stat
 ± 10

exp
 ± 17

theory
 ± 9

PDF  
[JHEP 2022, 36 (2022)]  
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1998 Status of  MW vs Mtop
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2022 Status of  MW vs Mtop

Standard Model
after 2012 Higgs
discovery
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The Future of the M
W
 Measurement

● The experiments at the LHC have collected and are collecting a lot of data. 
● While W bosons are produced slightly differently at the LHC (pp collider) 

than the Tevatron (pp collider), the LHC experiments have the opportunity 
to make this measurement. 

● If built, a new electron-positron collider can also measure the W boson mass 
 very precisely. 

● The LHC as well as smaller, specialized experiments are sensitive to the  
  kinds of new particles and interactions that can influence the W boson mass. 

● If there is new physics which could explain the tension of our result with the 
SM expectation, this new physics could show up directly in these experiments.
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Summary
● The W boson mass is a very interesting parameter to measure with

increasing precision

● New CDF result is twice as precise as previous measurements:

– MW = 80433.5 ± 6.4stat ± 6.9syst MeV
       = 80433.5 ± 9.4 MeV 

● Difference from SM expectation of M
W

 = 80,357 ± 6 MeV

– significance of 7.0σ 

– suggests the possibility of improvements to the SM calculation or
of extensions to the SM

Thank you for your attention ! 
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