Searches for Additional Higgs Bosons in Extensions of the Standard Model at ATLAS

> Ashutosh Kotwal Duke University

for the ATLAS Collaboration

19th International Symposium on Particles, Strings and Cosmology 2013 Taipei - November 21, 2013 Spontaneous Symmetry Breaking of Gauge Symmetry

• The Higgs potential in the SM is a parameterization that respects certain rules of QFT

- Phase transition \rightarrow vacuum state possesses non-trivial quantum numbers
 - Dynamical origin of this phase transition is not known
 - Implies vacuum is a condensed, superconductor-like state
- Discovery of the "radial excitation" a.k.a the Higgs boson means that we have taken the first, big step in establishing the properties of this potential

Next Big Question: Why is the Higgs Boson so Light?

The Higgs boson ought to be a very heavy particle, naturally

However, observed $m_{_{\rm H}} << \Lambda$

Higgs Bosons in Extensions of Standard Model

- Searches based on three classes of models:
 - Another "SM-like Higgs boson" at a different mass
 - Another Neutral Higgs Boson at a different mass
 - 125 GeV Higgs boson will have non-SM properties
 - Charged Higgs Bosons

- Benchmark models
 - Two-Higgs Doublet Models (2HDM)
 - Can contain additional CP-violating terms and facilitate matterantimatter asymmetry in the early universe
 - MSSM and next-to-MSSM (NMSSM) contain specific incarnations of 2HDM

SM-like Higgs Boson at High Mass

"Search for a high-mass Higgs boson in the H \rightarrow WW \rightarrow lvlv decay channel with the ATLAS detector using 21 fb⁻¹ of proton-proton collision data" [ATLAS-CONF-2013-067]

gluon-gluon fusion and vector-boson fusion modes both included in data interpretation

- Analysis of data using
 - SM-like Higgs interpretation at high mass
 - Width growing with mass as in SM
 - Above 400 GeV, interference with non-resonant WW production important (included using re-weighting)
 - Narrow-width approximation
 - Fixed 1 GeV width BW lineshape
- $H \rightarrow WW \rightarrow e + \mu + missing E_{T}$ channel used since it dominates sensitivity

SM-like Higgs Boson at High Mass

• Object and Event Selection

Category	0-jet	1-jet	>=2-jet
Preselection	An isolated electron and an isolated muon, with opposite charge, each with $p_T > 40$ GeV, $m_{\ell\ell} > 10$ GeV		
Missing transverse momentum	$E_{\rm T,rel}^{\rm miss}$ > 25 GeV	$E_{\rm T,rel}^{\rm miss}$ > 25 GeV	$E_{\rm T}^{\rm miss} > 20 { m ~GeV}$
General selection	$-\frac{\Delta\phi_{\ell\ell,E_{\rm T}^{\rm miss}}>\pi/2}{p_{\rm T}^{\ell\ell}>30~{\rm GeV}}$	$N_{b\text{-jet}} = 0$ - $Z/\gamma^* \rightarrow \tau \tau \text{ veto}$	$N_{b-\text{jet}} = 0$ $p_{\text{T}}^{\text{tot}} < 45 \text{ GeV}$ $Z/\gamma^* \rightarrow \tau\tau \text{ veto}$
VBF topology	- - -		$m_{jj} > 500 \text{ GeV}$ $ \Delta y_{jj} > 2.8$ No jets ($p_T > 20 \text{ GeV}$) in the rapidity gap; require both ℓ in the rapidity gap
$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ topology	$m_{\ell\ell} > 50 \text{ GeV}$ $\Delta \eta_{\ell\ell} < 1.0$	$m_{\ell\ell} > 50 \text{ GeV}$ $\Delta \eta_{\ell\ell} < 1.0$	$m_{\ell\ell} > 50 \text{ GeV}$ $\Delta \eta_{\ell\ell} < 1.0$

• Dilepton transverse mass distributions after all selection

SM-like Higgs Boson at High Mass

• Exclusion of a Higgs boson with SM-like production and couplings, in the mass range [260, 642] GeV

Neutral Heavy $H \rightarrow WW$ with Narrow Width

- eg. in 2HDM, gauge bosons couple to two Higgs doublets
 - More terms in the Higgs potential
 - Mass parameter can be separated from quartic self-coupling, allowing heavy Higgs to be narrow
 - Line-shape model: fixed 1 GeV Breit-Wigner
 - Negligible interference with non-resonant WW production

Results: $\sigma \times BR(H \rightarrow WW) <$ 230 fb for m = 300 GeV 32 fb for m = 600 GeV 29 fb for m = 1 TeV.

"Search for flavour changing neutral currents in top quark decays $t \rightarrow cH$, with $H \rightarrow \gamma\gamma$, and limit on the *tcH* coupling with the ATLAS detector at the LHC" [ATLAS-CONF-2013-081]

"Search for flavour changing neutral currents in top quark decays $t \rightarrow cH$, with $H \rightarrow \gamma\gamma$, and limit on the *tcH* coupling with the ATLAS detector at the LHC" [ATLAS-CONF-2013-081]

- Look for Higgs in diphoton mass spectrum
 - Model background shape with SHERPA

BR(t \rightarrow cH) < 0.83% (observed) at 95% CL (< 0.53 % expected for SM)

"Search for Higgs bosons in Two-Higgs-Doublet models in the $H \rightarrow WW \rightarrow ev\mu v$ channel with the ATLAS detector" [ATLAS-CONF-2013-027]

- Simultaneous fit for light Higgs boson @125 GeV and heavy, CP-even Higgs boson
 - Mixing angle α between these two CP-even states in 2HDM
- Multivariate Neural Network (NeuroBayes) used to increase sensitivity in the search region [135, 300] GeV of the heavy Higgs mass
- Gluon-gluon fusion and vector-boson fusion modes analyzed separately in 0-jet and 2-jet bins respectively

Heavy Neutral Higgs Boson in 2HDM

Signal-region distributions of most sensitive input distributions to NN for 0-jet bin (top) and 2-jet bin (bottom)

Heavy Neutral Higgs Boson in 2HDM

0-jet bin

2-jet bin

Signal-region distributions of NN discriminant

Heavy Neutral Higgs Boson in 2HDM

Exclusion regions in the $cos(\alpha) - m_{_H}$ plane for different tan β values type I model (top) and type II model (bottom)

"Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector" [JHEP 02 (2013) 095]

- Search dimuon and ditau decay channels of Higgs bosons
- Simultaneously include light (h) and heavy (H) CP-even, and CP-odd (A) Higgs bosons in signal templates
- Tau-embedding in Drell-Yan ($\mu\mu)$ data used to understand τ efficiencies and backgrounds
- Missing-mass calculation used to reconstruct ditau invariant mass
- Flavor separation into one-*b*-tagged and zero-*b*-tagged samples since b quark-induced production is favored at high tan β

Neutral Higgs Bosons in the MSSM

16

Neutral Higgs Bosons in the MSSM

"Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS" [ATLAS-CONF-2013-011] $= \frac{1}{2}$

Constrain invisible decays of the Higgs boson and additional Higgs bosons decaying invisibly

"Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS" [ATLAS-CONF-2013-011]

cut

"Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS" [ATLAS-CONF-2013-011]

signal model: BR(SM H \rightarrow invisible) = 100%

"Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS" [ATLAS-CONF-2013-011]

"Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at $\sqrt{s}=8$ TeV with the ATLAS experiment" [ATLAS-CONF-2013-090]

light H⁺ from top decay

heavy H⁺, associated production

Search in $H^+ \rightarrow \tau + \nu$ decay channel, motivated by MSSM when tan $\beta > 3$

"Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at $\sqrt{s}=8$ TeV with the ATLAS experiment" [ATLAS-CONF-2013-090]

- Fully-hadronic decay of other top quark required
- Hadronic decay of τ lepton selected using BDT algorithm
- Transverse mass distribution of τ + missing E_T shows characteristic Jacobian edge from H⁺ decay \geq

Missing $E_T > 65$ (80) GeV for light (heavy) H⁺ search

23

Light (left) and heavy (right) H+ searches limits set assuming BR $(H^+ \rightarrow \tau \nu) = 100\%$

24

Light (left) and heavy (right) H+ searches limits set assuming MSSM m_b^{max} scenario

Conclusions

- Non-Standard Model properties of 125 GeV Higgs boson, and additional Higgs bosons, expected in well-motivated extensions of the Standard Model
- Extensive searches performed in ATLAS
 - Different channels
 - Different topologies and final states
 - Different experimental methods
- No deviations yet from SM predictions
 - Model-independent limits
 - Interpretations in BSM models
 - 2HDM
 - MSSM
- Continuing analyses of other channels
- Looking forward to higher-energy running