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The analysis of data sometimes requires fitting many free parameters in a theory to a large number of

data points. Questions naturally arise about the compatibility of specific subsets of the data, such as those

from a particular experiment or those based on a particular technique, with the rest of the data. Questions

also arise about which theory parameters are determined by specific subsets of the data. I present a method

to answer both of these kinds of questions. The method is illustrated by applications to recent work on

measuring parton distribution functions.
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I. INTRODUCTION

There are many situations where data from a variety of
different experiments must be fitted to a single underlying
theory that has many free parameters. The particular in-
stance that led to this work is the measurement of parton
distribution functions (PDFs), which describe momentum
distributions of quarks and gluons in the proton [1–5].

In these situations, it would be desirable to assess the
consistency between the full body of data and individual
subsets of it, such as data from a particular experiment, or
data that rely on a particular technique, or data in which a
particular kind of theoretical or experimental systematic
error is suspected. It would also be desirable to character-
ize which parameters in the fit are determined by particular
components of the input data. This paper presents a ‘‘Data
Set Diagonalization’’ (DSD) procedure that answers both
of those desires.

II. NEW EIGENVECTOR METHODS

The quality of the fit of a theory to a set of data is
measured by a quantity �2, which in simplest form is given
by

�2 ¼ XM
i¼1

�
Di � Ti

Ei

�
2
; (1)

where Di and Ei represent a data point and its uncertainty,
and Ti is the theoretical prediction. (Although (1) is stan-
dard practice, some alternatives might be worth considera-
tion [6].)

The predictions Ti in Eq. (1) depend on a number of
parameters a1; . . . ; aN . The best-fit estimate for those pa-
rameters is obtained by adjusting them to minimize �2.
The uncertainty range is estimated as the neighborhood of
the minimum in which �2 lies within a certain ‘‘tolerance
criterion’’ ��2 above its minimum value. If the errors in
the data are random and Gaussian with standard deviations
truly given by Ei, and the theory is without error, the
appropriate ��2 can be related to confidence intervals by
standard statistical methods. Those premises do not hold in

the application of interest here; but the tolerance range can
be estimated by examining the stability of the fit in re-
sponse to applying different weights to subsets of the data
[1,2,7].
Sufficiently close to its minimum, �2 is an approxi-

mately quadratic function of the parameters a1; . . . ; aN .
Using the eigenvectors of the matrix that defines that
quadratic form as basis vectors in the N-dimensional pa-
rameter space, one can define new theory parameters
z1; . . . ; zN which are linear combinations of the original
ones

ai ¼ að0Þi þ XN
j¼1

Wijzj; (2)

and which transform �2 into the very simple form

�2 ¼ �2
min þ

XN
i¼1

z2i : (3)

Formally, the transformation matrix W can be computed
by evaluating the Hessian matrix @2�2=@ai@aj at the mini-

mum using finite differences, and computing its eigenvec-
tors. The new parameters zi are then just coefficients that
multiply those eigenvectors when the original coordinates
a1; . . . ; aN are expressed as linear combinations of them. In
the PDF application, this straightforward procedure breaks
down because the eigenvalues of the Hessian span a huge
range of magnitudes, which makes nonquadratic behavior
complicate the finite-difference method at very different
scales for different directions in parameter space. However,
this difficulty can be overcome by an iterative technique
[1] that is reviewed in the Appendix.
The linear transformation (2) that leads to (3) is not

unique, since any further orthogonal transform of the co-
ordinates zi will preserve that form. Such an orthogonal
transformation can be defined using the eigenvectors of
any symmetric matrix. After this second linear transforma-
tion of the coordinates, the chosen symmetric matrix will
be diagonal together with �2. The second transformation
can be combined with the first to yield a single overall
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linear transformation of the form (2). Thus there is a free-
dom to diagonalize an additional symmetric matrix while
maintaining the simple form (3) for �2.

That symmetric matrix can be taken from the matrix of
second derivatives that appears when the variation of any
function of the fitting parameters is expanded in Taylor
series through second order. Thus it is possible within the
quadratic approximation to diagonalize any one chosen
function of the fitting parameters, while maintaining the
diagonal form for �2. An explicit recipe for this ‘‘redia-
gonalization’’ procedure is given in the Appendix.

The freedom to diagonalize an additional quantity along
with �2 can be exploited in several ways:

(1) The traditional approach in which one only diago-
nalizes the Hessian matrix is formally equivalent to
also diagonalizing the displacement distance D
from the minimum point in the space of the original
fitting parameters:

D2 ¼ XN
i¼1

ðai � að0Þi Þ2: (4)

In this approach, the final eigenvectors can usefully
be ordered by their eigenvalues, from ‘‘steep’’ di-
rections in which �2 rises rapidly with D, to ‘‘flat’’
directions in which �2 varies very slowly with D.
This option has been used in the iterative method
that was developed for previous CTEQ PDF error
analyses [8].

(2) One can diagonalize the contribution to �2 from any
chosen subset S of the data. This option is the basis
of the DSD procedure, which is described in the next
Section and applied in the rest of the paper.

(3) One can diagonalize some quantity G that is of
particular theoretical interest, such as the prediction
for some unmeasured quantity. In this way, one
might find that a small subset of the eigenvectors
is responsible for most of the range of possibilities
for that prediction, which would simplify the appli-
cation of the Hessian method. An example of this
was given in a recent PDF study [4]. However, there
is no guarantee in general that the diagonal formwill
be dominated by a few directions with large coef-
ficients (�i and/or �i in Eq. (A17) of the Appendix).
Hence a better scheme to reduce the number of
important eigenvectors might well be to simply
choose the new z1 along the gradient direction
@G=@zi, and then to choose the new z2 along the
orthogonal direction that carries the largest residual
variation, etc.

III. THE DSD METHOD

Let us diagonalize the contribution �2
S from some

chosen subset S of the data. That puts its contribution to
the total �2 into a diagonal form

�2
S ¼ �þXN

i¼1

ð2�izi þ �iz
2
i Þ (5)

while preserving (3), as is derived in the Appendix. The
contribution �2

�S
¼ �2 � �2

S from the remainder of the data
�S is then similarly diagonal.
If the parameters �i all lie in the range 0< �i < 1,

Eqs. (3) and (5) can be written in the form

�2 ¼ �2
S þ �2

�S
�2
S ¼ constþXN

i¼1

�
zi � Ai

Bi

�
2

�2
�S
¼ constþXN

i¼1

�
zi � Ci

Di

�
2
:

(6)

These equations have an obvious interpretation that is the
basis of the DSD method: In the new coordinates, the
subset S of the data and its complement �S take the form
of independent measurements of the N variables zi in the
quadratic approximation. The results from Eq. (6) can be
read as

zi ¼ Ai � Bi according to S

zi ¼ Ci �Di according to �S
(7)

where

Ai ¼ ��i=�i; Bi ¼ 1=
ffiffiffiffiffi
�i

p

Ci ¼ �i=ð1� �iÞ; Di ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �i

p
:

(8)

Equations (7) and (8) provide a direct assessment of the
compatibility between the subset S and the rest of the data
�S. For if Gaussian statistics can be used to combine the
uncertainties in quadrature, the difference between the two
measurements of zi is

Ai � Ci �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
i þD2

i

q
¼ ��i

�ið1� �iÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ið1� �iÞ
p : (9)

This leads to a chi-squared measure of the overall differ-
ence between S and �S along direction zi:

�2
i ¼

�
Ai � Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
i þD2

i

q
�
2 ¼ �2

i

�ið1� �iÞ : (10)

(The symmetry of (10) under the interchange �i $ 1� �i

reflects the obvious symmetry S $ �S.) Even in applica-
tions where Gaussian statistics cannot be assumed, the
variables zi are natural quantities for testing the compati-
bility of S with the rest of the data.
Equations (7) and (8) also directly answer the question

‘‘What is measured by the subset S of data?’’. For, provided
S is compatible with its complement, the variables zi that
are significantly measured by S are those for which the
uncertainty Bi from S is less than or comparable to the
uncertainty Di from �S.
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For purposes of orientation, the relationship between �i

and the ratio of uncertainties Bi=Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �iÞ=�i

p
is

shown in Table I for some values of �i that correspond to
simple ratios. In particular, �i ¼ 0:5 means that S and �S
contribute equally to the measurement of zi; while �i ¼
0:9 means that the uncertainty from S is 3 times smaller
than from �S; and �i ¼ 0:1 means that the uncertainty from
S is 3 times larger than from �S. Practically speaking, one
can say that S dominates the measurement of zi if �i *
0:8–0:9, while the complementary set �S dominates if �i &
0:1–0:2. Beyond those ranges, the contribution from the
less-important quantity is strongly suppressed when the
weighted average is taken.

Another way to interpret the �i parameter is as follows.
Pretend that S consists of Ns repeated measurements of zi,
each having the same precision; and that �S similarly con-
sists of N�s measurements. The ratio of uncertainties is then
given by

Bi

Di

¼
ffiffiffiffiffiffi
N�s

Ns

s
) �i ¼ Ns

Ns þ N �s

: (11)

Thus �i can be interpreted as the fraction of the data that is
contained in subset S, for the purpose of measuring zi.

In applications of the DSD method, it is likely that not
all of the �i parameters will lie in the range 0<�i < 1. For
if �i * 1, then S dominates the measurement of zi, so �S is
quite insensitive to zi, so the dependence of �2

�S
on zi is

likely not to be described well by a quadratic approxima-
tion. Similarly �i & 0 means that �S dominates the mea-
surement of zi, so the small dependence of �2

S on zi may

not be very quadratic.
Compatibility between S and �S along directions for

which �i * 0:8 or �i & 0:2 is not a crucial issue, since
one or the other measurement dominates the average along
such directions. It is an important feature of the DSD
method that it distinguishes between inconsistencies that
do or do not affect the overall fit. In that sense, it is a more
sensitive tool than the previous method of simply studying
�2
S vs �2

�S
by means of a variable weight [7].

IV. APPLICATIONS TO PARTON DISTRIBUTION
ANALYSIS

The interpretation of data from high energy colliders
such as the Tevatron at Fermilab and the LHC at CERN

relies on knowing the PDFs that describe momentum dis-
tributions of quarks and gluons in the proton. These PDFs
are extracted by a ‘‘global analysis’’ [4,5] of many kinds of
experiments whose results are tied together by the theory
of Quantum Chromodynamics (QCD). The analysis de-
scribed here to illustrate the DSD method is based on 36
data sets with a total of 2959 data points. These are the
same data sets used in a recent PDF analysis [4], except
that two older inclusive jet experiments have been dropped
for simplicity.
The theory uses the same 24 free parameters as that

recent analysis. These parameters describe the momentum
distributions uðxÞ, dðxÞ, �uðxÞ, �dðxÞ, �sðxÞ and gðxÞ at a
particular small QCD scale. All of the PDFs at higher scale
can be calculated from these by QCD.
This PDF application is a strong test of the new method,

because the large number of experiments of different types
carries the possibility for unknown experimental and theo-
retical systematic errors, and the large number of free
parameters includes a wide range of flat and steep direc-
tions in parameter space.

A. E605 experiment

We first apply the data set diagonalization method to
study the contribution of the E605 experiment [9] to the
PDF analysis. This experiment (lepton pair production in
proton scattering on copper) is sensitive to the various
flavors of quarks in the proton in a different way from
the majority of the data, so it can be expected to be
responsible for one or more specific features of the global
fit. It is also an experiment where unknown systematic
errors might be present, since no corrections for possible
nuclear target effects are included.
There are 24 free parameters in the fit, and hence 24

mutually orthogonal eigenvector directions. In descending
order, the first 4 of these are found to have �1 ¼ 0:91, �2 ¼
0:38, �3 ¼ 0:16, �4 ¼ 0:06. All of the other eigenvectors
have still smaller or even negative �i. Hence according to
the previous discussion, the fit is controlled mainly by this
E605 data set along eigenvector direction 1; E605 and its
complement both play a role along direction 2; E605 plays
a very minor role along direction 3; and it is unimportant
along the remaining 21 directions.
This is confirmed in Fig. 1, which shows the variation of

�2, with the best-fit values subtracted, for E605 (119 data
points) and its complement (the remaining 2840 data
points) along each of the first four directions. Along direc-
tion 1, the E605 data indeed dominate the measurement:
the ‘‘parabola’’ of �2

S is much narrower than the ‘‘parab-

ola’’ of �2
�S
. The minimum for the complementary data set

�S lies rather far from the best-fit value z1 ¼ 0, but its �2 is
so slowly varying that it is not inconsistent with that value.
Along direction 2, E605 and its complement are both
important, and the two measures are again seen to be
consistent with each other. For the remaining 2 directions

TABLE I. Ratio between Bi ¼ uncertainty from S and Di ¼
uncertainty from �S, for various �i.

�i Bi=Di

0.9 1=3
0.8 1=2
0.5 1=1
0.2 2=1
0.1 3=1
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shown, and the 20 directions that are not shown, the �S data
completely dominate: E605 provides negligible informa-
tion along those directions. (The z4 curve for E605 ends
abruptly, because the fit becomes numerically unphysical
at that point, which is far outside the region of acceptable
fits to �S.)

The S and �S columns of Table II show the information of
Fig. 1 interpreted as measurements of z1; . . . ; z4. This can
be done according to Eqs. (6)–(8), or more precisely by
fitting each of the curves in Fig. 1 to a parabolic form in the
neighborhood of its minimum rather than fitting at zi ¼ 0.
The Difference column is the difference between the S and
�S measurements of zi, with an error estimate obtained by
adding the S and �S errors in quadrature. The final column
expresses this difference in units of its uncertainty, which

would be the number of standard deviations for Gaussian
statistics. The fact that these numbers are & 1 implies that
the E605 experiment is consistent with the rest of the
global analysis.

B. Inclusive jet experiments

We now turn our attention to the role of the CDF [10]
and D0 [11] run II jet experiments in the PDF analysis.
This was the principal subject of a recent paper [4]; but the
DSD technique can shed new light on it. We first examine
the consistency between each jet experiment and the rest of
the data with the other jet experiment excluded. Results for
the leading �i are shown in Table III for CDF and Table IV
for D0. The CDF experiment plays a strong role along its
two leading directions (�1 ¼ 0:75 and �2 ¼ 0:62), show-

TABLE II. Consistency beween S ¼ E605 experiment and �S ¼ the remainder of data.

i �i zi from S zi from �S Difference �i

1 0.91 �0:37� 1:07 2:94� 2:67 �3:31� 2:88 1.15

2 0.38 �1:38� 1:61 0:87� 1:29 �2:26� 2:07 1.09

3 0.16 0:05� 2:45 �0:01� 1:10 0:06� 2:68 0.02

4 0.06 1:57� 3:92 �0:10� 1:03 1:67� 4:05 0.41

FIG. 1 (color online). �2 for fit to E605 (dashed curves) and to the rest of the data (solid curves) along the four leading eigenvector
directions in descending order of �i. In each panel, zi ¼ 0 is the location of the overall best fit.
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TABLE III. Consistency between S ¼ CDF and �S ¼ all non-jet data.

i �i zi from S zi from �S Difference �i

1 0.75 0:55� 1:11 �1:74� 1:85 2:28� 2:15 1.06

2 0.62 2:66� 1:25 �4:34� 1:52 7:00� 1:96 3.56

3 0.04 11:26� 4:14 �0:58� 1:03 11:84� 4:26 2.78

TABLE IV. Consistency between S ¼ D0 and �S ¼ all non-jet data.

i �i zi from S zi from �S Difference �i

1 0.71 0:49� 1:11 �1:33� 1:79 1:82� 2:11 0.86

2 0.52 1:05� 1:36 �1:26� 1:51 2:31� 2:03 1.14

3 0.07 �2:00� 3:89 0:14� 1:03 �2:14� 4:02 0.53

TABLE V. Consistency between S ¼ CDFþ D0 jet data and �S ¼ all non-jet data.

i �i zi from S zi from �S Difference �i

1 0.82 0:35� 1:08 �1:68� 2:31 2:02� 2:55 0.79

2 0.74 1:62� 1:15 �4:60� 1:89 6:23� 2:21 2.81

3 0.12 �0:19� 2:84 0:03� 1:07 �0:21� 3:04 0.07

4 0.05 3:14� 4:34 �0:16� 0:97 3:31� 4:44 0.74

FIG. 2 (color online). �2 for fit to CDFþ D0 (dashed curves) and to the remaining data (solid curves), for the four leading directions
in descending order of �i.
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ing a rather strong tension (3:6�) along z2. The D0 experi-
ment similarly plays a strong role along its two leading
directions (�1 ¼ 0:71 and �2 ¼ 0:52), but it is consistent
with the non-jet data along both of those directions.

Since these jet experiments measure the same process by
similar techniques, it also makes sense to combine them
into a single subset S. The result is given in Table V. The �i

parameters in descending order are �1 ¼ 0:82, �2 ¼ 0:74,
�3 ¼ 0:12, �4 ¼ 0:05, so these data supply most of the
constraint along their two leading directions, and negli-
gible constraint along any of the others. The expectation
that these two experiments measure the same thing is
confirmed by the fact that there are still only two directions
being determined, with �1 and �2 larger than for either
experiment alone. Some tension (2:8�) exists between S
and �S along z2; but combining the data sets has reduced the
conflict relative to what appeared with CDF alone.

Figure 2 shows the variation in �2 for the fit to the jet
data (72þ 110 points) and its complement (2777 points)
along the four leading directions. The numerical results
shown in Table V correspond to fitting these curves by
parabolas at their minima. For the first two directions, the
parabola for the jet data S is narrower than the parabola for
its complement, as expected since �1, �2 > 0:5. This con-

firms that the jet data dominate the global fit along those
directions. For z3 and z4 (and all other directions, which are
not shown), the jet data supply very little constraint: the �2

parabola is much broader for S than for �S. The locations of
the minima are quite far apart for z2, which reflects the
tension between S and �S along that direction.
To study the consistency between the two individual jet

experiments within the context of the global fit, their �2

values are plotted separately in Fig. 3 along the same
eigenvector directions as in Fig. 2. There appears to be a
bit of tension between the two experiments along these
directions, since their minima occur at different places.
Quantitatively, fitting each curve in Fig. 3 to a parabola
near its minimum, leads to the results shown in Table VI.
The discrepancy between the jet experiments is 2:4� and
1:6� along the two directions in which these experiments
are significant in the global fit. Any discrepancy between
the jet experiments along other directions, including the
strong difference along direction 4, is not important for the
global fit, because non-jet experiments supply much
stronger constraints along those directions, as is confirmed
by the narrow parabola for �S.
The DSD method can also be used to discover which

aspects of a global fit are determined by particular subsets

FIG. 3 (color online). �2 for fit to CDF (dotted), D0 (dashed), and the rest of the data (solid).
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of the data. An example of this is illustrated by Fig. 4,
which shows the gluon distribution at QCD scale 1.3 GeV,
for PDF sets corresponding to displacements zi ¼ �4
along each eigenvector direction of the CDFþ D0 fit.
Most of the uncertainty is seen to come from the z1 and
z2 directions, which are the directions found above to be
controlled by the jet data. This directly confirms the con-
clusion of [4] that the jet data are the major source of
information about the gluon distribution for x * 0:1.

V. CONCLUSION

A ‘‘data set diagonalization’’ (DSD) procedure has been
presented, which extends the Hessian method [1] for un-
certainty analysis. The procedure identifies the directions
in parameter space along which a given subset S of data
provides significant constraints in a global fit. This allows
one to test the consistency between S and the remainder of
the data, and to discover which aspects of the fit are
controlled by S.

The procedure involves ‘‘rediagonalizing’’ �2 to obtain
a new set of fitting parameters fzig that are linear combi-
nations of the original ones. The data from a given experi-
ment or other chosen subset S of the data and its
complement �S take the form of independent measurements
of these new parameters, within the scope of the quadratic
approximation. The degree of consistency between S and �S
can thus be examined by standard statistical methods.

The DSD method can be used to study the internal
consistency of a global fit, by applying it with S defined

by each experimental data set in turn. One can also let S
correspond to subsets of the data that are suspected of
being subject to some particular kind of unquantified sys-
tematic error. A full systematic study of the parton distri-
bution fit using the new technique is currently in progress.
Typical applications of the new technique have been

illustrated in the context of measuring parton distribution
functions. The method uncovered and quantified tension
between the two inclusive jet experiments, and between
one of those experiments and the non-jet data, that was
difficult to detect using the older methods, which are based
on tracking the effect on �2 for S and �S in response to
changing the weight assigned to S [4,7].
The DSD method can be also be used to identify which

features of the fit are controlled by particular experiments
or other subsets of the data in a complex data set. As an
example of this, the jet experiments were shown to be the
principal source of information on the gluon distribution in
the region displayed in Fig. 4. The logic is as follows: Fig. 4
shows that the uncertainty of the gluon distribution is
dominated by eigenvector directions 1 and 2 when S is
defined as the jet data; and the range of acceptable fits
along those directions is constrained mainly by the jet data
according to Fig. 2 or Table V.
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APPENDIX: REDIAGONALIZING THE HESSIAN
MATRIX

This Appendix describes details of the procedure that
simultaneously diagonalizes the coordinate dependence of
�2 and one additional quantity within the quadratic ap-
proximation. The procedure was first described in
Appendix B of [7], but its significance was not recognized
in that paper.
The Hessian method is based on the quadratic expansion

of �2 in the neighborhood of the minimum that defines the
best fit to the data:

�2 ¼ �2
0 þ

XN
i¼1

XN
j¼1

Hijxixj; (A1)

where xi is the displacement ai � að0Þi from the minimum
in the original parameter space, and the Hessian matrix is
defined by

Hij ¼ 1

2

�
@2�

@xi@xj

�
0
: (A2)

(The Hessian matrix is usually defined without the overall
factor 1=2, but the normalization used here is more conve-

TABLE VI. Consistency between CDF and D0 jet experi-
ments.

i zi from CDF zi from D0 Difference �i

1 2:70� 1:65 �2:45� 1:38 5:15� 2:15 2.40

2 2:33� 1:35 �1:74� 2:22 4:07� 2:60 1.57

FIG. 4 (color online). Gluon distributions gðxÞ at z1 ¼ 4:0
(long dash), z1 ¼ �4:0 (long dash dot), z2 ¼ 4:0 (short dash),
z2 ¼ �4:0 (short dash dot), and zi ¼ �4:0 for i ¼ 3; . . . ; 24
(solid). Most of the uncertainty for gðxÞ comes from eigenvector
directions 1 and 2, which are controlled principally by the jet
experiments according to Fig. 2.
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nient for present purposes.) Eq. (A1) follows from Taylor
series in the neighborhood of the minimum. It contains no
first-order terms because the expansion is about the mini-
mum, and terms smaller than second order have been
dropped according to the quadratic approximation.

SinceH is a symmetric matrix, it has a complete set ofN

orthonormal eigenvectors Vð1Þ
i ; . . . ; VðNÞ

i :

XN
j¼1

HijV
ðkÞ
j ¼ �kV

ðkÞ
i (A3)

XN
k¼1

VðiÞ
k VðjÞ

k ¼ �ij (A4)

XN
k¼1

VðkÞ
i VðkÞ

j ¼ �ij: (A5)

The eigenvalues �k are positive because the best fit must be

at a minimum of �2. Multiplying (A3) by VðkÞ
m and sum-

ming over k yields

Hij ¼
XN
k¼1

�kV
ðkÞ
i VðkÞ

j : (A6)

We can define a new set of coordinates fyig that describe
displacements along the eigenvector directions:

Sj ¼ 1=
ffiffiffiffiffi
�j

p
(A7)

Wij ¼ VðjÞ
i Sj (A8)

xi ¼
XN
j¼1

Wijyj: (A9)

Then

�2 ¼ �2
0 þ

XN
i¼1

y2i : (A10)

Any additional function G of the original coordinates
faig can also be expressed in terms of the new coordinates
fyig and expanded by Taylor series through second order:

G ¼ G0 þ
XN
i¼1

Piyi þ
XN
i¼1

XN
j¼1

Qijyiyj: (A11)

The symmetric matrix Q, like H, has a complete set of

orthonormal eigenvectors Uð1Þ
i ; . . . ; UðNÞ

i :

XN
j¼1

QijU
ðkÞ
j ¼ �kU

ðkÞ
i (A12)

XN
k¼1

UðiÞ
k UðjÞ

k ¼ �ij (A13)

XN
k¼1

UðkÞ
i UðkÞ

j ¼ �ij; (A14)

from which it follows that

Qij ¼
XN
k¼1

�kU
ðkÞ
i UðkÞ

j : (A15)

Defining new coordinates fzig by

zi ¼
XN
j¼1

UðiÞ
j yj (A16)

now leads to

�2 ¼ �2
0 þ

XN
i¼1

z2i G ¼ G0 þ
XN
i¼1

2�izi þ
XN
i¼1

�iz
2
i ;

(A17)

where

�i ¼ 1

2

XN
j¼1

UðiÞ
j Pj: (A18)

Hence both �2 and G are diagonal in the new coordinates
fzig in the quadratic approximation. Equation (5), which is
the basis of this paper, follows immediately from (A17) by
choosing G to be the contribution to �2 from the subset S
of the data.
Because nonquadratic behavior appears at widely differ-

ent scales in different directions of the original parameter
space, and because the second-derivative matrices are cal-
culated numerically by finite differences, it is actually
necessary to compute the linear transformation from the

old coordinates fai � að0Þi g to the new coordinates fzig by a
series of iterations [8]. This is done as follows. The pro-
cedure described above yields a coordinate transformation
W defined by

ai � að0Þi ¼ XN
j¼1

Wijzj: (A19)

The coordinates fzig can be treated as ‘‘old’’ coordinates
and the above steps repeated to obtain a refined set of
elements for the matrix W. This process is iterated a few
times to obtain the final form of the transformation. The
iterative method is simple to program: each iteration begins
with an estimate of the desired transformation matrixW in
(A19) and ends with an improved version of W. One can
start with the unit matrix Wij ¼ �ij and iterate until the

matrix W stops changing. This procedure has been found
to converge in all of the applications for which it has been
tried.
The distance moved away from the minimum in the

original coordinate space is given by
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D ¼ XN
i¼1

ðai � að0Þi Þ2 ¼ XN
i¼1

XN
j¼1

�XN
k¼1

WkiWkj

�
zizj; (A20)

which corresponds to the choice

Qij ¼
XN
k¼1

WkiWkj (A21)

in the iterative scheme. This choice produces eigenvector
directions that are characterized by how rapidly�2 changes
in the original parameter space, leading to a clear distinc-
tion between ‘‘steep directions’’ in which �2 increases
rapidly with displacement in the original parameters, and
‘‘flat directions’’ in which the �2 increases only slowly.

The degree of steepness or flatness is measured by the
eigenvalues of Q.
In the PDF analysis, a large number of free parameters

are used in order to reduce the ‘‘parametrization error’’
caused by the need to represent unknown continuous par-
ton distribution functions by approximations having a fi-
nite number of parameters. In that application, the
logarithms of the eigenvalues ofQ are found to be roughly
uniformly distributed, with the smallest and largest eigen-
values having a huge ratio. As a result, the iterative method
has been found to be necessary even to carry out the
conventional Hessian analysis, where only �2 needs to be
diagonalized.
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