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Abstract

This dissertation describes a search for the Standard Model Higgs boson produced in

association with the Z boson via Higgs-strahlung at the CDF II detector at the Tevatron.

At a Higgs boson mass between 100 GeV /c2 and 150 GeV /c2, the primary Higgs decay

mode is to a pair of b quarks. The associated Z boson decays to a pair of electrons or

muons with significant branching fraction, allowing detection of a final event signature

of two visible leptons and two b quarks. This specific final state allows exclusion of large

QCD backgrounds, leading to a more sensitive search. To achieve maximum sensitivity,

matrix element probabilities for ZH signal and the dominant backgrounds are used as

components to a likelihood fit in signal fraction.

No significant result was observed. Using the Feldman-Cousins technique to set a

limit with 2.7/fb of data, at 95% coverage and a Higgs boson mass of 115 GeV /c2, the

median expected limit was 12.1× σSM and a limit of 8.2× σSM was observed, where σSM

is the NNLO theoretical cross section of p p̄→ ZH → l+ l−b b̄ at
p

s=1.96 T eV
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1

Introduction

Over a century ago, future Nobel Laureate Albert A. Michelson wrote the famous words

[1]

The more important fundamental laws and facts of physical science have all

been discovered, and these are now so firmly established that the possibil-

ity of their ever being supplanted is exceedingly remote [. . . ] our future

discoveries must be looked for in the sixth place of decimals.

At the end of the 19th century, Physics seemed like a complete, self-consistent theory.

All of known Physics could be predicted by the classical theories of Mechanics, Fields,

Electromagnetism and Thermodynamics. Nature was predicted so well that it led many,

including Michelson and Lord Kelvin to believe there was nothing more to discover.

Yet two seemingly insignificant problems lingered. The æther could not be detected

in an experimental setting, despite ever increasing sensitivity of measurements. And

blackbody radiation of resonant cavities could not be explained without an infrared or

ultraviolet divergence. The solution to the two problems came from Special Relativity

and Quantum Mechanics respectively. In the 1940s these two ideas were integrated into

Quantum Electrodynamics, an extremely accurate, predictive theory of the interaction
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of light and matter. Shortly thereafter, large numbers new of particles were observed at

particle colliders leading to the coining of the term the particle zoo. There were many

competing theories to explain the particle zoo, and eventually one was selected by a com-

bination of experiment and theoretical progress. That theory is now called the Standard

Model (SM).

The SM was developed with knowledge of a significant part of the particle zoo, so

it fit the known particles quite well. It predicted several new particles which had not

yet been observed, including what came to be known as the W and Z bosons, the gluon,

and the bottom and top quarks. Each of these particles has been experimentally observed

between the mid 1970s and 2000, making the SM one of the most successful and longest

lasting theories of Modern Physics.

But the SM had one flaw; it required all particles to be massless. Because this to be

empirically false, there must be a mechanism through which otherwise massless particles

acquire mass. In 1964, Peter Higgs, along with five others proposed [2] that there is a

field (now known as the Higgs Field) that permeates the universe and has a nonzero

vacuum expectation value (vev). This nonzero vev causes symmetry breaking, leading

to a coupling of otherwise massless particles to the Higgs field. The particles behave as

if they are swimming through the thick, viscous Higgs field. This viscous field coupling

produces terms in equations which are indistinguishable from inertial mass. This idea

became to be known as the Higgs Mechanism and was incorporated into the SM, albeit

with the drawback that each fundamental particle’s coupling to the Higgs field is a free

parameter in the SM. More on the Higgs and how it relates to the SM is presented in

chapter 2.

It is interesting to consider the parallels between now and a century ago. Currently,

the SM seems predictive of all of particle physics (with the possible exception of massive

neutrino, see [3]). The only unobserved particle from the minimal, self-consistent SM

is the Higgs boson. In both cases there seems to be a framework for understanding and
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predicting large parts of the physical world. Only a small piece of the puzzle is missing.

Discovery of this piece would be another success to an amazingly successful theory. On

the other hand, discovery of a null result would force a change in the SM and potentially

open the door to significant new Physics. Regardless of the outcome, there is a gain in

understanding of the universe. This makes the Higgs boson worth searching for.

This dissertation presents a search for the Higgs Boson produced in conjunction

with the Z boson via Higgs-strahlung at the Collider Detector located at the Tevatron

at Fermi National Accelerator Laboratory (CDF at FNAL), located outside Chicago,

Illinois. The salient points of the detector apparatus and software is presented in chapter

3. Second order predictions of Higgs mass known from other parameters in the SM such

as the W boson mass and top quark mass favor a Higgs with a mass between 50 and 200

GeV /c2. The ZH associated production search presented in this dissertation has good

sensitivity from 100 to 130 GeV /c2, and is considered a ‘low mass’ Higgs search.

For Higgs boson masses between 100 and 150 GeV /c2, the Higgs primarily decays

to a pair of b quarks, b b̄ . The associated Z boson decays to two visible leptons approx-

imately 7% of the time. The event signature to look for is a pair of b quark jets and a

pair of opposite sign visible (e±, µ±) leptons. The dilepton requirement in this event

signature allows reduction of large QCD backgrounds (See chapter 4). However, this re-

quirement is not so tight as to allow a simple counting experiment to be used; advanced

analysis techniques are still required to maximize sensitivity.

The advanced analysis technique used is a likelihood fitter with the signal and back-

ground matrix element probabilities for each event. Matrix elements, presented in chap-

ter 5, present a way of analyzing events somewhat independent from standard collabo-

ration analysis tools, potentially allowing for technique semi-independent confirmation

of results. The likelihood fitting technique used is presented in chapter 6. Finally, the

results from this search are presented in chapter 7.
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2

Motivation and Theory

We currently believe there are four fundamental forces in the universe, given in table 2.

The two nuclear forces have a characteristic scale The SM attempts to predict the strong,

Force Theory Strength Scale
Strong Nuclear Chromodynamics ∼ 10 10−15 m
Electromagnetic Electrodynamics ∼ 10−2 ∞
Weak Nuclear Flavordynamics ∼ 10−13 10−18 m
Gravity Geometrodynamics ∼ 10−42 ∞

Table 2.1: Fundamental Forces in the Universe [4]

weak and electromagnetic forces, as gravity is currently not entirely reconciled with

Quantum Mechanics. One of the key findings is that above a certain energy (ΛEW ∼ 100

GeV ), the weak and electromagnetic forces unify into the electroweak force. Based

on what are called Grand Unified Theories (GUTs), we believe at still higher energies

(ΛGUT ∼ 1015 GeV ), the electromagnetic, strong and weak nuclear forces will merge into

a single force.

We believe the Higgs boson to be on the same scale asΛEW ∼ 100 GeV , and therefore

given the center of mass energy of 1.96 T eV at the Tevatron, we can reasonably search
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for the Higgs.

2.1 Standard Model

The major theoretical underpinnings of the Standard Model (SM) have been largely un-

changed for almost forty years (with the significant exception of nonzero neutrino mass,

see [3]). By the late 1970s, the Lagrangian for the Standard Model had been written

down in its current form. Figure 2.1 summarizes the fundamental particles along with

their crucial properties like mass, charge, and spin. With the exception of the Higgs,

hereafter abbreviated as H , all of the particles predicted have been discovered.
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FIGURE 2.1: The minimum set of particles predicted by the Standard Model. Quarks
and Leptons are fermions with spin=1/2 and the four bosons have spin 1. The Higgs
Boson, which has not yet been observed has spin 0. Figure from [5]
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2.1.1 Fundamental Particles

Particles can be classified according to the spin they have, either integer spin (0, 1, 2, . . . ),

or half-integer spin ( 1
2 , 3

2 , . . .). Particles with integer spin are bosons and particles with half

integer spin are fermions. Bosonic fields and fermionic fields transform differently under

Lorentz Transforms, and have opposite symmetrization requirements for systems of

identical particles. All particles that make up matter are fermions, whereas the particles

that carry forces are bosons.

Looking at Figure 2.1, it is apparent that there is a left to right symmetry in the

fermions. Each column is a generation, and each successive generation has particles with

higher masses. The number of generations is not set by the SM, but all indications are

that there are only three generations of matter. This symmetry between generations

is called flavor symmetry and is broken by the fact that the particles have masses. Of

course, in the high mass limit, flavor symmetry is regained between generations, which

is often a useful fact when calculating cross sections and branching ratios.

Fermions

There are two classes of fermions, quarks and leptons. As seen in figure 2.1, there are six

quarks and six leptons, as well as corresponding antiparticles.

The six quarks are: up (u), down (d ), charm (c ), strange (s ), top (t ), and bottom (b ), and

their oppositely charged antiparticles form the hadronic sector of the SM. Quarks couple

to all four force carrying bosons (because they carry both color and electroweak charge)

and occur in isospin doublets for each generation. Interestingly, the quark eigenstates

that interact with the W and Z are linear combinations of the eigenstates that interact

with the gluon. The eigenstates are related by the CKM Matrix [6]. Because of the

nature of the color charge gluon interaction, free quarks are not observed in nature,

existing only in bound states of two (mesons) or three (baryons) quarks.

The six leptons are νe , νµ, ντ, e , µ, and τ, and they come in isospin doublets like the
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quarks. The first three are neutral neutrinos and the others are charged leptons. Unlike

quarks, leptons do not carry color charge, only electroweak charge. Consequently, they

can exist as free particles. The neutrinos are believed to be left handed particles and

therefore only couple to left handed W and Z bosons. The charged leptons couple to

both left and right handed W , Z and γ bosons. More information on the SM predicted

couplings is given in figure 2.2.

Bosons

Bosons are the force carriers and have integer spin. The photon, γ is the most well

known and is the massless force carrier for the electromagnetic force. The Z boson, a

carrier of the weak force, has no charge and behaves much like a very massive γ , with a

mass of 91.2 GeV /c2. Both are their own antiparticles, unlike the W , also a carrier of

the weak force, which comes in two forms, W + and W −. Unlike the γ and Z , the W

interacts with other W particles, making the weak force non-abelian. Finally, the gluon

is the carrier of the strong force, and is a massless bi-colored boson. Because it carries

color charge, it can interact with other gluons, thus making the strong force non-abelian

as well. The Higgs boson, still theoretical, is the quanta of the scalar Higgs field. It

couples to itself, and to all massive particles. Couplings can be seen in figure 2.2.

2.1.2 Standard Model Symmetries

The Standard Model is formulated as a gauge theory. Gauge theories are elegant be-

cause once the gauge fields have been postulated, the interactions between the fields are

a property of the gauge symmetry group. The SM is a

SU(3)C × SU(2)L×U(1)Y (2.1)

theory. The SU(3) has a subscript C to indicate it represents the Quantum Chromody-

namics (QCD) sector of the SM. This sector is also known as the colored sector because
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Z W γ g

H
l q

FIGURE 2.2: Tree level interactions in the Standard Model. Noticeably the H , W , and
g all have self-couplings, making the fields non-abelian.

of the analogous relationship between the three vector fields and the three different ad-

ditive components of white light: red, green and blue. The SU(2) group forms the

weak sector and has the subscript L to indicate that the group contains left-handed weak

isospin doublets. The U(1) forms the electromagnetic sector and has the subscript Y to

indicate the group forms right-handed hypercharge singlets. The combined SU(2)×U(1)

groups form the electroweak force.

From the gauge group, tree level interactions can be easily predicted. More detail for

each sector will be given individually, but the tree level interactions between particles in

the SM are given in figure 2.2. The diagram can be summarized as

• The H , W , and g bosons have self coupling, indicating that the associated fields

are non-abelian.

• Both quarks and leptons interact with the electroweak and Higgs sectors, coupling

to Z , W , γ , and H bosons.

• Gluons only couple to quarks and other gluons.
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• The W and Z couple to the H , giving them mass, but the γ and g are massless.

2.2 Quantum Chromodynamics

Quantum Chromodynamics is the study of the strong force between quarks and gluons.

The vertices of QCD are given in Figure 2.3. Gluons are the massless force carrying

bosons, and are bicolored, whereas quarks carry a single color charge. The coupling of

particles via the strong force is given by [7]

αs (q
2) =

12π

(33− 2n f ) log (q2/Λ2
qcd )

(2.2)

where Λqcd ∼ 200 M eV and n f is the number of quark flavors.

The most unusual thing about the strong force is that as distance between the particles

�
q

q̄

g�
g

g

g�
g

g

g

g

FIGURE 2.3: The vertices of QCD show quark-gluon and gluon-gluon coupling.

increases, the force between them also increases. This leads to the twin phenomena of

confinement and asymptotic freedom. Confinement requires that free quarks do not exist;

only quark bound states can exist. Asymptotic freedom states that in the limit of high

energies (or alternatively small distances), quarks propagate as free particles, which is

the logical extension of a force that increases with distance. This allows perturbation

theory to be used for high center of mass energy scattering, like what is observed at the

Tevatron. Figure 2.4 gives a rough schematic description of the QCD color states. Each
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r

r g

g

b b

FIGURE 2.4: A schematic diagram of the colors in QCD SU(3) group

of the three basis states can be added with complex coefficients, which is not shown on

the diagram. However, from the figure, it is evident that there is more than one way to

achieve a colorless (white) state.

Confinement requires colored gluons and colorless quark bound states. The three

basis states can be combined into nine independent states analogously to the addition of

spins for three spin 1
2 particles. There are eight colored octet states (equation 2.3) and a

colorless singlet state (r r̄ + b b̄ + g ḡ )/
p

3. The colorless state is not an allowed gluon

state, so there are eight distinct allowed gluons. One convention defines the gluons as

(r b̄ + b r̄ )/
p

2 − i(r b̄ − b r̄ )/
p

2

(r ḡ + g r̄ )/
p

2 − i(r ḡ − g r̄ )/
p

2

(b ḡ + g b̄ )/
p

2 − i(b ḡ − g b̄ )/
p

2 (2.3)

(r r̄ + b b̄ )/
p

2 (r r̄ + b b̄ − 2g ḡ )/
p

6

Correspondingly, there are two ways for quark bound states to achieve a colorless final

state. The first is a meson (figure 2.5), which is a combination of a color and the corre-

sponding anti-color, such as r r̄ . The second is a baryon (figure 2.6), which is an equal

combination of the three colors (or anti-colors) like r g b . The QCD Lagrangian is given
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r

r
FIGURE 2.5: A possible meson color
configuration

r

g

b

FIGURE 2.6: A possible baryon color
configuration

by [8]

Lqcd =−
1

4
F µν

a Faµν + ψ̄ j

�

iγµDµ

j k
−M jδ j k

�

ψk (2.4)

where the covariant derivative is

Dµ

j k
= δ j k∂

µ+ i g (Ta) j kGµ
a (2.5)

and F µν
a is the ath field strength tensor, M is the quark mass matrix, g is the strong

coupling constant, and T is the SU(3) generator matrices.

2.3 Electroweak Interactions

The electroweak interaction has the symmetry group SU(2)L × U(1)Y . Weak Isospin

(TL) and hypercharge (Y ) are the generators of the transformations. They relate to nor-

mal electromagnetic charge through the relation

Q = T3+
1

2
Y (2.6)

where T3 is the third component of weak isospin. The electroweak Lagrangian is

Le w =−
1

4
W µνWµν −BµνBµν + ψ̄iγµDµψ (2.7)
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with the covariant derivative

Dµ = ∂µ+ i gWµT +
1

2
i g ′BµY (2.8)

where Bµν = ∂µBν − ∂νBµ, like the Maxwell field tensor. The B field represents the gauge

field corresponding to the U(1)Y . The SU(2) corresponding gauge field is Wµν , defined

as

Wµν = ∂µWν − ∂νWµ− gWµ×Wν (2.9)

The W and B fields mix (see section 2.3.2) through a mixing angle θW (also known as

the Weinberg angle). The third component of weak isospin mixes with B as

�

Zµ
Aµ

�

=
�

cosθW − sinθW
sinθW cosθW

�
�

W 3
µ

Bµ

�

(2.10)

creating the familiar Maxwell field Aµ and the Z boson field. Choosing g ′ = g tanθW

and e = g sinθW , the observable W is related to the ladder operators in SU(2), leading

to a complete definition of all four fields as equations 2.11 - 2.13

W ±
µ
=

1
p

2

�

W 1
µ
∓ iW 2

µ

�

(2.11)

Zµ =
−g ′Bµ+ gW 3

µ
Æ

g 2+ g ′2
(2.12)

Aµ =
gBµ+ g ′W 3

µ
Æ

g 2+ g ′2
(2.13)

2.3.1 Goldstone Model

Before attacking the full complexities of the SM, it is useful to consider a simplified

case of symmetry breaking from a nonzero vacuum expectation value. Following the

treatment of Goldstone [9], let us posit the existence of a complex scalar field φ̂.

φ̂=
1
p

2
(φ̂1− iφ̂2) φ̂† =

1
p

2
(φ̂1+ iφ̂2) (2.14)

Draft: Version 80 12



with the Lagrangian density

L̂G = (∂µφ̂
†) (∂ µφ̂)− V̂ (φ̂) (2.15)

Now we consider two cases, V̂s (φ̂), V̂s b (φ̂)

V̂s =
1

4
λ (φ̂†φ̂)2+µ2φ̂†φ̂ V̂s b =

1

4
λ (φ̂†φ̂)2−µ2φ̂†φ̂ (2.16)

Clearly the Lagrangian is invariant under transforms in U(1), e−iα. And as shown in

figure 2.7, the symmetric potential Vs has a minimum at (φ̂†φ̂)min = 0. In a perturbative

situation, there will be a Taylor expansion in |φ̂| about the minimum. Because the mini-

mum is zero, the classical average value of the (φ̂†φ̂) field is zero as well. The symmetry

ϕ

V

Vs

Vsb

FIGURE 2.7: Vs and Vs b potentials
FIGURE 2.8: Goldstone Symmetry
Breaking Potential

breaking potential Vs b only changes the sign of the second term. This causes a qualitative

change in behavior. We follow the same strategy as Vs , doing a taylor expansion about

the minimum, (φ†φ)min = 2µ2/λ which can be rearranged into v = 2|µ|/λ1/2, where v

is the vacuum expectation value (vev). A plot of the symmetry breaking potential in the

φ̂1, φ̂2 plane is figure 2.8. Expanding about the minimum makes two modes immedi-

ately apparent, a radial mode with no restoring potential, and a transverse mode with

roughly parabolic restoring potential. Because the radial component will be expanded

13 Draft: Version 80



about v, we posit the following form of φ(x)

φ̂(x) =
v + ĥ(x)
p

2
exp(i θ̂(x)/v) (2.17)

which leads to the Lagrangian density (up to second order)

L̂G =
1

2
∂µ ĥ∂ µ ĥ −µ2 ĥ2+

1

2
∂µθ̂∂

µθ̂+µ4/λ+O(θ̂3, ĥ3) (2.18)

The µ2 ĥ2 term indicates that the ĥ mode has a mass
p

2µ. Yet the θ̂ mode has no

corresponding mass term, indicating it is a massless boson, known as the Goldstone

boson. This is logical considering that there is no restoring force in the θ direction.

This shows how the addition of a complex scalar field φ with nonzero vev breaks

an internal symmetry, giving itself mass. Goldstone’s Theorem [8] requires there be a

massless mode as well. We now go on to the SU(2) ×U(1) symmetry of the SM.

2.3.2 Higgs Mechanism

Following the same prescription as the Goldstone case, we introduce a complex scalar

field isospin doublet

φ=
�

φ+

φ0

�

(2.19)

the electroweak sector Lagrangian excluding fermions is therefore

Lφ = (Dµφ)
†(Dµφ)+µ2(φ†φ)−

λ

4
(φ†φ)2

−
1

4
WµνW

µν −BµνB
µν (2.20)

Again, the minimum is at (φ̂†φ̂) = −µ2/2λ, and we expand about the minimum, using

the same form as before, adjusted for SU(2)

φ(x) = exp

�

iξ (x) ·τ
2v

��

0
(v +H (x))/

p
2

�

(2.21)
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The fact that the SU(2) is a local symmetry allows us to gauge transform such that the

ξ (x) fields vanish (unitary gauge). Thus the φ(x) field is

φ(x) =
�

0
(v +H (x))/

p
2

�

(2.22)

Substituting φ into 2.20 [8] as

Lφ =
1

2
(∂µH∂ µH )−µ2H 2

−
1

4
(∂µW1ν − ∂νW1µ)(∂

µW ν
1 − ∂

νW µ
1 )+

1

8
g 2v2W1µW µ

1

−
1

4
(∂µW2ν − ∂νW2µ)(∂

µW ν
2 − ∂

νW µ
2 )+

1

8
g 2v2W2µW µ

2

−
1

4
(∂µW3ν − ∂νW3µ)(∂

µW ν
3 − ∂

νW µ
3 )−

1

4
BµνB

µν

+
1

8
v2(gW3µ− g ′Bµ)(gW µ

3 − g ′Bµ) (2.23)

The first two components of the W field have quadratic terms. This indicates the fields

are massive with mass MW = g v/2. The third component of the W field mixes with the

B field. We can choose an orthogonal combination that mixes the two by an angle θW as

in equation 2.10. Combined with the ladder W operators instead of isospin components
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1 and 2, and equations 2.11-2.13, we get

Lφ =
1

2
(∂µH∂ µH )−µ2H 2

−
1

4
(∂µW +

ν
− ∂νW

+
µ
)(∂ µW +ν − ∂ νW +µ)+

1

8
g 2v2W +

µ
W +µ

−
1

4
(∂µW −

ν
− ∂νW

−
µ
)(∂ µW −ν − ∂ νW −µ)+

1

8
g 2v2W −

µ
W −µ

−
1

4
(∂µZν − ∂νZµ)(∂

µZ ν − ∂ νZµ)+
1

8
(g 2+ g ′2)v2ZµZµ

−
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂ νAµ) (2.24)

which is the electroweak lagrangian without any fermion terms. In this case, it is appar-

ent that there are five gauge bosons, four of which have mass, H , W ±, Z , and one which

is massless. The addition of the Higgs field also introduces mass terms for the fermions

in the SM. That derivation will not be discussed here, in favor of deferring to a lucid

explanation in Chapter 22 of [8] .

2.4 Higgs Phenomenology

The previous section focused on the tree level Standard Model theory. Now we must

explore the specifics of higher order corrections as it applies to the search for the Higgs

boson at the Tevatron.

2.4.1 Indirect Constraints

Partial wave scattering amplitudes for gauge boson pairs in the SM violate unitarity if the

Higgs Boson mass exceeds 1 T eV /c2 [10, 11]. There is also a vacuum stability constraint

[12] requiring the Higgs boson mass to be greater than 4 GeV /c2. Together these two

constraints set a lower and upper bound on the Higgs boson mass within the confines

of the SM. The constraints are believed to be related to the level of the ΛGUT, where the

Draft: Version 80 16



Figure 6: Summary of the uncertainties connected to the bounds on MH . The up-

per solid area indicates the sum of theoretical uncertainties in the MH upper bound

when keeping mt = 175 GeV fixed. The cross-hatched area shows the additional

uncertainty when varying mt from 150 to 200 GeV. The upper edge corresponds to

Higgs masses for which the SM Higgs sector ceases to be meaningful at scale Λ (see

text), and the lower edge indicates a value of MH for which perturbation theory is

certainly expected to be reliable at scale Λ. The lower solid area represents the the-

oretical uncertaintites in the MH lower bounds derived from stability requirements

[30, 31, 32] using mt = 175 GeV and αs = 0.118.

20

FIGURE 2.9: Theoretical Constraints on Higgs Mass [12] [13]

SM breaks down and we expect new physics. Figure 2.9 relates the two constraints and

ΛGUT.

The SM also provides constraints on the Higgs boson mass from the measured top

quark and W boson masses. The current world average of the W Boson mass is 80.398±

0.025 GeV /c2 [6]. The top quark mass average is 173.1± 1.6 GeV /c2 [14].

Figures 2.12 and 2.13 show that all the measured SM parameters combined with the

direct exclusion from LEP favor a Higgs boson between 114 GeV /c2 and 140 GeV /c2.

This happens to be the region where the ZH associated production process is the most

sensitive.

2.4.2 Tevatron Higgs Production

Figure 2.14 summarizes the cross sections for different production mechanisms at
p

s =

1.96 T eV at the Tevatron.

The four dominant production processes are given in figure 2.14, and the Higgs
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FIGURE 2.10: MW combination [6]

branching ratios are given as a function of mass in figure 2.16. The production of Higgs

through gluon-gluon fusion is predicted to have the largest cross section, but with a final

state of two quarks (most likely b b̄ ) at lower Higgs masses, it is completely swamped by

QCD background. The next largest cross section is associated W H production, which

is the subject of other searches at the Tevatron. This dissertation focuses on associated

)2 (GeV/ctopm
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0

14
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 1.9± 1.7 ±174.8 

CDF-I all-j  5.7±10.0 ±186.0 

D0-II l+j
*

 1.6± 0.8 ±173.7 

CDF-II l+j
*

 1.3± 0.9 ±172.1 

D0-I l+j  3.6± 3.9 ±180.1 

CDF-I l+j  5.3± 5.1 ±176.1 

D0-II di-l
*

 2.4± 2.9 ±174.7 

CDF-II di-l
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FIGURE 2.11: mt o p combination [14]
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FIGURE 2.12: Summary of Electroweak Constraints on the Higgs [15] [16]. The blue
ellipse is the 68% confidence interval centered around the current best measurements of
mW and mt , and favors a Higgs mass below 150 GeV /c2. Direct exclusion from LEP
excludes the Higgs below 114 GeV /c2 at 95% confidence
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FIGURE 2.13: Global Fit to collider data [15] [16]. Excluded regions are shown in
yellow, but here too we see a preference for a low mass Higgs boson
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FIGURE 2.14: p p̄→ ZH Production Cross Section [17]

ZH production via Higgs-strahlung, as shown in the third diagram of figure 2.15.

The ZH state consists of two heavy bosons. Since both couple to the QCD sector

and to leptons, they can both decay hadronically or leptonically. Higgs decays to a parti-

cle are proportional to the coupling between H and the particle. As the heaviest particle

accessible for Higgs boson masses below twice the W boson mass, the H preferentially

decays to b b̄ , as in figure 2.16. The Z predominately decays hadronically, but does decay

to e+e− and µ+µ− a total of 7% of the time. The diagram is figure 2.17. The combina-

tion ZH → l l̄ b b̄ process has a low cross section, but the requirement of a dilepton

signature from the Z greatly reduces QCD background.
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FIGURE 2.16: Higgs Boson Branching Ratios [6]
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FIGURE 2.17: ZH → l+ l−b b̄ production mechanism

Draft: Version 80 22



3

Experimental Apparatus

Since the 1940s, the study of particle physics has required collisions at higher and higher

particle energies. The latest operational particle accelerator is the Tevatron, located at

Fermi National Accelerator Lab (FNAL) in Batavia, Illinois. Originally constructed

in the 1980s, the Tevatron was upgraded in 1999 to achieve a center of mass collision

energy of
p

s = 1.96 T eV . This makes the Tevatron the highest energy hadron collider

currently operational. The colliding particles are protons ( p) and anti-protons ( p̄), and

through a multi-stage process, the Tevatron accelerates them to a speed ofβ= 0.999999,

or one part per million away from the speed of light.

3.1 Tevatron

The Tevatron is a 6.3 km circumference circular accelerator that collides p and p̄, shown

in figure 3.1. Hydrogen gas is separated into constituent atoms, which are then ionized

into H−. These ions enter a Crockcroft-Walton pre-accelerator [19], which applies an

electric field to the ions and accelerates them to 750 keV . The ions then enter the linear

accelerator (Linac), which uses RF waves to further increase the energy to 400 M eV .
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The electrons are stripped from the H− ions, leaving protons, which are injected into

the booster. The booster is a synchrotron with a 0.5 km circumference, and it accelerates

the protons to 8 GeV . These protons are then injected into Main Injector, a larger

synchrotron 3 k m in circumferance.

FIGURE 3.1: Tevatron Complex [19]

The Main injector performs several functions, although not concurrently. First, it

accelerates the protons from the booster to 150 GeV , and injects them into the main

Tevatron ring. Second, for p̄ production, it accelerates protons to 120 GeV , which are

then directed into a nickel target, which produces a large number of particles, including

the constituents for p̄, which are directed toward the anti-proton source. Third, it is

used to collect p̄ produced by the anti-proton source, and accelerating them to 150 GeV
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as well, for injection into the main Tevatron ring.

Many different types of particles are produced when the nickel target is struck by

120 GeV protons. The anti-protons are separated out by magnetic spectroscopy, and

are then moved to the Debuncher. Since the anti-protons have a very large spread in

momentum, the Debuncher reduces the momentum spread. The anti-protons are then

moved to the Accumulator, which stores anti-protons until they are ready for injection

into the main ring, at which time they are moved to the main injector, accelerated to

150 GeV and then injected into the main Tevatron ring. Producing anti-protons in this

manner is difficult, and is the limiting factor in instantaneous luminosity at the Tevatron.

The Recycler, which shares a tunnel with the Main Injector, was originally conceived

to store anti-protons between physics runs. This proved unfeasible, but the Recycler

turned out to be useful as an additional place to store anti-protons besides the Accumu-

lator. This greatly increases the anti-protons available during a physics run, and conse-

quently greatly increases the instantaneous luminosity of the Tevatron.

The main Tevatron ring accepts protons and anti-protons at an energy of 150 GeV

from the Main Injector. They are accelerated using superconducting 4.2 T magnets in

the 6.3 k m circumference ring to 0.98 T eV , making the center of mass energy
p

s = 1.96

T eV . The p and p̄ beams travel in opposite directions around the ring, and cross at the

two detectors, the Collider Detector at Fermilab (CDF) and DØ detectors.

If the p and p̄ were equally distributed throughout the ring, the chance of a collision

at any given time would be very low because of a lack of sufficient densities. To rem-

edy this, the particles are distributed into bunches, about 50 c m long, each containing

roughly 1011 p and p̄. There are 36 bunches of both p and p̄ located around the ring,

and they cross every 396 ns [6]. Bunching greatly increases instantaneous luminosity,

which is given by the formula

L =
NBNpN p̄ f

2πσ2
pσ

2
p̄

(3.1)
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where NB is the number of bunches in the ring, Np (N p̄ ) are the number of protons (anti-

protons) per bunch, f is the bunch revolution frequency, and σp (σ p̄ ) is the effective

width of the proton (anti-proton) bunches. The integrated luminosity (in units of pb−1),

when combined with the cross section (in pb) gives the number of collisions that oc-

curred. Since the beginning of Run II in March 2001, the integrated luminosity is shown

in figure 3.2. This analysis uses 2.7 fb−1 of CDF II data, through period 17.
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FIGURE 3.2: Integrated luminosity at CDF II

3.2 CDF II Detector

The CDF detector is a general purpose, azimuthally and forward-backward symmetric

detector at the Tevatron. The z axis is taken to be along the proton beam direction, and
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the φ is defined with respect to the outward direction on the Tevatron ring. Because the

cylindrical coordinate is not invariant under Lorentz transforms, the pseudo-rapidity

is used, defined as η = − ln tan(θ/2), which is invariant under Lorentz transforms in

the massless approximation. Together, z, φ, and η form the coordinate system for the

CDF detector. Distance between two objects is defined as ∆R =
Æ

(∆φ)2+(∆η)2 A

schematic of the detector is shown in figure 3.3 [20, 21].

Figure 3.3: A cross-sectional view of the CDF detector [19].

of particles as a function of angle will depend on the initial velocities of the constituent

particles. The rapidity, defined as:

ζ ≡ 1

2
ln

E + pz

E − pz

(3.2)

is invariant under boosts along the z-axis. For the massless case (p # m), the rapidity

can be approximated as the pseudo-rapidity, defined as:

η ≡ − ln tan
θ

2
. (3.3)

This coordinate is invariant under Lorentz transformation and is used as the third coor-

dinate in the CDF coordinate system.

The basic structure of the CDF detector can be subdivided from the inside (starting

19

FIGURE 3.3: CDF detector schematic [20, 21]

In order of inward to outward from the beam pipe, the CDF detector has the follow-

ing parts:

• Cerenkov Luminosity Counter (CLC) that measures instantaneous luminosity.
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• Silicon Vertex Detector (SVX) that provides tracking of charged particles near the

interaction point.

• Central Outer Tracker (COT) drift chamber consisting of drift wires in a strong

(1.4 T ) magnetic field to measure momenta and charge.

• Electromagnetic calorimeter to measure energy deposition from objects like elec-

trons and photons.

• Hadronic calorimeter to measure energy deposition from protons, pions and other

hadrons.

• Muon detector measures muons, which are assumed to pass through the other

detectors essentially unaffected.

All parts that make up the tracking volume are shown in figure 3.4.
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Figure 3.3: Longitudinal view of the CDF II tracking volume and plug calorimeter.
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FIGURE 3.4: CDF Tracking Volume
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3.2.1 Cerenkov Luminosity Counter

The Cerenkov Luminosity Counter is used to measure instantaneous luminosity. It is

placed very close to the beam line, at 3.7 < |η| < 4.7 [20, 22, 23]. Since acceleration

of charged particles produces Cerenkov radiation, the CLC measures the amount of

Cerenkov radiation produced, thereby measuring the number of p and p̄ in every bunch.

The relation used is

µ fBC = σinelasticL (3.2)

where µ is the average number of p, p̄ interactions per bunch crossing, fBC is the bunch

crossing rate, and σinelastic is the inelastic cross section of the beam. Knowing the other

three variables allows us to solve forL , the instantaneous luminosity.

3.2.2 Silicon Tracking

Many particles produced in p, p̄ collisions are very short lived. Physics analyses often

require these short lived particles be detected before they decay. The silicon tracking

system [24, 25] is located closest to the beam pipe and provides high precision measure-

ment of position and momentum for particles from the collision. In the case of the ZH

analysis, the b quarks from the Higgs boson are measured using the silicon detector.

A voltage is applied across the silicon detector to strip out the excess electrons. When

an ionizing particle from a collision passes through the silicon, it ionizes the silicon,

causing a buildup of charge at the terminal, which is then measured. The position of

the wires that carried the current to the terminal allows the location of the particle to

be inferred and the timing of successive hits allows a path to be reconstructed for the

particle.

The silicon detector is broken into the Silicon Vertex (SVXII) detector and the in-

termediate silicon layers (ISL). The SVXII detector has three concentric barrels. Silicon

strips are mounted on the inner and outer surfaces of the barrels. Additionally, there is
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a silicon strip mounted directly on the beampipe, which is called Layer 00 (L00). Out-

side the SVXII, the ISL is another cylindrical detector that extends silicon coverage to

|η| = 2.0, as shown in figure 3.4. The barrel structure of the SVX detector is shown in

figure 3.5. The total SVX detector has 722,432 channels.

Chapter 2: Detector 78

Silicon Vertex Detector II (SVXII)

The Silicon Vertex Detector II ([24]) is the primary detector of the silicon sub-

systems. It is comprised of 5 layers of double sided silicon strip detectors. In all five

layers, there is an R − φ strip, in three layers there are 90◦ strips, and the other two

have 1.25◦ strips. The R − φ strips are situated lengthwise on the p-n junction of

the detector, and both the 90◦ and 1.25◦ strips are located on the n-side. The strips

are situated in three cylindrical barrels, each 30 cm long. There are 360 “ladders”

(four sensors connected by wire bonds) in 12 x 30◦ φ-slices. The radii of the layers

are between 2.5 cm and 10.6 cm. Figure 2.13 shows the barrel structure of the SVXII

detector.

Table 2.2 compares the technical specifications of the Run I and Run II detectors.

Figure 2.13: SVXII barrel structure.

Figure 3.5: The SVX barrel structure [19].

double-sided silicon, depending on the polar angle, at radii from 20 cm to 28 cm. The

ISL serves to extend silicon tracking coverage up to |η| < 2. Combined, the CDF silicon

detector has a total of 722,432 channels.

COT

The Central Outer Tracker (COT) [23], a large open-cell drift chamber, is positioned

outside the silicon detector from radii of 0.43 m to 1.32 m. The COT contains 8 “su-

perlayers” each containing 12 wire layers for a total of 96 layers. Four of the superlayers

provide R− φ measurements (axial superlayers) while the other four provide 2◦ measure-

ments (stereo superlayers). The drift chambers are filled with a 1:1 mixture of argon and

ethane. This mixture provides for a maximum drift time of 177 ns with a drift velocity

of 100 µm/ns, which prevents pileup of events in the drift chamber from previous events.

The resulting transverse momentum resolution of the COT is σpT
/pT ≈ 0.15%× pT .

22

FIGURE 3.5: Silicon detector barrel structure

3.2.3 Central Outer Tracker

The Central Outer Tracker [26] (COT) is another, much larger tracking volume that

extends from 0.43 m to 1.32 m radially and from −1.5 m to +1.5 m along the beam

direction. The chamber is filled with a low pressure mixture of argon and ethane and

contains 8 “superlayers”, each of which contains 12 wire layers for a total of 96 layers.

When a particle goes through the chamber, it ionizes the gas, leading to free electrons

being attracted to the sensing wires which are then measured. The superlayers alternate

as axial superlayers (measure R−φ) and sterial superlayers (measure φ). The fine resolu-

tion of the wires in the drift chamber allow a transverse momentum resolution of 0.15%.

Combined with silicon, the resolution is 0.07%. In order to measure the the charge of a

particle, the solenoid around the COT applies a 1.4 T magnetic field, which causes the

path of the particle to curl, allowing the charge to be inferred when the mass is known.

Draft: Version 80 30



3.2.4 Calorimeters

The electromagnetic and hadronic calorimeters sit outside the solenoid. They are di-

vided into central (|η|< 1.1) [27, 28] and plug ( 1.1< |η|< 3.6) [29]. The EM calorime-

ter absorbs energy from electrons and photons, whereas the hadronic calorimeter ab-

sorbs energy from particles not absorbed in the EM calorimeter (not including muons).

The calorimeters are composed of alternating layers of scintillator and metal. Par-

ticles passing through the calorimeter interact with the dense materials and produce a

shower of particles that are detected as photons in the scintillator photomultiplier tubes.

The em calorimeter metal is lead and the hadronic calorimeter metal is iron. The towers

are segmented into 15 degree wedges in φ and 0.1 in η. In the plug region, φ segmenta-

tion is 7.5 degree wedges until η= 2.11, after which again the wedges inφ are 15 degrees.

Together the scintillator and metal in the calorimeters form six radiation lengths of mate-

rial, which would be expected to trap 99.8% of the energy of interacting particles passing

through the scintillator on average.

3.2.5 Muon Detectors

The muon detectors are located outside all other detectors because the muons are long

lived and and do not strongly interact with the calorimeter. The detectors are single

wire drift chambers, and cover most of the space where |η| < 1.0. There are three parts

to the muon detectors, the central muon detector (CMU), the central muon upgrade

(CMP), and the central muon extension (CMX). The CMP is an additional layer of drift

chamber outside the CMU. The coverage is shown in figure 3.6.
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FIGURE 3.6: Muon detector coverage

3.3 CDF Software

The CDF detector is an amazingly complex machine, with many different interoperating

systems. To extract maximum sensitivity for a physics analysis, all the components must

function as a whole to reconstruct particles and trajectories from hits on wires. This

requires a combination of hardware and software to isolate interesting events for analysis

and reconstruct the particle content of the events.

3.3.1 Event Triggers

Collisions occur at a rate of approximately 2.5 M H z. Storing all the hits and raw de-

tector level information for an event is approximately 200 KB . That translates to a raw

data rate of nearly 500 GB/s , which was well beyond the reach of computing when the
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CDF detector was constructed and upgraded, even if it may be feasible soon. Coupled

with the fact that most p p̄ collisions result in some sort of elastic scattering, which are

not terribly interesting from a physics perspective, we know events must be discarded.

The system for deciding what events to keep is called triggering. At CDF, there are

three levels of event triggers. Each one successively applies more stringent criteria. If an

event passes all three triggers, it is recorded to a permanent storage medium.

The Level 1 trigger (L1) is purely hardware based and it uses calorimeter information,

tracks reconstructed in the COT with the eXtremely Fast Tracker (XFT)[30] algorithm,

and muon chamber stubs to make a decision. The specialized hardware nature of the trig-

ger and simplistic algorithm ensures fast rejection, allowing the event rate to be reduced

from approximately 2.5 M H z to 20 kH z.

The Level 2 trigger (L2) has better (but slower) resolution and identification algo-

rithms. It also considers tracking information from silicon, allowing better rejection of

unwanted events. It reduces the event rate from 20 kH z to 300 H z.

The Level 3 trigger (L3) is entirely in software and is performed by a computing clus-

ter. It takes raw detector output, reconstructs higher level objects, clustered calorimeter

energies, and sophisticated reconstructed tracking from both COT and silicon as inputs.

It reduces the event rate from 300 H z to 75 H z, after which the events are written to

permanent storage.

3.3.2 Lepton Identification

The ZH analysis depends on accurate measurement of charged leptons, e ,µ (τ does not

have sufficient acceptance to contribute to the result at this luminosity). These two

charged leptons are relatively easy to measure in the CDF detector, as they leave tracks

in the COT and do not shower like gluons and quarks. The following quantities are used

in selection of electrons and muons (see chapter 4).

33 Draft: Version 80



Electron Quantities

• ET - Transverse energy – the energy deposited in the calorimeters. For electrons,

at most two towers (neighboring in η) are allowed.

• pT - Transverse momentum – the momentum of the electron as measured in the

COT tracking detector.

• H ad/EM - The ratio of energy deposited in the hadronic to the energy deposited

in the em calorimeters. Electrons mostly deposit in the em calorimeter, so this

should be low.

• Ls h r - This indicates the agreement of the electron with the expected lateral shower

profile.

• |∆x| and |∆z | - Separation between COT track position and shower position.

• E/P - Ratio of calorimeter energy to momentum from the COT. May deviate

from unity because of bremsstrahlung.

• Isolation - Ratio of energy deposited outside a cone of ∆R = 0.4 from the center

of the electron cluster. If a lepton is produced as part of a jet, this is low, and from

a Z boson, this is high.

• χ 2
strip - Comparison of shower profile to expected profile.

Muon Quantities

• pT - Transverse momentum – the momentum of the muon as measured in the

COT tracking detector.

• |∆x| and |∆z | - Separation between COT track position and the object seen in the

muon chambers.
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• Eem,hadronic must be low for a muon as they do not deposit much energy in the

calorimeters.

• Isolation - Ratio of energy deposited outside a cone of ∆R = 0.4 from the center

of the muon cluster. If a lepton is produced as part of a jet, this is low, and from a

Z boson, this is high.

3.3.3 Jet Modeling and Reconstruction

By the principle of confinement, QCD requires that objects with nonzero color charge

cannot exist outside of a bound state. This means that in high energy collisions, any

high pT quarks or gluons (which carry color charge) must hadronize, or turn into a

set of hadrons that are colorless. To do this, the energy of the original quark or gluon

causes pair production of new quarks from the vacuum. This process repeats until the

newly produced items can form colorless bound states. Typically, a high energy quark

hadronizes into a stream of 10-30 particles, collectively referred to as a jet.

In the CDF detector reconstruction, jets are found by the JetCLU [31] algorithm,

which operates by iteratively calculating the centroid of energy deposition in the calorime-

ter towers until the centroid no longer changes. These raw jet energies are corrected to

account for

• Nonuniform calorimeter response as a function of jet energy.

• η corrections to account for gaps in the detector

• Multiple p, p̄ interactions at a single bunch crossing, which can happen at high

luminosities.

These lead to significant scale corrections for the measured jet energy, given in figure

3.7. The uncertainty on the jet energy scale is given in figure 3.8. Since the systematic
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FIGURE 3.7: Jet energy scale

on the jet energy scale will affect different processes differently, this systematic must be

propagated forward in the analysis. This is examined in chapter 6.
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FIGURE 3.8: Jet energy scale systematic uncertainty
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3.3.4 SecVtx Tagging

b quarks decay through the weak force, which requires they have long lifetimes com-

pared to particles that decay through the strong force. The high resolution particle

tracking available from the silicon vertex (SVX) detector allows detection of production

of the b quark at the primary interaction vertex, a short track (∼ O (10 mm)) and a

secondary decay to other particles. The SECVTX (Secondary Vertex) algorithm looks

for a vertex displaced from the main vertex in the silicon detector. Tracks where this

displacement is found are then matched with jets within a∆R= 0.4 cone, allowing a jet

to be tagged as coming from a b quark. Two different sets of criteria (loose and tight) are

possible, and both are used in the ZH analysis (see chapter 4). Approximately 45% of b

quarks meet loose criteria and 35% of b quarks meet tight criteria at a jet ET of 30 GeV .
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4

Event Selection

While the ZH → l+ l−b b̄ channel has a low cross section × branching ratio (see fig-

ures 2.14 and 2.16) compared to other SM Higgs searches, it has significantly lower

background. This is mainly caused by the requirement for two high pT , visible, op-

posite sign electrons or muons, which are rare in p p̄ collisions. Additionally, unlike the

W H → l νb b̄ channel or ZH → νν̄b b̄ channel, all final products are directly measured,

decreasing the chance of fake backgrounds due to mismeasurement of missing ET .

We select qq̄ → ZH → l+ l−b b̄ candidates by requiring (i) high- pT lepton trigger,

(ii) two leptons each with pT > 20 GeV /c and a dilepton invariant mass in the Z mass

window, 76 GeV /c2 < M l l < 106 GeV /c2 (iii) two cone-0.4 jets with ET > 15 GeV ,

one of which has ET > 25 GeV /c2, and (iv) 2 loose SECVTX b -tags or exclusively 1

tight SECVTX b -tag. These requirements are summarized in table 4.1.

This selection was designed for the ZH → l+ l−b b̄ neural network analysis at CDF.

Results with 1 fb−1 of data using the same selection are published in [32]. A description

of selection and trigger requirements follows.
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A central lepton trigger
One high ET central lepton with ‘tight’ requirements

A second high ET lepton of the same flavor with the opposite sign
Z boson mass window of 76 GeV /c2 to 106 GeV /c2

Two or more jets with ET > 15 GeV and |η|< 2
One or more jets with ET > 25 GeV

Either: 2 ‘loose’ b -tags or 1 ‘tight’ b -tag
Table 4.1: Summary of Event Criteria

4.1 Event Criteria

In p p̄ collisions, the interacting particles are the quarks and gluons that compose the

protons. Since the coupling of quarks to the strong force is much higher than the cou-

pling to the electroweak force, the dominant product of interaction is hadronic. Since

we seek to reduce this large hadronic background, we search for a high pT lepton using

the CDF central high pT lepton trigger [33]. These are summarized in tables 4.2 and

4.3.

Trigger Central Electron
Level 1 Central Calorimeter ET ≥ 8 GeV

XFT pT ≥ 8.34 GeV /c
Had/EM < 0.125

Level 2 L2 ET ≥ 16 GeV
L2 Had/EM ≤ 0.125

|η| < 1.317
Level 3 Central ET > 18 GeV

Central Had/EM < 0.125
Central∆z ≤ 2 cm

Track pT > 9 GeV /c
Table 4.2: Central electron trigger path

The central electron trigger looks for energy in an EM calorimeter tower with a

corresponding XFT track. At level 2, there must be a EM tower with ET > 8 GeV and

nearby towers must sum up to ET > 16 GeV . At level 3, there must be a corresponding

track with pT > 9 GeV /c and ∆z ≤ 2 c m. The minimum ET is 18 GeV , but because
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Trigger CMUP CMX
Level 1 CMU stub pT ≥ 6 GeV /c CMU stub pT ≥ 6 GeV /c

XFT pT ≥ 4.09 GeV /c XFT pT ≥ 8.34 GeV /c
CMP Stub

Level 2 XFT pT ≥ 14.77 GeV /c XFT pT ≥ 14.77 GeV /c
Level 3 XFT pT ≥ 18.0 GeV /c XFT pT ≥ 18.0 GeV /c

CMP∆X < 20 CMX∆X < 10
CMU∆X < 10

Table 4.3: Central muon trigger paths

of trigger turn on effects, we only consider electrons above 20 GeV .

Muons have two triggers, CMUP and CMX, corresponding to the parts of the muon

detector. The CMUP trigger requires aligned muon hits in CMU and CMP, whereas

the CMX trigger only requires hits in the CMX. A corresponding XFT track is also

required.

Lepton η and φ also affect the trigger efficiency. For ZH → l+ l−b b̄ , 60% of events

where the Z decays to electrons are triggered by CEM, and 50% of events where the Z

decays to muons are triggered by the CMUP and CMX triggers combined [34].

Since this is a search, it is critical to maximize acceptance for ZH signal. To that

effect, we use a lepton selection looser than the standard CDF selection [33] [35]. At

least one of the two leptons must meet the tight lepton requirements, however the other

can meet the looser requirements defined below in table 4.4 for electrons and 4.5 for

muons. Together the two leptons must have an invariant mass between 76 and 106

GeV /c2.

4.1.1 Jets

Figure 2.16 tells us that a low mass Higgs boson decays to b b̄ most of the time. QCD

requires the b quarks hadronize into jets, which are then measured in the calorimeter.

Kinematics favor b quarks with high transverse momentum because the Higgs is so mas-

sive compared to the b quark. Figure 4.1 shows that the leading b quark almost always
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Tight Electron Selection Loose Electron Selection
ET > 18 GeV ET > 10 GeV (central)
pT > 9 GeV /c ET > 18 GeV (plug)

Had/Em < 0.055+ 0.0004·E Had/Em < 0.055+ 0.00045·E
E/P < 2.5+ 0.015ET Isolation ·E raw

T /E corr
T < 0.1

|Zvertex|< 60 cm pT > 5 GeV /c (if central)
|η|< 1 |Zvertex|< 60 cm

Lshr < 0.2 Fiducial
Isolation ·E raw

T /E corr
T < 0.1

−3.0<Q · |∆x|< 1.5
χ 2

strip < 25.0
|Zelectron−Zvertex|< 3 cm

2 stereo and 2 axial super-layer segments
Table 4.4: Electron requirements

Tight Muon Selection Loose Muon Selection Loose Muon Selection
( pT > 20 GeV /c ) ( pT ≤ 20 GeV /c ) ( pT > 20 GeV /c )

Had Energy < 6 GeV Had Energy < 6 GeV Had Energy < 12 GeV
Em Energy < 2 GeV Em Energy < 2 GeV Em Energy < 4 GeV

Isolation < 0.1 Isolation < 0.1 Isolation < 0.1
d0 < 0.2 (w/ silicon hits) d0 < 0.2 (w/ silicon hits)

d0 < 0.02 (w/o silicon hits) d0 < 0.02 (w/o silicon hits)
≥ 3 sterial segments ≥ 1 COT segment ≥ 1 COT segment
≥ 3 axial segments

Tight CMUP requirements
|∆x|C M U < 3.0 cm
|∆x|C M P < 5.0 cm

Tight CMX requirements
|∆x|C M X < 6.0 cm

ρ> 140 cm
Table 4.5: Muon requirements. Any of the three sets of criteria can be satisfied. Loose
muons are not required to have muon detector stubs.

has pT over 25 GeV /c and the second b quark almost always has pT over 15 GeV /c .

Setting the jet cuts at those values reduces significant background while maintaining

most of the signal.

We choose to use ∆R= 0.4 cone jets, meaning the distance in the η, φ plane (∆R=
Æ

∆φ2+∆η2) is 0.4. This is used when finding the bounds of the jet in the reconstruc-
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tion software. Larger cones allow capture of more of the partons that make up a jet at

the expense of more noise.
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FIGURE 4.1: ZH Higgs decay b -quark kinematics. Transverse momenta (top) and η
(bottom) of the two b quarks produced [34]

4.1.2 b -Tagging

Higgs events are sometimes hard to separate from Drell-Yan events based on kinematics

alone. However, the Higgs boson strongly favors decay to b b̄ over other hadronic de-

cays. By searching for this b quark signature, we greatly enhance sensitivity to signal.
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We use the SECVTX b -tagging algorithm [36], which uses the Silicon detector to look

for a secondary vertex in the event since b quarks have such a short lifetime.

We separate events into two categories, those with two ‘loose’ b -tags, and those with

one or more b -tags, preferring to classify an event as two loose if both criteria are satis-

fied. The signal and background partition into the two categories differently, leading to

a higher signal to background ratio in the two loose tag channel. This fact is later used

to enhance sensitivity (see chapter 6).

b -tags are very good at reducing Drell-Yan background. Requiring a b -tag cuts∼ 98%

of light flavor backgrounds and ∼ 80% of heavy flavor backgrounds. Fakes, which are

essentially similar to Drell-Yan kinematically, with a lepton faked by a jet achieve similar

reduction factors. In contrast, ZH is reduced by only 35% by the b -tag requirement,

dramatically improving the signal to background ratio.

4.2 Backgrounds

The selection must be balanced between cutting out background while maintaining suffi-

cient signal acceptance. This leads to three large backgrounds to be accounted for: Drell-

Yan (Z + jets), t t̄ pair production, and diboson (W W /W Z/ZZ) production, shown in

figure 4.2 and 4.3.

	Z∗/γ

q

q̄

l+

l−



q

q̄

t

t̄

FIGURE 4.2: Tree level diagrams for the Drell-Yan and t t̄ background processes

The Drell-Yan background events typically have two jets that are not from the pri-
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mary qq̄ → l+ l− interaction. There are many sources for the extra jets, but the most

common sources are a radiated gluon that hadronized or interactions between other

quarks in the collision. This produces the requisite two jet, two lepton signature that

passes our selection.

The t t̄ pair production has a ∼ 100% branching ratio to W W b b . Both W bosons

can decay hadronically or leptonically. In the case where both decay leptonically, the

final state is l+ l−νν̄b b̄ . Since the neutrinos are practically invisible, the observed state is

the same as our selection, except with high missing transverse energy.

�Z

q

q̄

W /Z

W /Z

�W

q

q̄

Z

W

FIGURE 4.3: Tree level diagrams for the diboson W W /W Z/ZZ processes

The diboson production usually occurs one of two ways. Either qq̄ can annihilate

to a Z , which pair produces W or Z . Or qq̄ produces a W , which radiates a Z . The

net result is a final state of W W /W Z/ZZ . The W W can decay to l+ l−νν̄b b̄ with a

small branching ratio, but the combination of requiring the reconstructed dilepton mass

to be in the Z mass window and a bTag reduces the acceptance on this background to

effectively zero. For similar reasons, W Z also has very low acceptance, approximately

1.0 event out of 315 events expected. However ZZ can have one Z decay hadronically to

b b̄ and the other to l+ l−. Kinematically, ZZ is very similar to ZH with the exception

of the reconstructed dijet mass distribution. This makes it difficult to separate from

ZH and consequently significant amounts of ZZ are allowed into the selection. The
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W W /W Z/ZZ category in tables 4.9-4.8 is 92% ZZ and 8% W Z after tag requirements.

4.3 Signal Acceptance

Figure 2.14 gives ZH production cross sections at the Tevatron, and figure 2.16 gives

Higgs boson branching ratios. The Feynman diagram for the production process is

shown as figure 4.4. With 2.7 fb−1 of collected data, based on ALPGEN [37] Monte

Carlo and the effects of trigger and selection efficiencies we expect events as shown in

table 4.6.

Z
Z

H

q

q̄

e−,µ−

e+,µ+

b

b̄

FIGURE 4.4: ZH → l+ l−b b̄ production mechanism
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MH σ (fb) BR(H → b b̄ ) Pretag 1 Tight 2 Loose
100 169.0 0.803 4.52 1.97 0.96
105 145.0 0.785 4.12 1.81 0.93
110 125.0 0.758 3.23 1.41 0.71
115 107.9 0.716 2.88 1.25 0.65
120 93.7 0.659 2.60 1.13 0.58
125 81.6 0.587 1.79 0.79 0.42
130 71.2 0.502 1.31 0.57 0.31
135 62.4 0.410 0.93 0.45 0.25
140 54.8 0.319 0.68 0.31 0.17
145 48.2 0.235 0.44 0.21 0.12
150 37.6 0.160 0.28 0.12 0.07

Table 4.6: Expected number of ZH → l+ l−b b̄ events for Higgs masses (in GeV /c2)
between 100 and 150 in the two loose b -tag and one tight b -tag channels. Pretag indicates
all selection requirements except b -tagging.

4.4 Event Totals

4.4.1 Pretag

Source ee mm l l
Z→ ee 3768.54± 986.85 0.00± 0.00 3768.54± 986.85
Z→ ee +hf 391.71± 68.15 0.00± 0.00 391.71± 68.15
Z→µµ 0.04± 0.01 2685.53± 681.26 2685.57± 681.26
Z→µµ+hf 0.00± 0.00 263.07± 45.68 263.07± 45.68
Z→ ττ 3.07± 0.63 0.66± 0.13 3.73± 0.65
Z→ ττ+hf 0.15± 0.04 0.01± 0.00 0.16± 0.04
W W ,W Z ,ZZ 91.76± 12.73 65.87± 9.16 157.62± 15.69
Fakes 640.28± 111.30 35.80± 13.61 676.08± 112.12
t t 19.13± 3.83 14.86± 2.97 33.99± 4.85
Total 4916.33± 995.44 3067.02± 683.00 7986.35± 1207.22
Data 4297 2960 7257

Table 4.7: Pretag background expectation
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4.4.2 Double Loose b -Tag

Source ee µµ l l
Z→ ee 2.93± 0.73 0.00± 0.00 2.93± 0.73
Z→ ee +hf 11.39± 2.76 0.00± 0.00 11.39± 2.76
Z→µµ 0.00± 0.00 2.55± 0.61 2.55± 0.61
Z→µµ+hf 0.00± 0.00 8.12± 1.93 8.12± 1.93
Z→ ττ 0.00± 0.00 0.00± 0.00 0.00± 0.00
Z→ ττ+hf 0.00± 0.00 0.00± 0.00 0.00± 0.00
W W ,W Z ,ZZ 1.69± 0.33 1.24± 0.24 2.94± 0.41
Fakes 0.03± 0.01 0.02± 0.01 0.04± 0.01
t t̄ 4.38± 0.88 3.29± 0.66 7.66± 1.09
Total 20.42± 3.01 15.21± 2.14 35.63± 3.69
Data 16 16 32

Table 4.8: Double bTag background expectation
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4.4.3 Single Tight b -Tag

Source ee µµ l l
Z→ ee 70.67± 18.84 0.00± 0.00 70.67± 18.84
Z→ ee +hf 63.03± 11.43 0.00± 0.00 63.03± 11.43
Z→µµ 0.00± 0.00 58.89± 14.89 58.89± 14.89
Z→µµ+hf 0.00± 0.00 44.21± 8.14 44.21± 8.14
Z→ ττ 0.05± 0.02 0.02± 0.01 0.07± 0.02
Z→ ττ+hf 0.04± 0.01 0.01± 0.00 0.04± 0.01
W W ,W Z ,ZZ 6.64± 1.04 4.97± 0.79 11.61± 1.30
Fakes 12.80± 6.40 3.09± 1.55 15.89± 6.58
t t̄ 7.71± 1.54 6.15± 1.23 13.86± 1.97
Total 160.94± 23.15 117.34± 17.10 278.28± 28.78
Data 152 106 258

Table 4.9: Single bTag background expectation
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5

Matrix Elements

Perturbation theory allows calculation of transition probabilities between quantum states.

Since the standard model is a perturbative theory, in an ideal world, the probability of a

transition between the initial state p p̄ and the final measured partons would be calcula-

ble. In the real world, many specifics about the initial and final states are unknowable.

But, by integrating over unknown quantities and making a few assumptions, an analo-

gous probability can be obtained. If we call the complete set of measured event kinemat-

ics x, and the set of physics parameters (particle masses, couplings, etc.) used to perform

the calculation Θ, the probability density function P j of the j th process is proportional

to the differential cross section in equation 5.1.

P j (x|Θ) =
1

σ(Θ)
dσ(Θ)

dx
(5.1)

5.1 Matrix Element Approximations

Without any approximations, if the initial and final states could be known exactly (in-

cluding quantum numbers that are unknowable like color), the differential cross section

would simply be the matrix element transition probability calculated using perturbation
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theory.

dσ(Θ)
d pi d p f

=
�

�

�M j (pi , p f |Θ)
�

�

�

2
(5.2)

Since there is a great deal we do not know about the initial and final states of the we must

make the following approximations

5.1.1 Initial State

From detector construction we know the collision is between a proton and an anti-

proton. Since protons and anti-protons are composite particles, the actual interaction

occurs between the constituents of the protons, the quarks and gluons. Unfortunately

we do not know the exact kinematics of the quarks and gluons. We also do not know

color and spin configurations of the colliding particles. We do not even know if the

interacting particles were quarks or if they were gluons; we only know that we collided

p with p̄.

To account for this broad lack of knowledge of the initial state, we use a parton den-

sity function (PDF) from the CTEQ group [38], version 6.1, which is a parametrization

of the momenta of the components of a proton. We integrate over the parton density

functions for both the p and p̄. This removes the dependence on pi in both theM and

the differential cross section, leading to a new differential cross section.

dσ(Θ)
d p f

=
∫

dΦ
�

�

�M j (pi , p f |Θ)
�

�

�

2
fPDF(p1) fPDF(p2) (5.3)

where fPDF is the parton density function, applied twice for both initial state partons.

Because the PDF returns a probability of measuring a momenta (given some collider and

theory parameters), it allows integration over all accessible regions of the 4-momentum

for initial state particles. Usually initial state particles are not virtual, which reduces the

dimension of integration by one.
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5.1.2 Final State

QCD confinement makes it impossible to measure color, spin, or momentum of the ac-

tual final state quarks. The quarks hadronize into jets which loosely resemble the origi-

nal quark. In the case of backgrounds, there can be jets from gluons which hadronize as

well. Additionally all of the final state partons measured variables are affected by limited

detector resolution and granularity.

To account for this we introduce the transfer functions W (p f ,x). Each transfer func-

tion links a final state parton to the corresponding measured reconstructed object. Since

there are a range of parton momenta that can result in the measured value, this implies

an integration over final parton momenta. Changing variables for the differential cross

section and including the additional integrations in dΦ, equation 5.3 becomes

dσ(Θ)
dx

=
∫

dΦ
�

�

�M j (pi , p f |Θ)
�

�

�

2�∏
W (p f ,x)

�

fPDF(p1) fPDF(p2) (5.4)

We make a few simplifying assumptions about the to reduce the necessary integra-

tions.

• Leptons are measured perfectly. This is equivalent to the lepton transfer function

being a three dimensional delta function.

• Jet angles are measured perfectly, and jet energies are parametric functions of par-

ton energy. The jet transfer functions can be expressed as

δ(θjet−θparton)δ(φjet−φparton)W (Eparton, Ejet)

where W (Ep , E j ) is the parametrized relationship between parton energy and jet

energy.

• Incoming partons are massless (good approximation for light quarks), and have no

transverse momentum.
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• The two leading jets are b quark jets.

• Final state leptons are massless, and final state b quarks have an invariant mass of

4.7 GeV /c2.

Additionally, each production process has multiple Feynman diagrams, which re-

quires
�

�

�M j (pi , p f |Θ)
�

�

�

2
→
∑

a

�

�

�M (a)
j (pi , p f |Θ)

�

�

�

2

where the index a runs over the different Feynman diagrams available to a produc-

tion process. At minimum, the number of incoming quark flavors and colors must

be summed over. This makes the general form of the differential cross section

dσ(Θ)
dx

=
∫

dΦ
�

∑

a

�

�

�M (a)
j (pi , p f |Θ)

�

�

�

2
�

�∏

W (p f ,x)
�

fPDF(p1) fPDF(p2) (5.5)

5.2 Jet Transfer Function

As mentioned in the simplifications, the W (Eparton, Ejet) function links the measured jet

energy to a possible parton energy Eparton with some probability. By integrating over all

parton energies, this allows removal of the unknown parton energy from the differential

cross section.

To get this transfer function we start with a Monte Carlo sample of ZH → l+ l−b b̄

events. Using the knowledge of the Monte Carlo, we eliminate jets in the final state that

can be traced to initial state radiation (ISR) quarks or gluons. For b quark jets (matched

to partons within a ∆R = 0.4 cone), we find the parton energy Eparton and the Level 5

corrected [31] jet energy Ejet. We then perform a fit of δ = Ep − E j with our functional

form, which we take to be a double Gaussian, defined as equation 5.6 [39].

W j (δ) =
1

p
2π(p2+ p3 p5)



exp

 

−(δ − p1)
2

2 p 2
2

!

+ exp

 

−(δ − p4)
2

2 p 2
5

!

 (5.6)
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where each pi depends linearly on Ep :

pi = ai + bi Ep (5.7)

The fitted transfer function, has constants given in table 5.1 and figure 5.1-5.2.

pi ai bi
p1 −3.99± 0.15 −0.035± 0.002
p2 2.66± 0.13 0.072± 0.001
p3 0.652± 0.020 0.00± 0.000
p4 0.374± 0.23 −0.274± 0.005
p5 7.82± 0.20 0.092± 0.003

Table 5.1: Constants for the W (Eparton, Ejet) transfer function.

0 20 40 60 80

20

30

40

50

60

Ep

E
j

FIGURE 5.1: The parton-jet transfer function contours are shown. As expected, at low
transverse energies, the jet and parton energies match to within an offset and smearing.
The smearing increases as E j and Ep increase.
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FIGURE 5.2: Fitted parton and jet spectra. The first plot shows Ep − E j , which is the
fitted distribution. The second shows the E j distribution given the Ep distribution as
the input distribution in the third plot.
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5.3 Processes

All four matrix elements we use for the ZH search integrate over the following variables:

• Lepton momenta (x2)

• Initial parton momenta (x2)

• Final state quark momenta (x2)

• x and y components of system momenta (recoil)

To perform the integration, we use the Monte Carlo importance sampling technique VE-

GAS from the GNU Scientific Library (GSL) version 1.9. Although a full description of

VEGAS is best left to Lepage [40], the key feature is a multi-pass iterative buildup of a

sampling distribution for the integrand. Moreover, the sampling distribution is adaptive

to the integrand, being determined to higher precision in regions of higher contribution

to the integral. Since the sampling distribution closely follows the integrand, the vari-

ance of the points chosen by VEGAS is lower than the variance of points from a more

naive approach.

A more in depth explanation of the matrix elements is presented in [39], including

the variables of integration, changes of variables required and the corresponding Jaco-

bians.

5.3.1 ZH → l+ l−b b̄ and ZZ

Here we use Monte Carlo for FeMtobarn processes (MCFM) [41, 42] to calculate

∑

a

�

�

�M (a)
j (pi , p f |Θ)

�

�

�

2
(5.8)

In addition to the integration needed for all matrix elements, there is an additional in-

tegration over the unknown intermediate Z and H bosons (see figure 2.17). We use the
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known Z boson mass and width and the theoretical H pole mass parameters to reduce

the dimensionality of the integration.

The ZZ → l+ l−b b̄ matrix element only differs from the ZH → l+ l−b b̄ in terms

of the kinematic distributions of the hadronic decay. The dijet mass for ZZ events will

reconstruct to 91.2 GeV /c2 instead of the Higgs boson pole mass.

5.3.2 Z+jets

We use MadEvent/MadGraph [43] to calculate |M |2 in the case of Z + jets. Unlike the

other processes, there are many different mechanisms of Z + jets event production. At

least 65 distinct mechanisms (Feynman diagrams) result in a final state of two leptons

and two jets. The most common mechanism is shown in figure 5.3.

�Z/γ

Z/γ

u, d , s

ū, d̄ , s̄

u, d , s

e−,µ−

e+,µ+

ū, d̄ , s̄

FIGURE 5.3: Z+jets dominant production mechanism

In order to carry out the integration over all the 8 specified variables for a given event,

a great many evaluations (O (100,000)) of |M |2 are required. Although each diagram can

be evaluated fairly quickly (milliseconds), in order to achieve higher speed, MadGraph

does statistical sampling of possible diagrams, choosing to weight dominant processes
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more heavily (several orders of magnitude faster). Unlike other processes we have matrix

elements for, there is no integration over intermediate particles in the event.

5.3.3 t t̄

We expect two neutrinos in t t̄ events. Since they are invisible and have three degrees of

freedom in the massless approximation, together they introduce six degrees of freedom

that must be integrated over. The momenta of the intermediate particles, t t̄ ,W ± must

also be integrated over.

The |M |2 for t t̄ can be analytically derived, as in Mahlon and Parke [44, 45], repro-

duced here

|M |2 =
g 4

s

9
F F̄ ((2−β2 s 2

q t )−Xs c ) (5.9)

where β is the top quark velocity in the qq̄ rest frame, Xs c contains terms describing

spin correlations between top quarks, gs is the strong coupling constant, and F (F̄ ) are

the top (anti-top) quark propagators respectively.
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6

Analysis Technique

The sensitivity of a search can be estimated from the empirical measure of

signal/
Æ

background

The combination of SM prediction and detector effects like selection and tagging pro-

duces a S/
p

B ∼ O (10−1). This is insufficient to do any kind of pure counting experi-

ment, so advanced analysis techniques are required. Likelihood fitting allows extraction

of the maximum amount of information from each event. We use the matrix elements

as described in chapter 5 to form a likelihood function.

6.1 Likelihood Fitting — 1

Likelihood functions in a parameter need not be unique [46]. We use the matrix ele-

ments described in the previous chapter to form a likelihood function for each event.

Each event has a signal and background probability based on matrix elements, Ps and a

Pb respectively. The expression

L(S,x|Θ) = SPS(x|Θ)+ (1− S)Pb (x|Θ) (6.1)
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is a per event likelihood in S given event kinematics x and theory parameters Θ. Notice

that this function is linear in the S parameter, with the slope of the line indicating if the

event is more signal-like or background-like.

The standard prescription for a likelihood fit on a set of measurements is to take the

product of the individual likelihood curves. Therefore equation 6.1 becomes

L (S) =
∏

i

L(S,xi ) =
∏

i

SPs (xi |Θ)+ (1− S)Pb (xi |Θ) (6.2)

where i is the index over events in the sample. As a matter of computability, we choose

to instead maximize the log-likelihood

logL (S) =
∑

i

log L(S,xi ) =
∑

i

log
�

SPs (xi |Θ)+ (1− S)Pb (xi |Θ)
�

(6.3)

In the combined likelihood S means signal fraction, Ns/N for the sample under consid-

eration. One of crucial properties of likelihood fitting is that the maximum likelihood

estimator is normally distributed [6, 46].

6.2 Resampling

When considering events to fit, there are two complications. First, due to the slow speed

of Monte Carlo generation and matrix element calculation, the statistics of events are

limited. Secondly, the events that are generated by the slow Monte Carlo have weights

based on things like trigger efficiencies.

Resampling techniques allow the extraction of more information from a limited set

of events. The technique we use is called bootstrapping, which involves taking random

subsamples from the large pool of events. A cursory overview of bootstrapping can be

found in [47] and detailed information in [48]. Barlow [49] states the estimation of an

error allows (N /n)2 subsamples in the bootstrap, whereN is the number of events in

the pool, and n is the number of events in the subsample. Since we are estimating the

spread of a likelihood fit, the Barlow limit applies.
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Bootstrapping allows us to form subsets of events similar to what we would expect

from the CDF detector based on theory predictions. The theory predictions are given

by table 4.9 and table 4.8. The subsets of events assembled are called pseudo-experiments

(PEs). Because the events are sampled from a large pool of events, it allows weighted

sampling, as more heavily weighted events are part of the subsamples more often.

6.3 Normalization

To ensure normalization of the matrix elements described in chapter 5, we perform an

ad-hoc two component normalization using the likelihood fitter. Correctly normalized

density functions are required for any likelihood fitting technique.

The four matrix elements, ZH , ZJ J , t t̄ , and ZZ are indexed by j . In principle, each

should integrate to unity over all allowable phase space.

∫

dx P j (x|Θ) =
1

σ(Θ)

∫

dx
dσ(Θ)

dx
= 1 (6.4)

Practically, we obtain this instead

∫

dx P j (x|Θ) =
∫

dx
dσ(Θ)

dx
= σ(Θ) (6.5)

In the likelihood fit, Ps and Pb must have a correct relative normalization. Since there

are four matrix elements, and relative normalizations must commute, that leaves three

independent normalization constants to find. We find the three normalization constants

by choosing one matrix element as a basis and calibrating the other three using a two

component likelihood fit. We choose to normalize the other matrix elements againt the

t t̄ matrix element with a (arbitrary) subsample size of 500 events. To normalize, we

let Ps → Pt t̄ and Pb → P{ZH ,ZJ J ,ZZ}. Then we run the likelihood fitter on sets of events

that are 50% t t̄ and 50% of {ZH ,ZJ J ,ZZ}. One sample log likelihood curve is shown

as figure 6.1. There is a central limit theorem based effect that causes the polynomial

61 Draft: Version 80



0.30 0.35 0.40 0.45 0.50 0.55
S

−7

−6

−5

−4

−3

−2

−1

0

lo
g
L(

S
)

Sample Log Likelihood

log L
Sm

FIGURE 6.1: A single log likelihood curve, with the most likely value of S marked as Sm
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FIGURE 6.2: The aggregate histogram of most likely values (Sm) for normalization sets
of events at mH = 115 GeV /c2. Each of the matrix elements were multiplied by the
appropriate constant (table 6.1) such that the histogram is centered at 0.5
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expression for likelihood to become normally distributed, or correspondingly parabolic

in log-likelihood space.

The bootstrap resampling technique introduces significant variation between sub-

samples. Each subsample produces a curve like the one in figure 6.1, and each curve has

a most likely value, Sm (short for Smeasured). Individual Sm values are histogrammed for

each of the three cases ZH ,ZJ J ,ZZ , and the Pb values are multiplied by normalization

constants which are adjusted until the mean of the histogram occurs at 0.5. The his-

tograms for background and signal at mH = 115 GeV /c2 are in figure 6.2. Other Higgs

mass points produce very similar histograms. The properties of maximum likelihood

fitting ensure the distribution of most likely values is Gaussian [46]. The arbitrary sub-

sample size of 500 does not affect the mean of the Sm distribution, and so does not affect

the normalization constant obtained.

Matrix Element Normalization ( σt t̄/σ(Θ))
t t̄ 1

ZJ J 1.90× 10−2

ZZ 8.90× 10−4

ZH100 1.77× 103

ZH105 2.01× 103

ZH110 2.15× 103

ZH115 2.35× 103

ZH120 2.50× 103

ZH125 2.65× 103

ZH130 2.85× 103

ZH135 3.05× 103

ZH140 3.35× 103

ZH145 3.65× 103

ZH150 4.00× 103

Table 6.1: Normalization constants for the matrix elements. t t̄ was chosen as the basis
for the normalization, and thus has a normalization of 1
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6.4 Pseudo-Experiments

As described in section 6.2, pseudo-experiments are bootstrapped sets of events that fol-

low the distributions we expect from theory (Tables 4.9 and 4.8). Because the theory

predicts a constant rate of production for any given process, the number of events of

events for that process must follow a Poisson distribution. The means of the Poisson

distributions for each process are given in table 4.9 and 4.8.

The SM predicts a signal/
p

background ratio of∼O (0.1). Put another way, at mH =

115 GeV /c2 and integrated luminosity of 2.7/fb, there is a background expectation of

∼ 300±
p

300 = 300± 17 events and a signal expectation of ∼ 1.9± 1.4 events. The

background fluctuations due to Poisson statistics completely overwhelm any signal that

may be present.

Consider a toy example where we are fitting a one dimensional kinematic distri-

bution with two shapes, a signal shape and a background shape. In the case of these

pseudo-experiments, there would be large fluctuations in the total integrated area be-

tween pseudo-experiments. Since the signal and background shapes are fixed, there

would be a large spread in the fitted parameter purely due to poisson fluctuations.

Since the desirable outcome is to reduce the spread in the fitted parameter, we instead

choose to normalize the distributions to some constant before performing the fit. This

forces the fit to be based purely on shapes, and eliminates a large source of variation be-

tween pseudo-experiments. The same principle applies to the complex multidimensional

fit done in this analysis.

We choose to only consider pseudo-experiments where NPE = Ndata, where Ndata is

the number of events observed at the CDF detector, in this case 290 events. This elimi-

nates spread in the fitted parameter Sm caused by fluctuations in pseudo-experiment size,

making the analysis a pure shape fit. It also has a nice interpretation that can be thought

of as a Bayesian prior, that we only consider pseudo-experiments that might be what we

Draft: Version 80 64



observed at the real experiment.

As described in Chapter 4, SECVTX b tagging allows us to distinguish b quark jets

from other jets by looking for a secondary vertex in the silicon detector. The selection

requires at least one b tag, but there are kinematic differences between single b tagged

and double b tagged events. To ensure that pseudo-experiments accurately represent the

distributions we expect from theory, it is important to make sure the correct numbers

of single b tagged and double b tagged events from each process are present. We define

the ζ factors as

ζ ( j )1tag =N ( j )1tag/N ( j ) (6.6)

ζ ( j )2tag =N ( j )2tag/N ( j ) (6.7)

where the index j runs over the four different matrix elements (and corresponding

Monte Carlo event pools), {ZH ,ZJ J , t t̄ ,ZZ}. ζ factors are the probability of an event

from a certain category being single or double tagged. Table 6.2 and 6.3 give single and

double tag rates for each of the four matrix elements.

ZJ J t t̄ ZZ
ζ1tag 0.91 0.74 0.80 ζ B

1tag = 0.89
ζ2tag 0.09 0.26 0.20 ζ B

2tag = 0.11

Table 6.2: Tagging rates for the backgrounds. The total ζ B
k−tag are obtained by

N k−tag
back

/(N 1tag
back
+N 2tag

back
) where N k−tag

back
are the total background predictions from table 4.9

and 4.8 and k is 1 or 2.

ZH (mH ) 100 105 110 115 120 125 130 135 140 145 150
ζ1tag 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.64 0.64 0.64 0.63
ζ2tag 0.33 0.33 0.34 0.34 0.34 0.35 0.35 0.36 0.36 0.36 0.37

Table 6.3: Tagging rates for the signal at all Higgs masses between 100 and 150 GeV /c2.

In addition to Poisson variability, each process has an associated rate systematic un-

certainty from things like k-factor, b tagging uncertainties, and luminosity. Each rate
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systematic uncertainty is independent from other rate systematics, but is correlated

across production processes. So for each production process, we add the different sys-

tematics in quadrature (because they are independent) and correlate the same systematic

across processes. Therefore, all of the rate systematics can be reduced to a single distri-

bution that is scaled according to the process. We believe the distribution to be Gaussian

with a mean of zero and scale (σ ) as given in table 6.4. A detailed examination of factors

that compose the systematic are in section 6.7.

Process Scale Factor
Z→ ee + u ū, d d̄ , s s̄ 0.425
Z→µµ+ u ū, d d̄ , s s̄ 0.425
Z→ ττ+ u ū, d d̄ , s s̄ 0.425
Z→ ee + c c̄ , b b̄ 0.435
Z→ mm+ c c̄ , b b̄ 0.435
Z→ ττ+ c c̄ , b b̄ 0.435
W W , W Z , ZZ 0.246
Fakes 0.500
t t̄ → l l̄ νν̄b b̄ 0.224

Table 6.4: Rate Systematic scale factor

Since we are searching for ZH signal in a shape fit, the amount of ZH in the pseudo-

experiment must be a parameter of construction. This parameter is called Strue = St =

NZH/NPE and represents the (known) fraction of ZH signal in the pseudo-experiment,

where NZH is the poisson mean. Now we are ready to follow the pseudo-experiment

procedure.

Pseudo-experiment Procedure

To understand the systematics, please see section 6.7.

1. Calculate the number of signal and background events expected given St .

Ns = St Ndata Nb =Ndata−Ns
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2. Calculate the breakdown of signal and background events into 1-tag and 2-tag

channels

N (1tag)
s = ζ (ZH )

1tag Ns N (2tag)
s = ζ (ZH )

2tag Ns

N (1tag)
b
= ζ B

1tagNb N (2tag)
b
= ζ B

2tagNb

3. Calculate event 1 tag and 2 tag probabilities and signal fractions

P1tag = (N
(1tag)
s +N (1tag)

b
)/Ndata

P2tag = (N
(2tag)
s +N (2tag)

b
)/Ndata

S (1tag)
t =N (1tag)

s /(N (1tag)
s +N (1tag)

b
)

S (2tag)
t =N (2tag)

s /(N (2tag)
s +N (2tag)

b
)

4. Generate a Binomial variate with p = P1t , q = P2t , and N =Ndata = 290. This will

give the single tagged PE size and the double tagged PE size by subtraction from

Ndata. This gives N (1tag)
constraint

and N (2tag)
constraint

respectively. Clearly Nconstraint fluctuates

across different PEs.

5. Generate a Gaussian (µ = 0, σ = 1) variate for rate scaling. For each process,

scale this variate by the quadrature sum of all rate systematics (dominated by the

k-factor, see table 6.4). Scale all background poisson means from Table 4.9 and 4.8

by the scaled Gaussian variate.

6. Generate Poisson variates per process based on the scaled poisson means in the 1

tag and 2 tag channel separately. Independently check that the number of events

in the 1 tag channel = N (1tag)
constraint

and the number of events in the 2 tag channel =

N (2tag)
constraint

. If the constraint is not met for the 1 tag or 2 tag channel, generate a new

set of Poisson variates for all processes within the tag channel. This is equivalent to
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discarding PEs where N 6=Nconstraint. Because Ndata is the sum of the two Nconstraint,

this implies PEs where N 6=Ndata are discarded.

7. Some Gaussian variates are heavily suppressed, (with a k-factor of 0.4, if we fluctu-

ate 2.5σ low, the poisson mean is zero), so we limit the number of sets of Poisson

variates for a given Gaussian variate to 1000. The limit changes by a maximum

of 0.5% as the number of Poisson sets per Gaussian variate varies from 1 to 106,

which is significantly less than the statistical error on the limit.

8. At this point there is a breakdown of channels and processes (9 background and

1 signal process, 2 tag channels)=20 with a number of events to draw from each.

At this point, we go to the pools of events (which have weights from trigger ef-

ficiencies and cross section), and using rejection based Monte Carlo, we draw the

appropriate number of events from each category. These events form a pseudo-

experiment, which is then fit using the likelihood fitter.

Noticeably, all tagging rates and ζ factors are based on Monte Carlo, not observed

fluctuations in the data. This makes the analysis ‘blind’ to the observed number of 1 tag

and 2 tag events. This is desirable as poisson b tagging fluctuations would propagate to

a better or worse limit otherwise, amplifying b tagging uncertainty in the process.

6.5 Likelihood Fitting — 2

From table 4.9, 4.8 and 4.6, it is clear that the S/
p

B is significantly higher in the 2

tag channel than in the 1 tag channel. We seek to take advantage of this to improve

sensitivity by separating the two tag channels. However, for illustrative purposes, first

consider the simpler case presented in section 6.1 (Combined tags).
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6.5.1 Combined Tag Channels

We reproduce equation 6.2 here

L (S) =
∏

i

L(S,xi ) =
∏

i

SPs (xi |Θ)+ (1− S)Pb (xi |Θ) (6.8)

To account for multiple backgrounds we replace Pb with a correctly weighted sum of

the matrix element density functions for the backgrounds, namely

Pb (xi |Θ)→ λ1Pb1(xi |Θ)+λ2Pb2(xi |Θ)+λ3Pb3(xi |Θ)+ . . . (6.9)

where λ j is the background fraction of the j th background as defined by λ j =N ( j )
b
/Nb .

Therefore,
∑

j λ j = 1. This constraint on λ j and the S, (1 − S) construction in the

likelihood ensure that normalization is maintained at all S, an essential condition for

likelihood fitting. With the three backgrounds, the likelihood expression becomes.

L (S) =
∏

i

(SPZH (xi |MH )+ (1− S)
�

λZJ J PZJ J (xi )+λZZ PZZ(xi )+λt t̄ Pt t̄ (xi )
�

(6.10)

Like the normalization case, pseudo-experiments produce a Gaussian curve in S, much

like figure 6.1. And like the normalization case, we make a histogram of most likely

values of the signal fraction (Sm).

6.5.2 Separated Tag Channels

We know that a ZH signal event has a higher probability than background of being dou-

ble tagged. We seek to enhance sensitivity by using this fact, so we reform the likelihood

expression as follows.

L (S) =
�

∏

m

L(S,xm)
�

×
�

∏

n

L(S,xn)
�

(6.11)

where m runs over single tagged events and n runs over double tagged events. If we

make an approximation that the tagging probability is independent of event kinemat-
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ics (a reasonable approximation), we can reweight matrix element probabilities by the

tagging probability for that matrix element.

P j (x|Θ)→ P (x|Θ)P j (k) (6.12)

where k is the number of tags for the event. Since P j (k) is exactly equivalent to the ζ

factors defined earlier (equation 6.6 and 6.7), we substitute. This makes equation 6.10

into

L (S) =




∏

m

(S)
�

ζ ZH
1tag PZH (xm|MH )

�

+(1− S)
�

λZJ J ζ
ZJ J

1tag PZJ J (xm)+λZZ ζ
ZZ

1tagPZZ(xm)+λt t̄ ζ
t t̄

1tagPt t̄ (xm)
�





×




∏

n

(S)
�

ζ ZH
2tag PZH (xn|MH )

�

+(1− S)
�

λZJ J ζ
ZJ J

2tag PZJ J (xn)+λZZ ζ
ZZ

2tagPZZ(xn)+λt t̄ ζ
t t̄

2tagPt t̄ (xn)
�



 (6.13)

which coupled with tables 6.2, 6.3, and 6.5, completely defines the likelihood fitter.

λZJ J 0.8852
λZZ 0.0463
λt t̄ 0.0685

Table 6.5: λ background fractions are based on theory predictions, as given in tables 4.9
and 4.8

Since each event introduces a term into the likelihood that is linear in S, the product

is necessarily a polynomial. The polynomial construction of the likelihood ensures that

L (S) diverges at ±∞. We start to see this divergence at S less than 0 and greater than 1.

Because we know the likelihood fit to be a biased estimator, we scan outside the physical

zero to one region in S. This leads to difficulties in finding the likelihood peak in an
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automated way in the analysis software.

log L (S) =
∑

m

log



(S)
�

ζ ZH
1tag PZH (xm|MH )

�

+(1− S)
�

λZJ J ζ
ZJ J

1tag PZJ J (xm)+λZZ ζ
ZZ

1tagPZZ(xm)+λt t̄ ζ
t t̄

1tagPt t̄ (xm)
�





+
∑

n

log



(S)
�

ζ ZH
2tag PZH (xn|MH )

�

+(1− S)
�

λZJ J ζ
ZJ J

2tag PZJ J (xn)+λZZ ζ
ZZ

2tagPZZ(xn)+λt t̄ ζ
t t̄

2tagPt t̄ (xn)
�



 (6.14)

When fitting the peak in the analysis software, we use the log likelihood, as in equation

6.14. Reliably finding the peak is not always trivial, so we use the well known and ef-

ficient Nelder-Mead [50, 51] maximization algorithm. Nelder-Mead, also known as the

amoeba method, is preferred over other methods as it does not require the calculation

of derivatives and minimizes computationally expensive function evaluations of likeli-

hood. The specific implementation used is from the Apache Java Commons Math 2.0

Snapshot.

6.6 Feldman-Cousins Method

The likelihood fitter produces a likelihood curve for each constructed pseudo-experiment.

Examples for pseudo-experiment likelihood and log-likelihood curves are shown as fig-

ures 6.3 and 6.4.

The most likely value is the Smeasured, the measured signal fraction. This corresponds

to Strue, the true signal fraction the pseudo-experiment was constructed with. We map

the correspondence between the known signal fraction and the measured signal fraction,

and the mapping allows us to adjust for any biases in the estimator.

The Feldman-Cousins method [52] provides a prescription for performing this map-
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ping and setting an interval. It requires scanning in the theory parameter, and forming

a distribution of the measured parameter on simulated pseudo-experiments. The rela-

tionship can be inverted to obtain the distribution in the theory parameter given the

measured parameter. The most likely theory parameter for any given Smeasured is Sbest
true .

R=
L (Sm|St )

L (Sm|Sbest
t )

(6.15)

The ratio R gives the relative likelihood of two hypotheses, one with a theory parameter

of St and the other with a theory parameter of Sbest
t . The ratio of the relative likelihoods

(not the same likelihood as the matrix element likelihood) is something known as a like-

lihood ratio test, which is equivalent to more well known statistical hypothesis tests like

a t -test. Choosing a value of the ratio R is equivalent to choosing a statistical significance

confidence level.

The ratio is used as the test statistic in the Feldman-Cousins procedure, and the fre-

quentist Neyman construction is used to form confidence bands. This ensures statistical

coverage by construction and allows a self-consistent way of setting a two sided or one

sided coverage interval.

We follow the Feldman-Cousins procedure for this analysis, using the likelihood fit-

ter’s most likely value Sm as the estimator. Figure 6.5 shows the histograms for selected St
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FIGURE 6.5: Measured Signal Fraction Peak Histograms. The legend indicates St .

values in the scan. From the properties of likelihood fitting [46], we know that the most

likely value has a Gaussian distribution as long as the original source distribution (in this

case the matrix elements) have compact support. We fit Gaussians to the histograms and

use the fitted Gaussians (shown) as the distribution of Sm.

Noticeably, the width of the fitted Gaussians increase as the amount of average signal

fraction present in pseudo-experiments (St ) increases. This is exactly what we expect if

we think of the likelihood fit a two component signal-background fit, because the size

of the Poisson fluctuations on signal increase as St increases. We gain a better sense of

what the histograms look like in two dimensions (Figure 6.6). The figure indicates that

the mean and spread of the Gaussians in Sm can be modeled as a function of St . We fit

an ad-hoc cubic polynomial for the mean and width of the Gaussians.

The polynomial fit for the mean and width of the Gaussians in Sm gives an analytic

model of P (Sm|St ). We then take the ratio R as defined in equation 6.15 and normalize

the ratio distribution for each St . In the Sm, St plane, this leads to adjusted distribution
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of Figure 6.7.
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FIGURE 6.6: Measured Signal Fraction 2D Map. Warmer colors indicate higher proba-
bilities of measurement.

For a given St and coverage threshold, we select the central interval in R such that

the integrated area is equal to the coverage threshold. We do this at all St to get the

boundaries at the specified coverage interval. This sets the coverage bands over the Sm,

St plane which is all that is necessary for setting a one-sided or two-sided interval using

the Feldman-Cousins construction. The results are presented in chapter 7.
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FIGURE 6.7: Feldman-Cousins Ratio

6.7 Systematics

There are several systematic effects that must be accounted for when performing the

analysis. They can broadly be broken up into two categories, rate systematics and shape

systematics. Rate systematics reflect an uncertainty in the number of events of a partic-

ular process in relation to other processes or total. Shape systematics affect the shape of

the kinematic distributions, and therefore the shape of the matrix element distributions.

The rate systematics are k-factor uncertainty, luminosity uncertainty, and b -Tagging

uncertainty. The k-factor is defined as the ratio of the true cross section of a process to

the leading order cross section, k = σ/σLO . Since the luminosity needs to be measured,

there is an experimental uncertainty from the CDF luminosity detector. The b -tagging

uncertainty indicates that the simulated tagging rate might not match the actual tagging

rate. b -tagging uncertainty varies for the different quarks in the final state, namely that

a light flavor or c quark is tagged differently from an actual b quark.

75 Draft: Version 80



Uncertainty Value
k-factor (ZJ J ) 40%
k-factor (W Z/ZZ , t t̄ ) 20%
Luminosity 6%
Tagging (u ū, d d̄ , s s̄ ) 13%
Tagging (c c̄ ) 12.4%
Tagging (b b̄ ) 5.6%

Table 6.6: Rate Uncertainties. Each of the three uncertainties (k-factor, Luminosity, b -
Tagging) is believed to be independent of the others. Tagging uncertainty is applied once
per tag.

Since the three rate uncertainties are independent of each other, the total uncertainty

is the quadrature sum of the three uncertainties. Because each of the uncertainties is

correlated across samples, the rates of all samples must be scaled simultaneously. This

explains the drawing of the Gaussian variate as outlined in the pseudo-experiment con-

struction procedure in section 6.4

The k-factor uncertainty dominates the rate uncertainties because of the quadrature

sum. However, table 4.8 and 4.9 show that the total number of events predicted agrees

with the observed number to within 1 σ . Entirely separate from the rate systematics,

there are poisson fluctuations for each process. Because the analysis is a pure shape fit,

the data effectively constrains the rate systematic distribution.

There are also the shape systematic uncertainties, which are Initial State Radiation

(ISR), Final State Radiation (FSR), and Jet Energy Scale ( JES). ISR introduces an extra par-

ton in the initial state, leading to an extra jet in the event, (qq̄q ′→ ZH q ′→ l+ l−b b̄ q ′).

FSR introduces an extra jet or lepton in the event as well, but in the final state (qq̄ →

ZH → l+ l−b b̄ q ′). Jet Energy Scale uncertainty arises from the difficulty in calibrating

the energy measured in the calorimeter with the true energy of the jet.

Shape uncertainties can be accounted for by adjusting the shape of the Sm histograms.

For each shape systematic, we perform pseudo-experiments at ±1σ in the systematic.

At any given St , these systematically varied pseudo-experiments lead to a shift in the
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FIGURE 6.8: Rms scale factor as a function of St for Sm distributions due to shape sys-
tematics. The dominant systematic is ISR, which causes misidentification of jets when
performing the selection.

Sm histogram mean by δ±. We assume the shift in the Sm histogram to be linear in

the systematic, namely ∆ = δ±σsyst. Since the systematic distribution is assumed to

be a Gaussian, we want to weight the shift in the Sm histogram with a Gaussian in the

systematic. Because the Sm histogram is itself Gaussian, and we want to weight with a

systematic Gaussian, we convolute the two Gaussians, effectively adding their variances

to form a new histogram in Sm with the systematic included. We repeat this for all three

shape systematics, effectively increasing the Sm histogram variance at each St by the sum

of the variances due to the three shape systematics. The ratio of the standard deviations

with and without all systematics included is plotted in figure 6.8. It shows that over a

range of 0 to 0.4 St , standard deviation of the Sm histogram is increased between 0 and

9% due to systematics.
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7

Results

Using 2.7 fb−1 of data (through period 17), 290 events pass the selection outlined in

chapter 4. These 290 events are fitted with the likelihood fitter from chapter 6. The

resulting likelihood curve is figure 7.1.
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FIGURE 7.1: Data Likelihood Curve
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The data likelihood curve peaks at S (data)
meas = 0.100. Three discrete coverage levels

corresponding to 1, 2, and 3 σ are selected from figure 6.7 and are shown as figure 7.2.
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FIGURE 7.2: Feldman-Cousins confidence bands. The most likely S from data is indi-
cated as the red line. The most likely Sm (based on simulation) as a function of St is the
black median line. MH = 115 GeV /c2

The most likely S from the data is indicated as Sdata
meas, the red line. At 95 % coverage

(blue band), Sdata
meas crosses the upper blue boundary at a Strue of 0.0537, which corresponds

to a σ/σSM of 8.2 (right axis).

The expected limit is obtained by assuming that St = 0, and calculating the distribu-

tion of limits that would be obtained by the Feldman-Cousins prescription. The distri-

bution for MH = 115 GeV /c2 is given in figure 7.3.

The limits at all masses are given in table 7.1 using the SM cross sections defined in

79 Draft: Version 80



0.00 0.05 0.10 0.15 0.20 0.25
Expected Limit (units of Strue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P

Data Limit

0 5 10 15 20 25 30 35
Limit (σSM )

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CDF II Preliminary 2.7 fb−1

Expected Limit= 12.1 σ/σSM

Observed Limit= 8.2 σ/σSM

FIGURE 7.3: Expected distribution of limits assuming that St = 0 and 95% coverage. The
data limit is at the 13th percentile. The median of this distribution defines the expected
limit. ±1,±2 σ limits are defined by the appropriate point on the cumulative density
function for this distribution. MH = 115 GeV /c2

figure 2.14. The table is plotted in figure 7.4. Noticeably, the data favors a lower limit as

compared to the expected limit at all MH considered. A full set of coverage bands for all

MH between 100 and 150 GeV /c2 is provided in appendix A
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MH −2σ −1σ median +1σ +2σ Observed
100 4.8 6.0 8.7 12.5 16.2 7.0
105 4.7 6.1 8.7 12.9 17.1 6.5
110 5.6 7.5 11.3 16.8 22.3 7.6
115 6.4 8.3 12.1 18.2 24.2 8.2
120 7.1 9.3 13.5 20.0 26.5 9.0
125 10.7 13.2 18.3 27.1 35.2 13.2
130 13.7 17.1 24.2 35.7 46.6 17.7
135 17.4 21.8 31.0 44.8 58.6 22.9
140 24.4 31.1 44.3 65.4 85.0 32.0
145 33.5 42.8 61.6 89.9 118.8 43.2
150 58.2 73.7 104.1 153.2 198.3 71.3

Table 7.1: Expected and observed limits in units of σSM , as given by Figure 2.14. Uses
2.7 fb−1 of CDF II data, through period 17.

100 105 110 115 120 125 130 135 140 145 150
M H

100

101

102

σ
/σ

S
M

CDF II Preliminary 2.7 fb−1

±2σ

±1σ

Expected

Observed

FIGURE 7.4: p p̄→ ZH → l+ l−b b̄ limits at 95% coverage.
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Appendix A

Additional Plots

We show data likelihood curves, Feldman-Cousins confidence bands, and expected limit

distributions at all MH between 100 and 150 GeV /c2.
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FIGURE A.1: MH = 100 GeV /c2
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FIGURE A.2: MH = 105 GeV /c2
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FIGURE A.3: MH = 110 GeV /c2
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FIGURE A.4: MH = 115 GeV /c2
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FIGURE A.5: MH = 120 GeV /c2
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FIGURE A.6: MH = 125 GeV /c2
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FIGURE A.7: MH = 130 GeV /c2
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FIGURE A.8: MH = 135 GeV /c2
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FIGURE A.9: MH = 140 GeV /c2
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FIGURE A.10: MH = 145 GeV /c2
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