Time of Flight @ CDF (II)

reconstruction/simulation group
J. Beringer, A. Deisher, Ch. Doerr, M. Jones, E. Lipeles,
S. Menzemer, M. Shapiro, R. Snider, D. Usynin

calibration group
E. Palencia, J. Piedra, L. Scodellaro, I. Vila, R. Vilar

Outline:

- TOF Offline Calibration
- TOF Reconstruction
- Validation/TOF Performance
- Physics with TOF
- 216 scintillator bars ($\approx 4 \times 4 \times 279.5 \text{ cm}^3$), as cylinder directly outside of the COT
- 1 photomultiplier-tube at each end
- PMT + readout electronics measure time when collected charge is above threshold
- integrates the charge within a time window (≈ 10 ns)
Contribution to Time Measurement in the TOF System

- \(t_{\text{speed}} = \frac{d}{s} \)
- \(d = L/2 \pm z \)
- \((L=280\text{cm}) \)

TAC start

TDC

C_s : common stop

TAC stop

\[TDC = C_s - (t_0 + \text{tof} + t_s + t_c + t_w) \]
TOF Calibration

- **Online Calibration**
 Pedestal subtraction and TAC calibration

- **Time Walk Effect** (slewing correction)
 Due to dependence of discriminator time on pulse height
 \(\approx 2 \text{ ns} \)

- **Speed of Signal Propagation in Bars**
 Time depend on z position of hit along the bar
 \(\approx 20 \text{ ns} \)

- **Channel-to-Channel Time Offset**
 Includes cable length and clock signals
 \(\approx 1 \text{ ns} \)

- **Residual Correction in z Position along the bar**
 \(\approx 200 \text{ ps} \)

(Design TOF resolution: 100 ps)
- Time difference East - West vs. \(z \)

\[
t_E - t_W = t_0^E - t_0^W - (t_{wE}(Q) - t_{wW}(Q)) + t_{cE} - t_{cW} + 2z/s
\]

\(s \): speed of signal propagation

Time walk dependence almost cancels in time difference of east/west. The **effective speed of light** comes from the fitted slope.

Channel-by-Channel offset doesn’t affect the slope, just causes a shift. The effective speed of light is fitted again after the time walk correction.

![Graph showing](image-url)
TOF Calibration: Time Walk Correction

- Time Walk Correction
 Due to leading edge discriminator: Larger pulses fire the discriminator at earlier time than smaller pulses. During calibration event t_0 is not yet known. Effect studied with tracks passing through two neighbouring bars (A,B):

 $t_A = t_A^0 + t_s A(z) + t_c A - \frac{\alpha A}{\sqrt{Q}}$;
 $t_B = t_B^0 + t_s B(z) + t_c B - \frac{\alpha B}{\sqrt{Q}}$;
 $\alpha A \approx \alpha B$
 $t_A - t_B \propto \alpha \times \left(\frac{1}{\sqrt{Q_A}} - \frac{1}{\sqrt{Q_B}} \right)$;

\[t_{45} - t_{46} \text{ (ns)} \]
TOF occupancy is about 30% (average b-event)

Two thirds of the TOF signals are not related to a reconstructed track → significant background even for isolated tracks

Occupancy is present in data and MC → It is related to real particles in the detector
TOF-Track Matching

- extrapolate track into tof bar
- calibrate time according to z position of intersection
- measured charge and time on east and west side after calibration should be the same
- cut on $\chi^2 = \frac{(t_E-t_W)^2}{\sigma^2_E + \sigma^2_W} + \frac{(Q_E-Q_W)^2}{\sigma^2_{\Delta Q}}$
- charge has to be calibrated for attenuation length
- single track matching efficiency: 74% (average b-event)
- single track matching purity: 96% (average b-event)
Arrival-Time Resolution

Like to study arrival time resolution and track-matching independent of \(t_0 \).
Isolate calibration and matching effects from \(t_0 \) computation.

→ Study time difference of two muon legs of \(J/\Psi \) event \((K_S \rightarrow \pi\pi, \ldots) \)

\[
\begin{align*}
\Delta t &= (t_{\mu_1} - t_{\mu_1}^{exp}) - (t_{\mu_2} - t_{\mu_2}^{exp}) \\
&= \left(t_{\mu_1} - t_0 - \frac{s_1}{c} \sqrt{1 + \frac{m_\mu^2}{p_1^2}} \right) - \left(t_{\mu_2} - t_0 - \frac{s_2}{c} \sqrt{1 + \frac{m_\mu^2}{p_2^2}} \right)
\end{align*}
\]

Errors on momentum (p) and arclength (s) are negligible compared to timing resolution.

Arrival time resolution:

\[
\sigma_t = \sigma_{\Delta t} / \sqrt{2}
\]

\(\sigma_t = 156 / \sqrt{2} \) ps = 110 ps
Efficiency-Purity Definition

- **Efficiency**: all J/Ψs where both muon fulfill matching cut divided by number of J/Ψs with both muons fiducial tof tracks
- **Purity**: J/Ψ in narrow gaussian divided by all J/Ψs which pass matching cuts
- Combined χ^2 of time and charge works best
- Default cut: $\chi^2 \leq 14$
- Single track efficiency: 74%
- Single track purity: 96%

70% of all tracks are fiducial \rightarrow absolute tof efficiency about 52%
A Closer Look at the Tails (1)

Bad Muons:

\[|(Tof_{\mu_1} - Tof_{exp,\mu_1}) - (Tof_{\mu_2} - Tof_{exp,\mu_2})| \geq 500\text{ps} \ \& \]
\[|Tof_{\mu_1/2} - Tof_{exp,\mu_1/2}| \geq |Tof_{\mu_2/1} - Tof_{exp,\mu_2/1}| \]

We measure more often too late than too early times
A Closer Look at the Tails (2)

Early tails:

- Another particle crosses the bar before the track we are interested in → time measurement is triggered too early

Late tails:

- Another particle crosses the bar while the gate is still open. Additional charge makes signal look larger as it is. → Time Walk Correction too small → corrected time is too late

Inefficiency:

- Another particle has triggered or polluted either the time or the charge measurement
The bunches @ CDF are long:

\[\sigma_z \approx 30 \text{ cm} \rightarrow \Delta t = \sigma_z / c \approx 1 \text{ ns} \gg \sigma_{tof} \approx 110 \text{ ps} \]

Need to calculate \(t_0 \) event by event (vertex by vertex) to achieve good resolution.

Need at least two tof tracks excluding the track of interest in order to compute unbiased \(t_0 \).
\[L = P(\pi) \cdot L(\pi) + P(K) \cdot L(K) + P(p) \cdot L(p) \]

Likelihood fit function \(L(\pi/K/p) \) consists of two gaussian distributions:

- mean: \(t_0 = \text{arrival time} - \text{expected time} (\pi/K/p) \)
- narrow gaussian corresponding to tof resolution (\(\approx 110 \text{ ps} \))
- broad gaussian to take misreconstructed/mismatched tracks into account (600 ps)
- ratio narrow/broad gaussian: 0.9:0.1
- weight Likelihood with particle probability obtained by COT \(dE/dx \) and apriori probability (0.8:0.1:0.1)
Define a Metric for t_0 Studies

- Split number of tracks per vertex into two subsets with $n/2$ tracks
- Compute t_0 for both subsets
- Plot the difference, fit the distribution with double gaussian

- **resolution**: size of narrow gaussian divided by $\sqrt{2}$
- **purity**: square-root of the fraction of vertices where $|t_{01} - t_{02}| \leq 3\sigma$
The t_0 resolution is a strong function of number of tracks used in the fit (statistical $\propto 1/\sqrt{N}$)

Average t_0 resolution is about 50 ps
Average t_0 purity is about 99%.
TOF Resolution

tof contains contributions from arrival time and t_0 resolution

- $\sigma = 119$ ps
 (design value: 100 ps)
- 4.5% in tails ($|\text{tof-exp.tof}| \geq 0.3$ ns)

Separation of different particle species is a function of tof resolution but tails cause background e.g. for kaon-tagging or CHAMPS search
Protons: $\Lambda \rightarrow p\pi$

$2\text{GeV} \leq pT \leq 2.5\text{GeV}$

$2.5\text{GeV} \leq pT \leq 3.5\text{GeV}$

$pT \geq 2.5\text{GeV}$

$\Lambda \rightarrow p\pi$ candidates, mass[GeV]

proton pt[GeV/c]

Armin Scheurer (Karlsruhe)
Soft Pions: $D^* \to D^0(\to K\pi)\pi_s$

$pt \leq 0.5\text{GeV}$

$0.5\text{GeV} \leq pt \leq 0.75\text{GeV}$

$0.75 \leq pt \leq 1.0\text{GeV}$

$pt \geq 1.0\text{GeV}$

Kurt Rinnert (Karlsruhe)
Combining TOF and dE/dx PID

TOF works better for low momentum tracks, COT dE/dx works for very low or high momentum.

separation of protons/pions ($\Lambda \rightarrow p\pi$)

$\Lambda^0_b \rightarrow \Lambda_c (\rightarrow pK^-\pi^-)\pi^+$

Mass of potential Λ^0_b candidates

Mass with combined PID for proton

Paula Squillacioti (Pisa)

Dmitry Litvintsev (FNAL)
• Background Rejection: e.g. penta quark search (proton)

• CHAMPS search (looking for very massive and slow particles)

• Monopole search (highly ionizing particles, curving along the B field (z)), TOF trigger

• B-Flavour Tagging

 • Opposite-Side-Kaon Tagging:
 It is more likely that a \bar{B} meson contains a K^- than a K^+ in the final state

 • Same-Side-Tagging (B_s)
 B_s is likely to be accompanied close by a K^+ from fragmentation

\[
\begin{align*}
\bar{B} & \left[\begin{array}{c} b \\ \bar{q} \end{array} \rightarrow \begin{array}{c} c \\ \bar{s} \end{array} \right] K^- \\
B & \left[\begin{array}{c} \bar{b} \\ q \end{array} \rightarrow \begin{array}{c} \bar{c} \\ \bar{s} \end{array} \right] K^+ \\
& \left[\begin{array}{c} \bar{b} \\ \bar{s} \end{array} \right] B_s \\
& \left[\begin{array}{c} \bar{s} \\ \bar{u} \end{array} \right] K^+ \\
& \bar{u}
\end{align*}
\]
Summary

- TOF calibration and reconstruction are interwoven
- TOF inefficiency and impurity are caused by high occupancy in the detector (30%, 10% track related)
- t_0 has to be computed event-by-event
- TOF separation power does not only depend on resolution but on tails of the measured arrival time and the t_0 computation: $\sigma \approx 120$ ps, fraction of tails ($|\text{tof}-\text{tof}_\text{exp}| \leq 300$ ps) about 4.5%.
- TOF works well for low momentum (up to about 1.6 GeV) and is complemented by dE/dx for higher momentum.
- PID is started to be used @ CDF
- Further development of TOF reconstruction code is going on