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We develop a framework for computing light dark matter direct detection rates through single phonon
and magnon excitations via general effective operators. Our work generalizes previous calculations focused
on spin-independent interactions involving the total nucleon and electron numbers N (the usual route to
excite phonons) and spin-dependent interactions involving the total electron spin S (the usual route to excite
magnons), leading us to identify new responses involving the orbital angular momenta L, as well as spin-
orbit couplings L ⊗ S in the target. All four types of responses can excite phonons, while couplings to
electron’s S and L can also excite magnons. We apply the effective field theory approach to a set of well-
motivated relativistic benchmark models, including (pseudo) scalar mediated interactions, and models
where dark matter interacts via a multipole moment, such as a dark electric dipole, magnetic dipole or
anapole moment. We find that couplings to pointlike degrees of freedom N and S often dominate dark
matter detection rates, implying that exotic materials with orbital L order or large spin-orbit couplings
L ⊗ S are not necessary to have strong reach to a broad class of DM models. We highlight that phonon
based crystal experiments in active R&D (such as SPICE) will probe light dark matter models well beyond
those having a simple spin-independent interaction, including e.g., models with dipole and anapole
interactions. Lastly, we make publicly available a code, PhonoDark, which computes single phonon
production rates in a wide variety of materials with the effective field theory framework.
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I. INTRODUCTION

Light dark matter (DM) with sub-GeV mass is theoreti-
cally well motivated [1–11] but difficult to detect in
traditional WIMP-focused experiments [12–16]. This can
be understood from simple scattering kinematics; if the
DM mass mχ ≲ GeV, the amount of energy deposited in a

nuclear recoil process, ω ¼ q2

2mN
, is suppressed by the heavy

target nucleus mass mN and limited by the possible
momentum transfer q≲ 2mχv. This, along with a steady
improvement to the energy sensitivity of detectors [17–21],
has motivated the study of excitation channels far outside
the scope of standard nuclear recoil. Perhaps the most
studied alternative is electronic excitations, in a variety of
different targets, e.g., individual atoms [22–27], semi-
conductors and scintillators [22–25,28–37], superconduc-
tors [38,39], aromatic organic targets [40], graphene [41],

and Dirac materials [42–44]. The smallest DM mass that
can be probed is limited by the band gap in these materials,
typically OðeVÞ corresponding to DM masses ≳MeV (the
exceptions being superconductors and Dirac materials
which typically have OðmeVÞ gaps and sensitivity to
keV scale DM).
For sensitivity to smaller energy deposits, and optimal

reach to light DM and mediating particles, we look toward
excitations at sub-eV energies. Such excitations exist and
are derived from collective behaviors of atoms, ions, or
electrons in condensed matter systems. Phonons were
proposed in Ref. [45] and further studied in Refs. [46–50]
for direct detection in superfluid helium (where maxon
and roton excitations also contribute), and were also
discussed in the context of bosonic DM absorption in
superconductors [51] and semiconductors [52], though
ultimately, acoustic and optical phonons in (polar) crystals
were advanced [53] and shown to have the best exper-
imental prospects and sensitivity to light dark matter
[33,34,54–56]. Magnons—quanta of collective spin
excitations—were also proposed in Ref. [57]. Both pho-
nons and magnons in crystal targets have typical energies
up to Oð100 meVÞ. To date, the work in the literature has
focused on demonstrating the sensitivity of phonons and
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magnons to simple DM models. Only spin-independent
(SI) interactions, via couplings to linear combinations of
the proton, neutron, and electron numbers, have been
considered for phonon excitations, while a few benchmark
models have been studied for magnon excitations.
The goal of this paper is to extend these results to general

types of DM interactions. Effective field theory (EFT) is
well suited for this purpose; we can match a relativistic
theory of DM onto a nonrelativistic (NR) EFT, and then
compute the target response to the EFT operators. Within
this framework, starting from a UV model consisting of
relativistic operators coupling the DM to the proton,
neutron, and/or electron, we can systematically compute
direct detection rates via single phonon and magnon
excitations in various target materials.1 The idea is along
the lines of previous works on EFT calculations of nuclear
recoils [58–63] (which extend earlier studies focused on
standard SI and spin-dependent (SD) DM-nucleon inter-
actions), and, more recently, of electron excitations in
atoms [27] and crystals [37] (which extends earlier studies
focused on SI DM-electron interactions), but technically
there are important differences. Specifically, our EFT
approach to DM-induced single phonon and magnon
excitations consists of the following steps:
(1) Matching of a relativistic theory of DM interactions

onto the NR EFT (DM model-specific).
(2) Matching of NR operators onto DM couplings to

lattice degrees of freedom (universal).
(3) Calculation of phonon or magnon excitation matrix

elements (target- and excitation-specific).
We explain each of these steps in the three subsections of

Sec. II. The first step—matching relativistic DM theories to
the NR EFT—follows a similar procedure as previous
works [27,37,58–63], but involves a larger set of indepen-
dent operators due to the absence of Galilean invariance in a
medium. For nuclear recoils, one then derives the nuclear
responses to the EFT operators. Analogously, the key
quantities in the present case are crystal responses which
determines how DM couples to the collective excitations.
(We emphasize, however, that despite the similar choice of
terminology, collective excitations are associated with a
different kinematic regime and degrees of freedom than
nuclear recoils and therefore require a distinct EFT calcu-
lation.) Technically, for both phonon and magnon excita-
tions in crystal targets, the second step listed above involves
matching the NR EFT of DM-nucleon and DM-electron

interactions onto an effective scattering potential that
involves ionic degrees of freedom in the crystal lattice—
in the long wavelength (low momentum transfer) limit
relevant for light DM scattering, these are quantities that
characterize an ion as a whole, including the total particle
numbers hNψi for the proton, neutron, and electron (ψ ¼ p,
n, e), total spins hSψi, orbital angular momenta hLψ i, as
well as spin-orbit couplings hLψ ⊗ Sψi (a tensor with
components hLi

ψSkψ i summed over the constituent nucle-
ons/electrons). Finally, in the third step, we quantize the
scattering potential to obtain the phonon and magnon
modes in a specific target material and compute the matrix
elements for exciting them. All four types of crystal
responses can lead to phonon excitation in appropriately
chosen targets, while hSei and hLei can also lead tomagnon
excitation.
Our new results significantly extend the searchable DM

model space via phonon and magnon excitations, which we
showcase in Sec. III with a variety of well-motivated
benchmark models. We present full numerical calculations
for several representative target materials, and apply simple
analytic estimates to understand the results. We compare for
which operators and interactions one expects phonon versus
magnon excitations to dominate the rate, quantifying and
generalizing the discussion in Ref. [57]. These calculations
highlight the complementarity between phonon andmagnon
excitations, and between different targets, in probing the light
DM theory space. Our code for computing single phonon
excitation rates, PhonoDark, is publicly available [64] and
will be explained in detail in a forthcoming publication; it
integrates the open-source phonon eigensystem solver
phonopy [65], and takes general NR EFT operator coef-
ficients, together with density functional theory (DFT)
calculations of material properties, as input. Our magnon
code, based on the Toth-Lake algorithm [66] for solving the
magnon eigensystem, is also available upon request.

II. EFFECTIVE FIELD THEORY CALCULATION
OF DARK MATTER INDUCED COLLECTIVE

EXCITATIONS

Our goal is to present a framework for computing direct
detection rates for general DM models, for the process
where a DM particle scatters off a crystal target and induces
a quasiparticle excitation in the crystal. This quantum
mechanical process follows Fermi’s golden rule which,
when the incoming and outgoing DM particles are momen-
tum eigenstates in free space, takes the form

ΓðvÞ ¼ 1

V

Z
d3q
ð2πÞ3

X
f

jhfjṼð−q; vÞjiij22πδðEf − Ei − ωqÞ;

ð1Þ

where v is the incoming DM’s velocity, V is the total target
volume, jii and jfi are the initial and final states of the

1Our focus here is on processes where a single phonon or
magnon is produced by DM scattering. They correspond to the
kinematic phase space where the energy deposition matches
single phonon/magnon energies, typically up to Oð100 meVÞ.
Other processes, including in particular multiphonon excitations
(which asymptote to the nuclear recoil description in the large
energy deposition limit) and electronic excitations, operate in
different regions of phase space and may also be relevant for DM
heavier thanOð0.1 MeVÞ. See Ref. [33] for a detailed discussion.
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target system (defined with NR normalization hijii ¼
hfjfi ¼ 1), and Ṽ is the Fourier transform of the scattering
potential. The momentum transfer from the DM to the
target, q, is integrated over, while the energy deposition
onto the target is constrained to be

ωq ¼
1

2
mχv2 −

ðmχv − qÞ2
2mχ

¼ q · v −
q2

2mχ
: ð2Þ

See Ref. [33] for a review of the general formalism.
We now need to specify the type of transitions jii → jfi

in the target system to calculate the matrix element
hfjṼð−q; vÞjii. Here we focus on excitation of single
phonon or magnon in a crystal target at zero temperature.
We therefore take jii to be the ground state j0i, and jfi to be
the one-phonon or one-magnon states jν; ki, labeled by
branch ν and momentum k within the first Brillouin zone
(1BZ). For a crystal target, we write the scattering potential
as a sum of contributions from individual ions,2

Vðx; vÞ ¼
X
lj

Vljðx − xlj; vÞ; ð3Þ

where l ¼ 1;…; N labels the primitive cells, j ¼ 1;…; n
labels the ions within each primitive cell, and xlj is the
position of the ion labeled by l, j. Therefore,

Ṽð−q; vÞ ¼
Z

d3xeiq·xVðx; vÞ ¼
X
l;j

eiq·xlj Ṽljð−q; vÞ; ð4Þ

and we obtain

ΓðvÞ¼ 1

V

Z
d3q
ð2πÞ3

X
ν;k

����X
l;j

hν;kjeiq·xlj Ṽljð−q;vÞj0i
����2

×2πδðων;k−ωqÞ: ð5Þ

The central quantity for the rate calculation is then the
lattice potential Ṽlj which the DM senses. This will depend
on both the specific DMmodel and on the lattice degrees of
freedom (e.g., the nucleon/electron number or total elec-
tronic spin of the ions) available to scatter from. We will
determine the lattice potential Ṽlj in two steps previously
mentioned in the introduction: first, in Sec. II A we review
the procedure of matching relativistic DM models onto NR
effective operators; next, in Sec. II B we further reduce
these effective operators to DM couplings to the lattice
degrees of freedom. In the simplest case of SI interactions,
there is only one effective operator, O1 ¼ 1, and Ṽlj is a
linear combination of hNpilj, hNnilj, and hNeilj (proton,
neutron, and electron numbers of the ions, respectively)
[33]. More generally, a DM model can generate a larger set

of effective operators that involve the spins, momentum
transfer, and velocities. The resulting lattice potential Ṽlj

depends on lattice degrees of freedom that include, in
addition to the particle numbers hNψilj (ψ ¼ p, n, e), also
their spins hSψilj, orbital angular momenta hLψilj, as well as
spin-orbit couplings hLψ ⊗ Sψilj (a tensorwith components

hLi
ψSkψilj, see Eq. (24) below). The last step in computing the

scattering rate is to quantize Ṽlj in terms of phonon/magnon
creation and annihilation operators; we carry out this
exercise in Sec. II C. The framework in this section will
provide the basis for concrete calculations of direct detection
rates via single phonon and magnon excitations, and will be
applied to a set of benchmark models in Sec. III.

A. From dark matter models to nonrelativistic
effective operators

In this subsection, we take a top-down approach in
deriving the EFT, focusing on how the effective operators
arise from NR matching of well-motivated relativistic
models. While one can also take a bottom-up approach
as in e.g., Ref. [58], and construct the EFT by enumerating
operators consistent with rotation and translation invari-
ance, we find it useful to have a set of benchmark UV
models to develop intuition on how realistic theories of
DM, which often predict correlations between EFT oper-
ators [61,67], can be probed by experiment.
Let us start from a relativistic model of a DM particle χ

interacting with the proton (p), neutron (n) and electron
(e)3; we denote these Standard Model (SM) particles
collectively by ψ in the following. To compute the NR
EFT, we take the NR limit of the relativistic theory and map
it on to the appropriate NR degrees of freedom. The EFT
consists of the NR fields χ�, ψ�, generally defined by
(using the SM fermion ψ for example),

ψþðx; tÞ≡X
I

e−iεI tΨIðxÞb̂I; ψ− ≡ ðψþÞ†: ð6Þ

Here the sum is over energy eigenstates, εI ¼ EI −mψ are
the energy eigenvalues minus the rest mass, ΨIðxÞ are the
wavefunctions (which are two-component for spin-1

2
fer-

mions) and b̂I are the annihilation operators. In the familiar
case of a fermion in free space, the energy eigenstates are
labeled by momentum k and spin s ¼ �, with eigenvalues

εk;s ¼ εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

ψ

q
−mψ ≃ k2

2mψ
, and therefore4

2For simplicity, we will refer to either atoms or ions on lattice
sites as ions.

3The DM-proton and DM-neutron couplings follow from the
DM-quark and DM-gluon couplings in the fundamental Lagran-
gian by standard methods, see e.g., Ref. [59].

4In this and the next subsection, we shall use k to denote a SM
fermion’s momentum while deriving the lattice potential, which
should not be confused with the phonon momentum in Eq. (5).
Afterwards, starting from Sec. II C, we will no longer need to deal
with fermion momenta, and the notation k will be recycled for
phonon momentum.
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ψþ
freeðx; tÞ ¼

Z
d3k
ð2πÞ3 e

−iεkteik·xξsb̂k;s; ð7Þ

where ξþ ¼ ð1
0
Þ, ξ− ¼ ð0

1
Þ.

For a spin-1
2
fermion, the relation between the relativistic

field ψ and NR field ψþ is (see Appendix A)

ψðx; tÞ ¼ e−imψ t
1ffiffiffi
2

p

0
B@ ð1 − σ·k

2mψþεÞψþðx; tÞ
ð1þ σ·k

2mψþεÞψþðx; tÞ

1
CA; ð8Þ

at leading order in m−1
ψ , where k, ε are operators acting on

ψþ. For a fermion in free space, we have k ¼ −i∇, ε ¼ i∂t,
which become simply numbers in momentum space. In the
presence of an external potential ðΦ;AÞ (e.g., electromag-
netic fields from the ions), k ¼ −i∇ − A is the kinematical
momentum, while ε ¼ i∂t −Φ. Equation (8) applies for the
SM fermions ψ ¼ p, n, e. If the DM χ is a spin-1

2
fermion, it

also applies for the DM, with ψ replaced by χ. For a spin-0
DM, on the other hand, χ ¼ e−imχ tχþ, with χþ given by
Eq. (7) without the ξs factor.
To demonstrate the procedure of matching a relativistic

model onto the NR EFT, we focus on tree level DM
scattering mediated by a spin-0 or abelian spin-1 particle,
denoted by ϕ and Vμ, respectively. While it should be kept
in mind that the EFT is capable of describing a broader
class of models, including e.g., loop-mediated scattering,
we find it useful to organize our thinking by categorizing

mediator couplings to fermion bilinears. In Table I,
we list the commonly considered types of couplings at
the level of the relativistic Lagrangian, and their NR limits.
We explain the table in detail in the following two
paragraphs.
For a spin-0 mediator ϕ, we consider its couplings to the

scalar and pseudoscalar currents JS, JP. For a spin-1
mediator Vμ, we consider both minimal coupling to the
vector and axial-vector currents JμV , J

μ
A, and nonminimal

couplings to the field strength Vμν.
5 The latter include a

series of higher-dimensional operators. At dimension five,
we have the electric dipole moment (edm) and magnetic
dipole moment (mdm) couplings. Upon integration by
parts, they can be cast in the same form, VμJμ, as the
minimal coupling case, with effective currents Jμedm and
Jμmdm listed in the last column of Table I. Next, at dimension
six, we consider ∂νVμν coupling to the axial-vector and
vector currents. The former represents a new type of
coupling known as the anapole [67,69,70], and the corre-
sponding effective current is denoted by Jμana. On the other
hand, ∂νVμν coupling to the vector current gives an Oðq2Þ
contribution to the same form factors that JμV induces (i.e.,
the familiar charge and magnetic dipole in quantum
electrodynamics), so we denote the effective current by

TABLE I. Types of couplings between a spin-1
2

fermion ψ and a scalar (vector) mediator ϕ (Vμ). The (effective)
currents are defined by L ⊃ gXϕJX (X ¼ S, P) or gXVμJ

μ
X (X ¼ V; A; edm;mdm; ana; V2), upon integration by

parts in the last four cases. The expressions following the arrows are the leading operators in the NR reduction of
the currents (assuming scattering kinematics), which appear between the nonrelativistic fields ψ− and ψþ—see e.g., Eq. (9).
These will be used to derive the NR operators generated by specific DM models involving tree-level exchange of a scalar or vector
mediator in Table II.

Lagrangian term Coupling type (Effective) Current → NR Limit

gSϕψ̄ψ Scalar JS ¼ ψ̄ψ → 1

gPϕψ̄ iγ5ψ Pseudoscalar JP ¼ ψ̄ iγ5ψ → − iq
mψ

· Sψ

gVVμψ̄γ
μψ Vector JμV ¼ ψ̄γμψ → ð1; K

2mψ
− iq

mψ
× Sψ Þ

gAVμψ̄γ
μγ5ψ Axial vector JμA ¼ ψ̄γμγ5ψ → ð K

mψ
· Sψ ; 2Sψ Þ

gedm
4mψ

Vμνψ̄σ
μνiγ5ψ Electric dipole Jμedm ¼ 1

2mψ
∂νðψ̄σμνiγ5ψÞ → ð− iq

mψ
· Sψ ; iωmψ

Sψ þ iq
mψ

× ð K
2mψ

× Sψ ÞÞ
gmdm
4mψ

Vμνψ̄σ
μνψ Magnetic dipole Jμmdm ¼ 1

2mψ
∂νðψ̄σμνψÞ → ð iq

mψ
· ð K

2mψ
× Sψ Þ − q2

4m2
ψ
;− iq

mψ
× Sψ Þ

gana
4m2

ψ
ð∂νVμνÞðψ̄γμγ5ψÞ Anapole Jμana ¼ − 1

4m2
ψ
ðgμν∂2 − ∂μ∂νÞðψ̄γνγ5ψÞ → − q2

4m2
ψ
JμA þ ð q

mψ
· Sψ Þ qμ

2mψ

gV2
4m2

ψ
ð∂νVμνÞðψ̄γμψÞ Vector (Oðq2Þ) JμV2 ¼ − 1

4m2
ψ
∂2ðψ̄γμψÞ → − q2

4m2
ψ
JμV

5Other operators, such as those with derivatives acting on ψ
and those involving the dual field strength Ṽμν, are not indepen-
dent—see e.g., Ref. [68].
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JμV2. It is useful to note that all the (effective) currents that
couple to a spin-1 mediator, except JμA, are conserved;
qμJ

μ
X ¼ 0 (X ¼ V; edm;mdm; ana; V2).
In the NR limit, we can substitute Eq. (8) for the

relativistic fermion field ψ into the expressions for the
(effective) currents in Table I, and expand in powers of k

mψ

and ε
mψ
. For example, for JμV ¼ ðJ0V; JVÞ, we find, at leading

order,

J0V ¼ ψ̄γ0ψ → ψ−ψþ;

JV ¼ ψ̄γψ → ψ−
�

K
2mψ

−
iq
mψ

× Sψ

�
ψþ; ð9Þ

where Sψ ¼ σ
2
is the spin operator, and

K ≡ k0 þ k; q≡ k0 − k; ð10Þ

with k0 defined as acting on the ψ− field on the left, and

k0 ¼ i∇⃖ − A giving the kinematical momentum of the final
state ψ . We can carry out the same exercise for the other
(effective) currents. The results, up to the first nonvanishing
order, are listed after the arrows in the last column of Table I,
with ψ− on the left and ψþ on the right implicit. We see that
all currents reduce to operators involving Sψ , K, and iq; in
the case of the electric dipole coupling, ω≡ ε0 − ε also
appears, with ε0 defined as acting on ψ− on the left.
With Table I, it is straightforward to derive the NR

effective operators generated by tree-level exchange of a
spin-0 or spin-1 mediator between a DM current and a SM
current. Concretely, let us consider a set of benchmark
models of spin-1

2
DM [61], listed in Table II. In each model,

TABLE II. Benchmark models of spin-1
2
DM χ coupling to SM fermions ψ ¼ p, n, e. For each model, the leading order nonvanishing

coefficients cðψÞi for the NR EFT operators OðψÞ
i (defined in Table III) are listed in the second to last column. geffψ are the screened

couplings defined in Eq. (14), and μ̃ψ ¼ 1þ δμ̃ψ is half the Landé g-factor of ψ (μ̃p ≃ 2.8, μ̃n ≃ −1.9, μ̃e ≃ 1). The last column lists the
lattice degrees of freedom which enter the scattering potential, Eq. (27). All models can excite phonons, and models with S or L response
generated by DM-electron coupling can also excite magnons.

Model UV Lagrangian NR EFT Responses

Standard SI ϕðgχJS;χ þ gψJS;ψ Þ or cðψÞ1 ¼ gχgeffψ

q2þm2
ϕ;V

N

VμðgχJμV;χ − gψJ
μ
V;ψ Þ

Standard SDa VμðgχJμA;χ þ gψJ
μ
A;ψ Þ cðψÞ4 ¼ 4gχgψ

q2þm2
V

S

Other Scalar Mediators P × S ϕðgχJP;χ þ gψJS;ψ Þ cðψÞ11 ¼ mψ

mχ

gχgeffψ

q2þm2
ϕ

N

S × P ϕðgχJS;χ þ gψJP;ψ Þ cðψÞ10 ¼ − gχgψ
q2þm2

ϕ

S

P × P ϕðgχJP;χ þ gψJP;ψ Þ cðψÞ6 ¼ mψ

mχ

gχgψ
q2þm2

ϕ

S

Multipole DM models Electric dipole VμðgχJμedm;χ þ gψ ðJμV;ψ þ δμ̃ψJ
μ
mdm;ψ ÞÞ cðψÞ11 ¼ − mψ

mχ

gχgeffψ

q2þm2
V

N

Magnetic dipole VμðgχJμmdm;χ þ gψ ðJμV;ψ þ δμ̃ψJ
μ
mdm;ψ ÞÞ cðψÞ1 ¼ q2

4m2
χ

gχgeffψ

q2þm2
V

N, S, L

cðψÞ4 ¼ μ̃ψ
q2

mχmψ

gχgψ
q2þm2

V

cðψÞ5a ¼ mψ

mχ

gχgeffψ

q2þm2
V

cðψÞ5b ¼ mψ

mχ

gχgψ
q2þm2

V

cðψÞ6 ¼ −μ̃ψ
mψ

mχ

gχgψ
q2þm2

V

Anapole VμðgχJμana;χ þ gψ ðJμV;ψ þ δμ̃ψJ
μ
mdm;ψ ÞÞ cðψÞ8a ¼ q2

2m2
χ

gχgeffψ

q2þm2
V

N, S, L

cðψÞ8b ¼ q2

2m2
χ

gχgψ
q2þm2

V

cðψÞ9 ¼ −μ̃ψ q2

2m2
χ

gχgψ
q2þm2

V

ðL · SÞ-interacting VμðgχJμV;χ þ gψ ðJμmdm;ψ þ κJμV2;ψ ÞÞ cðψÞ1 ¼ ðκÞ q2

4m2
ψ

gχgψ
q2þm2

V

N; S; L ⊗ S

cðψÞ3a ¼ cðψÞ3b ¼ gχgψ
q2þm2

V

cðψÞ4 ¼ q2

mχmψ

gχgψ
q2þm2

V

cðψÞ6 ¼ − mψ

mχ

gχgψ
q2þm2

V

aHeavy mediator only.
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the DM χ and a SM fermion ψ each couple to the mediator
via a linear combination of the currents in the last column
of Table I, whose NR limits can be directly read off.
Integrating out the mediator, we then arrive at a NR EFT for
DM scattering of the form

Leff ¼ χ−
�
ε −

p2

2mχ
þOðm−2

χ Þ
�
χþ

þ ψ−
�
ε −

k2

2mψ
þOðm−2

ψ Þ
�
ψþ

þ
X
i

X
ψ¼p;n;e

cðψÞi OðψÞ
i χ−χþψ−ψþ: ð11Þ

For convenience, we reserve k and k0 for the momentum
operators acting on ψ�, and write the same operators as p
and p0 when they act on χ�. We normalize the operators by

powers of mψ so that OðψÞ
i are dimensionless and their

coefficients cðψÞi have dimension −2. For each UV model,

the coefficients cðψÞi of the NR operators generated at
leading order are given in Table II (to be discussed in
detail shortly). These coefficients contain all the informa-
tion for constructing the lattice potential Ṽlj for a given DM
model, and will be exploited below for computing the DM
detection rate.
For kinematic conventions, we take

q≡ k0 − k ¼ p − p0 ð12Þ

to denote the momentum transfer from the DM to the target,
which agrees with Refs. [59,63] but has an opposite sign
compared to the definitions in Refs. [58,60–62]. There are
two other independent combinations of momenta,

vχ ≡ P
2mχ

; vψ ≡ K
2mψ

; ð13Þ

where P ¼ p0 þ p, K ¼ k0 þ k. Note that vχ should not be
confused with the incoming DM’s velocity, which we
denote by v ¼ p

mχ
; the two are related by vχ ¼ v − q

2mχ
.

The list of NR operatorsOðψÞ
i up to linear order in vχ , vψ

is presented in Table III (grouped into four categories to be
explained below). These encompass all the operators
generated at leading order in the benchmark models in
Table II. Our operator basis here is an extension of the
familiar one from previous works on the EFT for direct
detection via nuclear recoils [58–63]. In the latter case,
due to Galilean invariance, NR effective operators involve
only the linear combination v⊥ ≡ vχ − vψ . In contrast, for
collective excitations considered in this work, in-medium
effects, which break Galilean invariance, can be impor-
tant, so vχ and vψ must be treated separately. With this
difference in mind, we can immediately recover the

operator basis in Table III by keeping all the v⊥-
independent operators in the nuclear recoils case, and
splitting each v⊥-dependent operator into two, one involv-
ing vχ and the other vψ. We adopt the operator numbering

convention of Ref. [63]. For example, OðψÞ
1 ¼ 1 stays as

OðψÞ
1 in our basis, whileOðψÞ

7 ¼ Sψ · v⊥ ¼ Sψ · vχ − Sψ · vψ
is split into two independent operators OðψÞ

7a ¼ Sψ · vχ
and OðψÞ

7b ¼ Sψ · vψ .
Among the benchmark models in Table II, the standard

SI and SD interactions correspond to O1 and O4,

TABLE III. NR effective operators relevant for DM scattering
defined in Eq. (11), organized into four categories, and the crystal
responses generated. Here χ is the DM and ψ is a SM particle that
can be the proton, neutron or electron. q is the momentum transfer
from the DM to the SM target, and vχ , vψ are defined in Eq. (13).
Previous calculations [33,34,53,54,57] focused on phonon and
magnon excitations via vψ -independent couplings to charge and
spin, corresponding to the first two categories listed here. In this
work we extend the calculations to all operators.

Interaction type NR operators
Crystal
response

Coupling to charge,
vψ -independent

OðψÞ
1 ¼ 1 N

OðψÞ
5a ¼ Sχ · ð iqmψ

× vχÞ
OðψÞ

8a ¼ Sχ · vχ
OðψÞ

11 ¼ Sχ ·
iq
mψ

Coupling to spin,
vψ -independent

OðψÞ
3a ¼ Sψ · ð iq

mψ
× vχÞ S

OðψÞ
4 ¼ Sχ · Sψ

OðψÞ
6 ¼ ðSχ · q

mψ
ÞðSψ · q

mψ
Þ

OðψÞ
7a ¼ Sψ · vχ

OðψÞ
9 ¼ Sχ · ðSψ × iq

mψ
Þ

OðψÞ
10 ¼ Sψ · iq

mψ

OðψÞ
12a ¼ Sχ · ðSψ × vχÞ

OðψÞ
13a ¼ ðSχ · vχÞðSψ · iq

mψ
Þ

OðψÞ
14a ¼ ðSψ · vχÞðSχ · iq

mψ
Þ

OðψÞ
15a ¼ ðSχ · ð iqmψ

× vχÞÞðSψ · iq
mψ
Þ

Coupling to charge,
vψ -dependent

OðψÞ
5b ¼ Sχ · ð iq

mψ
× vψ Þ L

OðψÞ
8b ¼ Sχ · vψ

Coupling to spin,
vψ -dependent

OðψÞ
3b ¼ Sψ · ð iqmψ

× vψ Þ L ⊗ S

OðψÞ
7b ¼ Sψ · vψ

OðψÞ
12b ¼ Sχ · ðSψ × vψ Þ

OðψÞ
13b ¼ ðSχ · vψ ÞðSψ · iq

mψ
Þ

OðψÞ
14b ¼ ðSψ · vψ ÞðSχ · iq

mψ
Þ

OðψÞ
15b ¼ ðSχ · ð iqmψ

× vψ ÞÞðSψ · iq
mψ
Þ
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respectively.6 Other types of scalar mediators generate O6,
O10, and O11. A well-motivated class of (hidden sector)
models contain DM particles coupling to a vector mediator
via a multipole moment, which in turn kinetically mixes
with the photon (see e.g., Refs. [61,67,69–74]). We con-
sider the electric dipole, magnetic dipole and anapole DM
models, which generate O11, O1;4;5a;5b;6, and O8a;8b;9,
respectively. Finally, Table II includes a model where a
vector mediator couples to the SM fermion’s magnetic
dipole moment Jμmdm, and as a result generatesO3b. Among
other things, this leads to a coupling to the SM fermion’s
spin-orbit coupling, which can be the leading interaction if
one simultaneously introduces a coupling to the “Oðq2Þ
vector current” JμV2 (see Table I), with a coefficient (relative
to Jμmdm) tuned to κ ¼ −1 to cancel the standard SI
interaction O1.
We also note that, in the case of a vector mediator

coupling to the electron’s vector current JμV;e, in-medium
screening effects modify the effective couplings to the
proton and electron [33,39,42,43,75]. For NR scattering,
screening is negligible for transverse photon exchange, but
can be significant for longitudinal photon exchange, which
generates the first category of operators (O1;5a;8a;11) in
Table III. As shown in Refs. [33,75], this amounts to
replacing

gp → geffp ¼ gp þ
�
1 −

q2

q · ε · q

�
ge;

ge → geffe ¼ q2

q · ε · q
ge; ð14Þ

where ε is the dielectric tensor, and gp;e are the tree-level
(unscreened) couplings. The same is true for a scalar
mediator coupling to the electron’s scalar current, JS;e
[76]. For single phonon and magnon excitations below the
electronic band gap that we focus on in this work, one can
use the high-frequency dielectric ε∞, which captures the
screening due to fast electron responses [33,54,77].
We will study the reach phonon and magnon detectors

have to these benchmark models in Sec. III, after devel-
oping the formalism of rate calculations within the EFT in
the rest of this section.

B. Matching effective operators onto lattice
degrees of freedom

We now match the effective operators OðψÞ
i onto lattice

degrees of freedom that appear in the DM-ion scattering
potentials Ṽlj. In Table III, we have organized the operators

into four categories, according to whether OðψÞ
i ∝ 1ψ

(“coupling to charge”) or OðψÞ
i ∝ Sψ (“coupling to spin”),

and whether the operator involves vψ . Since our focus is
light DM that evades conventional searches via nuclear
recoils and electronic excitations, we will work in the long-
wavelength limit, where the momentum transfer is small
compared to the inverse ionic radius (corresponding to
mχ ≲ 10 MeV), so at leading order, the only relevant
degrees of freedom are those that characterize the ion as
a whole. Intuitively, we expect couplings to charge and spin
of a constituent particle ψ ¼ p, n, e to match onto
couplings to the total number hNψ i and spin hSψi of that
particle, respectively. These are pointlike degrees of free-
dom that do not involve the internal motions of the ion
constituents; they are the only degrees of freedom to which
DM couples if the operator is velocity independent. On the
other hand, vψ -dependent operators are expected to couple
DM to the motion of ψ particles inside an ion, manifest as
the total orbital angular momenta hLψ i, and spin-orbit
couplings hLψ ⊗ Sψ i, which are “composite” degrees of
freedom. In the rest of this subsection, we will see
concretely how these intuitive expectations are borne
out. The final result of this calculation is the lattice potential

in terms of the NR EFT operator coefficients cðψÞi , given
below in Eq. (27).
Since the calculation proceeds in much the same way for

all operators in the same category, to avoid tedious
repetition we pick one operator from each category to
explain the procedure; OðψÞ

1 , OðψÞ
4 , OðψÞ

8b , and OðψÞ
3b , with ψ

taken to be one of p, n, e. To obtain the DM-ion scattering
potentials Ṽlj, we need to compute the matrix elements of
these operators between the incoming and outgoing states
of the DM-ion system. Since the initial and final DM states
are plane waves, the DM part of the matrix element simply
yields a phase factor, so

Ṽljð−q; vÞ ⊃
X
α

�
cðψÞ1 heiq·xαilj þ cðψÞ4 Sχ · heiq·xαSψ ;αilj

þ cðψÞ8b Sχ · heiq·xαvψ ;αilj
þ cðψÞ3b

iq
mψ

· heiq·xαvψ ;α × Sψ ;αilj
�
; ð15Þ

where α runs over all the ψ fermions associated with the ion
labeled by l, j, and h·i represents the ionic expectation value
(assuming the ionic state is unchanged for the low-energy
depositions of interest). Computing these expectation
values in full generality is a tedious task that involves
numerical integration over nuclear and electronic wave
functions. However, the calculation is dramatically sim-
plified in the long wavelength limit of interest here, where
we can expand eiq·xα ¼ 1þ iq · xα þ � � � and keep just the
leading nonvanishing terms. In the following two

6Note that the standard SD interaction cannot be realized with
a light mediator. In that case the leading interaction is induced by
longitudinal vector exchange, and is proportional to JP;χJP;ψ
rather than JμA;χJA;ψ μ.
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paragraphs, we discuss in turn the vψ -independent oper-

ators OðψÞ
1 , OðψÞ

4 [first line of Eq. (15)] and the vψ -

dependent operators OðψÞ
8b , OðψÞ

3b [second line of Eq. (15)].
a) vψ -independent operators: O

ðψÞ
1 , OðψÞ

4 . For these, it is
sufficient to set eiq·xα → 1,

cðψÞ1

X
α

heiq·xαilj ≃ cðψÞ1

X
α

h1ilj ¼ cðψÞ1 hNψilj; ð16Þ

cðψÞ4 Sχ ·
X
α

heiq·xαSψ ;αilj ≃ cðψÞ4 Sχ ·
X
α

hSψ ;αilj

¼ cðψÞ4 Sχ · hSψilj: ð17Þ

So we obtain, respectively, the expectation values of the
number and total spin of ψ particles for ion l, j, as one
would expect for the lowest-order “coupling to charge”

(OðψÞ
1 ) and “coupling to spin” (OðψÞ

4 ) operators. Note that
hSψilj should not be confused with the total nuclear or
ionic spin, which may also contain orbital angular-
momentum components. We will see in the next sub-
section that the total ionic spin (from electrons) is relevant
for magnon excitations, and we will need to work out its
decomposition into spin and orbital components [see
Eq. (32) below]; the total nuclear spin, on the other hand,
does not enter the calculation of phonon or magnon
excitations.
b) vψ -dependent operators: OðψÞ

8b , O
ðψÞ
3b . The operator

vψ ;α ¼ ðkþk0Þα
2mψ

¼ − i
2mψ

∇↔α is in fact the probability current,

and its treatment is analogous to the nuclear recoil
calculation [58]. Assuming the ionic states are energy
eigenstates implies that the probability density is constant
in time, and therefore by the continuity equation,
∂ihviψ ;αilj ¼ 0. This means that viψ ;α can be written as a
total derivative, viψ ;α ¼ ∂kðxiαvkψ ;αÞ, and therefore has van-
ishing expectation value. The leading contribution then
comes from expanding the eiq·xα to the next order in q,

X
α

heiq·xαvψ ;αilj ≃ i
X
α

hðq · xαÞvψ ;αilj; ð18Þ

X
α

heiq·xαvψ ;α × Sψ ;αilj ≃ i
X
α

hðq · xαÞvψ ;α × Sψ ;αilj: ð19Þ

To go further, we note that hxiαvkψ ;αilj is antisymmetric in
i ↔ k since the symmetric part can be written as a total
derivative, xiαvkψ ;α þ xkαviψ ;α ¼ ∂i0 ðxiαxkαvi0ψ ;αÞ, and therefore
has vanishing expectation value. Expanding the antisym-
metric part gives

hxiαvkψ ;αilj ¼
1

2
hxiαvkψ ;α − xkαviψ ;αilj

¼ −
i

4mψ
ðhxiα∇⃗k

αilj − hxiα∇⃖k
αilj

− hxkα∇⃗i
αilj þ hxkα∇⃖i

αiljÞ; ð20Þ

which after integration by parts can be simplified to

hxiαvkψ ;αilj ¼ −
i

2mψ
hxi∇⃗k

α − xk∇⃗i
αilj ¼

1

2mψ
ϵikk0 hLk0

α ilj; ð21Þ

where Lα is the angular momentum operator. We therefore have

X
α

heiq·xαvψ ;αilj ≃ −
iq
2mψ

×
X
α

hLψ ;αilj ¼ −
iq
2mψ

× hLψ ilj; ð22Þ

X
α

heiq·xαvψ ;α × Sψ ;αilj ≃ −
i

2mψ

X
α

hðq × Lψ ;αÞ × Sψ ;αilj

¼ −
i

2mψ

�X
α

hLψ ;α ⊗ Sψ ;αilj · q −
X
α

hLψ ;α · Sψ ;αiljq
�

¼ −
i

2mψ
ðhLψ ⊗ Sψ ilj · q − hLψ · Sψ iljqÞ

¼ −
i

2mψ
½hLψ ⊗ Sψilj · q − trðhLψ ⊗ Sψ iljÞq�; ð23Þ

where
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ðhLψ ⊗ Sψ iljÞik ¼ hLi
ψSkψilj ≡

X
α

hLi
ψ ;αSkψ ;αilj ð24Þ

are Cartesian components of the spin-orbit coupling tensor. So we finally obtain

cðψÞ8b Sχ ·
X
α

heiq·xαvψ ;αilj ¼ −cðψÞ8b Sχ ·

�
iq
2mψ

× hLψilj
�
; ð25Þ

cðψÞ3b
iq
mψ

·
X
α

heiq·xαvψ ;α × Sψ ;αilj ¼ −cðψÞ3b
1

2m2
ψ
ðq2δik − qiqkÞðhLψ ⊗ SψiljÞik: ð26Þ

As alluded to previously, the vψ -dependent operators O
ðψÞ
8b and OðψÞ

3b induce DM couplings to the ψ particles’ total orbital
angular momentum and spin-orbit coupling.
We can carry out the same calculation for the other operators in Table III. The result is

Ṽljð−q;vÞ¼
X

ψ¼p;n;e

cðψÞ1 hNψilj−cðψÞ3a
iq
mψ

vχ · ðq̂× hSψ iljÞ−cðψÞ3b
q2

2m2
ψ
ðδik− q̂iq̂kÞðhLψ ⊗Sψ iljÞikþcðψÞ4 Sχ · hSψ ilj

þcðψÞ5a
iq
mψ

· ðvχ ×SχÞhNψilj−cðψÞ5b
q2

2m2
ψ
Sχ · ð1− q̂ q̂Þ · hLψiljþcðψÞ6

q2

m2
ψ
ðq̂ ·SχÞðq̂ · hSψiljÞ

þcðψÞ7a vχ · hSψilj−cðψÞ7b ϵikk
0 iqk

0

2mχ
ðhLψ ⊗ SψiljÞikþcðψÞ8a ðvχ ·SχÞhNψ ilj−cðψÞ8b

iq
2mψ

Sχ · ðq̂× hLψiljÞ

þcðψÞ9

iq
mψ

Sχ · ðhSψilj× q̂ÞþcðψÞ10

iq
mψ

· hSψ iljþcðψÞ11

iq
mψ

·SχhNψiljþcðψÞ12aðvχ ×SχÞ · hSψ ilj

−cðψÞ12b
iq
2mψ

ððq̂ ·SχÞδik− q̂kSiχÞðhLψ ⊗ SψiljÞikþcðψÞ13a
iq
mψ

ðvχ ·SχÞðq̂ · hSψiljÞ−cðψÞ13b
q2

2m2
ψ
ðq̂×SχÞ · hLψ ⊗ Sψilj · q̂

þcðψÞ14a
iq
mψ

ðq̂ ·SχÞðvχ · hSψiljÞþcðψÞ14bϵ
ikk0 q2

2m2
ψ
q̂k

0 ðq̂ ·SχÞðhLψ ⊗ SψiljÞik

−cðψÞ15a
q2

m2
ψ
ðq̂ · ðvχ ×SχÞÞðq̂ · hSψiljÞ−cðψÞ15b

iq3

2m3
ψ
Sχ · ð1− q̂ q̂Þ · hLψ ⊗Sψilj · q̂; ð27Þ

where vχ ¼ v − q
2mχ

(with the incoming DM’s velocity v and
momentum transfer q to be integrated over when calculat-
ing detection rates), and summation over repeated Cartesian
indices is implicit. Here and in what follows, we denote
q≡ jqj (so that q2 ≡ q2 ≠ qμqμ), and q̂≡ q=q.
To summarize, in the long-wavelength limit, the DM-ion

scattering potential Ṽlj involves a set of quantities that
characterize properties of the ion; the total numbers hNψi,
spins hSψi, and orbital angular momenta hLψ i of the
constituent particles ψ ¼ p, n, e, as well as the spin-orbit
coupling tensors hLψ ⊗ Sψ i. We will refer to these as
different types of crystal responses, as DM couplings to
these quantities drive collective excitations in the crystal;
they play a similar role to the nuclear responses in nuclear
recoil calculations (which similarly reduce to the total
nucleon numbers, spins, etc., in the long-wavelength limit
[58,60–62]). We emphasize, however, that in contrast to
standard nuclear recoil where nuclei are treated as free—a

valid approximation at energy depositions ≳500 meV
[33]—collective excitations arise in a lower-energy regime
where interionic interactions become important; the EFT
therefore involves different degrees of freedom and
the calculation proceeds differently.7 We will sometimes
abbreviate the crystal responses introduced above asN, S,L,
L ⊗ S, or simplyN,S,L,L ⊗ S, when there is no confusion.
The crystal responses generated by each NR operator and in

7Technically, Refs. [58,60] defined a few “nuclear response
functions,” Wττ0

M , Wττ0
Σ0 etc., which the nuclear recoil rate is

proportional to, from the unpolarized average of nuclear matrix
element squared. No such averaging is involved in the calculation
of collective excitations, and the rate formulas derived below do
not depend on the same functions Wττ0

M , Wττ0
Σ0 etc. even in the

absence of coupling to electrons. Here we are simply borrowing
the terminology “response” in the sense that it refers to a type of
coupling, just as M, Σ0, etc., usually called “nuclear responses,”
are different types of couplings to the nucleus.
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each benchmark DM model have been summarized in
Tables III and II, respectively.
We reiterate that, among the four types of crystal

responses, hNψ i and hSψi are induced by DM couplings
to pointlike ionic degrees of freedom (which do not involve
internal motions of nucleons or electrons inside an ion),
while hLψi and hLψ ⊗ Sψi are induced by DM couplings to
composite degrees of freedom. We therefore refer to them
as pointlike and composite responses respectively. vψ -
independent operators (the first two categories in
Table III) generate pointlike responses, while vψ -dependent
operators (the last two categories in Table III) generate
composite responses. It is worth noting that operators
related by vχ ↔ vψ (e.g., O3a and O3b, O5a, and O5b)
are usually generated with similar coefficients. For each
such pair of operators, the ratio of composite versus
pointlike responses [i.e., coefficients of hLψ i versus
hNψi, or hLψ ⊗ Sψi versus hSψi in Eq. (27)] is, parametri-
cally, q

mψv
. This is generic, as pointlike and composite

responses result from the leading two terms in the expan-
sion eiq·xα ¼ 1þ iq · xα þ � � �, and qx ∼ q

mψv
L, with

L ∼Oð1Þ. For nuclear recoils (where the two operators
have exactly equal and opposite coefficients), q

mψv
∼ μχN

mp;n
with

μχN the reduced mass of the DM and the target nucleus, so
composite responses can be significant, as emphasized in
Refs. [60,61]. In contrast, in the present case of collective
excitations induced by light DM, we have q

mψv
≲ mχ

mψ
. For

couplings to nucleons, ψ ¼ p, n, this ratio is always smaller
than one for sub-GeV DM, so for a given type of excitation,
pointlike responses tend to dominate; for couplings to
electrons, ψ ¼ e, both pointlike and composite responses,
if present, can be important. From the bottom-up point of
view, it is useful to keep in mind this interplay between
pointlike and composite responses for the purpose of
organizing the effects of various operators, although from
the top-down point of view, it seems difficult to construct
well-motivated simple models that dominantly generate a
composite response (L or L ⊗ S) without being accompa-
nied by a pointlike response (N or S) of at least comparable
size, similar to the case of nuclear recoil as highlighted in
Ref. [61]. We will elaborate on this in Sec. III.

C. Quantization of lattice potential for
phonons and magnons

Now that we have obtained Ṽlj in terms of the lattice
degrees of freedom, Eq. (27), it remains to compute the
matrix elements

hν; kjṼð−q; vÞj0i ¼
X
l;j

hν; kjeiq·xlj Ṽljð−q; vÞj0i; ð28Þ

by quantizing the lattice potential in terms of phonon
or magnon modes. The simplest cases, where phonon

excitations in a crystal proceed through hNψ i (via the SI
operator O1 ¼ 1) and magnon excitations proceed through
hSei were considered previously in Refs. [33,34,53,54] and
Ref. [57], respectively. Here we extend those calculations to
include all four crystal responses (hNψ i, hSψi, hLψ i,
hLψ ⊗ Sψi) identified in the previous subsection, which
can be generated by the full set of effective operators.
Phonons arise from the ions’ displacements with respect

to their equilibrium positions x0lj,

ulj ¼ xlj − x0lj ¼
X3n
ν¼1

X
k∈1BZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nmjων;k

p
× ðâν;kϵν;k;jeik·x

0
lj þ â†ν;kϵ

�
ν;k;je

−ik·x0ljÞ: ð29Þ

Recall that N (without subscript, not to be confused with
hNψi) is the total number of primitive cells in the crystal
lattice, to be sent to infinity at the end of the calculation.
The phonon creation and annihilation operators satisfy the
canonical commutation relations, ½âν;k; â†ν0;k0 � ¼ δνν0δk;k0

with all others vanishing. The eigenenergies ων;k and
eigenvectors ϵν;k;j (normalized such that

P
j jϵν;k;jj2 ¼ 1)

are solved for by diagonalizing the quadratic crystal
potential. The quadratic crystal potential, and equilibrium
positions, are computed with DFT [78] (see Refs. [34,54]
for details) and the diagonalization is performed with
phonopy [65]. At leading order, dependence of the matrix
element in Eq. (28) on ulj comes only from the phase factor
eiq·xlj ; we assume the DM-ion scattering potentials
Ṽljð−q; vÞ are not significantly affected by ionic displace-
ments and can thus be pulled out of the matrix element.8

Then, evaluating the matrix element of the phase factor,
hν; kjeiq·xlj j0i, follows the standard procedure of expanding
xlj as in Eq. (29) and applying the Baker-Campbell-
Hausdorff formula to normal order the phonon creation
and annihilation operators [33]. As a result,

hν; kjṼð−q; vÞj0i ¼ 1ffiffiffiffi
N

p
X
ν;k;j

�X
l

Ṽljð−q; vÞeiðq−kÞ·x
0
lj

�

× e−WjðqÞ
iðq · ϵ�ν;k;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjων;k

p ; ð30Þ

where WjðqÞ ¼ 1
4Nmj

P
ν;k

jq·ϵν;k;jj2
ων;k

is the Debye-Waller fac-

tor. Crucially, the 1ffiffiffi
N

p factor [which originates from Eq. (29)

and is to be squared when computing the rate], together

8If Ṽlj receives contributions from DM-electron couplings, the
scattering potential can depend on ulj directly, as ionic displace-
ments distort the electron wave functions. This correction can be
taken into account via the Born effective charges in the case of SI
interactions in the long-wavelength limit, as discussed in
Ref. [33].
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with the prefactor 1
V in the rate formula Eq. (5), indicates

that the rate Γ would scale as 1
N2 → 0 unless the l sum in

Eq. (30) scales with N. This in turn requires the N terms in
the l sum to add up coherently, which is possible only when
i) the phonon momentum k matches the momentum
transfer q up to reciprocal lattice vectors, which is the
statement of lattice momentum conservation, and ii)P

l Ṽlj ∼ N, i.e., the DM couples coherently across the
crystal lattice. The second requirement is trivially satisfied
for DM couplings to the scalar quantities hNψ i,
trðhLψ ⊗ SψiÞ. For couplings to the vector and tensor
quantities hSψi, hLψi, hLψ ⊗ Sψi (modulo the trace
part), on the other hand, coherence is possible only when
they are ordered (or polarized), so that they point in the
same directions in all primitive cells; in the case of hSψi,
this can be achieved by spontaneous magnetic ordering for
ψ ¼ e, or by applying an external magnetic field for
ψ ¼ p, n.
Up to possible small corrections due to the presence of

different isotopes, we can set Ṽlj ¼ Ṽj, which is indepen-
dent of l. We then obtain the single phonon excitation rate,

ΓðvÞ¼ 1

Ω

Z
d3q
ð2πÞ3

X3n
ν¼1

2πδðων;k−ωqÞ

×
1

2ων;k

����X
j

e−WjðqÞeiG·x
0
j
q ·ϵ�ν;k;jffiffiffiffiffiffimj
p Ṽjð−q;vÞ

����2; ð31Þ

where Ω is the volume of the primitive cell, x0j is the
equilibrium position of the jth ion with respect to the cell
center, and it is implicit that q ¼ kþ G where G is a
reciprocal lattice vector. To map q to a vector k within the
1BZ, we first write q ¼P3

i¼1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight
candidate G vectors whose components in reduced coor-
dinates take the floor and ceiling integer values of ai, and
finally choose the correct G vector to be the one that
minimizes jq − Gj.
The DM-ion scattering potential Ṽj that enters Eq. (31) is

simply given by Eq. (27) above, with the l subscripts
dropped, assuming hSψi, hLψ i, hLψ ⊗ Sψi are ordered, as
explained above; in the absence of ordering, the corre-
sponding terms should be dropped [with hLψ ⊗ Sψ i set to
its scalar component 1

3
trðhLψ ⊗ SψiÞ1 ¼ 1

3
hLψ · Sψ i1]. In

the special case of SI interactions, one has only cðψÞ1 , so

Ṽj ¼
P

ψ c
ðψÞ
1 hNψij, reproducing the results in Ref. [33],

whereas in the full EFT, all four crystal responses can
contribute to phonon excitations.
Next we move on to magnons. They are collective spin

excitations in a magnetically-ordered phase, and can thus
respond to DM scattering only if the potentials Ṽlj depend
on the magnetic ions’ effective spins Slj. Generally, Slj can
come from the electrons’ spin and orbital angular momenta,
hSeilj and hLeilj, respectively. When projected onto the
Hilbert space spanned by Slj, they become

hSeilj → λS;jSlj; hLeilj → λL;jSlj; ð32Þ

where λS;j, λL;j are numbers (which we will say more about
shortly). Therefore, from Eq. (27) we obtain the matrix
element for exciting a magnon mode jν; ki,

hν; kjṼð−q; vÞj0i ¼
X
l;j

eiq·xljf jð−q; vÞ · hν; kjSljj0i; ð33Þ

where

f jð−q; vÞ ¼ λS;j

�
cðeÞ3a

iq
me

ðq̂ × vχÞ þ cðeÞ4 Sχ þ cðeÞ6

q2

m2
e
ðq̂ · SχÞq̂þ cðeÞ7a vχ þ cðeÞ9

iq
me

ðq̂ × SχÞ þ cðeÞ10

iq
me

þ cðeÞ12aðvχ × SχÞ

þ cðeÞ13a
iq
me

ðvχ · SχÞ þ cðeÞ14a
iq
me

ðq̂ · SχÞvχ − cðeÞ15a
q2

m2
e
ðq̂ · ðvχ × SχÞÞq̂

�

þ λL;j
2

�
−cðeÞ5b

q2

m2
e
ð1 − q̂ q̂Þ · Sχ þ cðeÞ8b

iq
me

ðq̂ × SχÞ
�
: ð34Þ

As in Eq. (27), we have defined q≡ jqj, q̂≡ q=q, and
vχ ¼ v − q

2mχ
.

Now we need to compute hν; kjSljj0i. The
calculation follows Ref. [57], which we encourage the
reader to consult for more details. The magnetic order is
captured by a set of rotation matrices Rj that take each Slj
to a local coordinate system where it points in the þz
direction,

Slj¼Rj ·S0lj; hS0lji¼ ðhS0xlji;hS0ylji;hS0zljiÞ¼ ð0;0;SjÞ:
ð35Þ

We restrict ourselves to commensurate orders, in which case
the rotation matricesRj do not depend on the primitive cell
label l. We then apply the Holstein-Primakoff transforma-
tion and expand Slj around the ground state in terms of
bosonic creation and annihilation operators,
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S0xlj ¼ ð2Sj − â†ljâljÞ1=2âlj;
S0ylj ¼ â†ljð2Sj − â†ljâljÞ1=2; S0zlj ¼ Sj − â†ljâlj: ð36Þ

Magnon eigenstates are obtained by diagonalizing the spin
Hamiltonian, which is specific to the target material; in the
simplest cases, the target can be modeled by Heisenberg
exchange interactions Slj · Sl0j0 between neighboring sites,
while more complicated model descriptions are needed in
other cases. For a general spin Hamiltonian, the diagonal-
ization can be achieved by a Bogoliubov transformation in
momentum space,

âlj ¼
1ffiffiffiffi
N

p
X
k∈1BZ

âj;keik·xlj ;

� âj;k

â†j;−k

�
¼
� Ujν;k V jν;k

V�
jν;−k U�

jν;−k

�� b̂j;k

b̂†j;−k

�
; ð37Þ

where U, V are n × n matrices (with n the number of
magnetic ions per cell), and b̂†j;k, b̂j;k are the creation and
annihilation operators for the magnon eigenstates satisfying
canonical commutation relations, ½b̂ν;k; b̂†ν0;k0 � ¼ δνν0δk;k0

with all others vanishing. An efficient algorithm for the
diagonalization can be found in Ref. [66] (see also
Refs. [57,79]). Now computing the magnon excitation
matrix element hν; kjSljj0i, and hence the DM scattering
rate, is reduced to standard algebra. We obtain [57,79]

ΓðvÞ¼ 1

Ω

Z
d3q
ð2πÞ3

Xn
ν¼1

2πδðων;k−ωqÞ

×
1

2

����X
j

eiG·x
0
j
ffiffiffiffiffi
Sj

p ðU�
jν;krjþV jν;−kr�jÞ · f jð−q;vÞ

����2;
ð38Þ

where rj ¼ ðRxx
j ; Ryx

j ; Rzx
j Þ þ iðRxy

j ; Ryy
j ; Rzy

j Þ. As in the
phonon case, it is implicit that kmatches q up to a reciprocal
lattice vector, q ¼ kþ G, due to lattice momentum
conservation.
A comment is in order about the target choice. In the case

where the total Slj involves only spin degrees of freedom
{as is the case for yttrium iron garnet (YIG) discussed in
Ref. [57]}, λS;j ¼ 1, λL;j ¼ 0, and only the first two lines of
Eq. (34) are relevant. Targets for which λL;j ≠ 0 are more
exotic. One class of materials with λL;j ≠ 0 is spin-orbit-
entangled Mott insulators [80–82], where the combined
effect of crystal fields and spin-orbit coupling results in
effective spins Sj ¼ 1

2
, and we can show that λS;j ¼ − 1

3
,

λL;j ¼ − 4
3
(see Appendix B for details, and Refs. [81–84]

for related discussion), so the magnetic ions’ effective spins
are in fact dominated by their orbital components.
Perovskite irridates such as Sr2IrO4 [80,83] and Kitaev

materials, Na2IrO3 and α-RuCl3 [82,84–86], are among the
materials with this feature that have been actively studied
recently by the condensed-matter physics community.
While perhaps futuristic as DM detectors, such materials
have the novel feature of being sensitive to DM couplings
with electrons’ orbital angular momenta.
As a final remark, we note from the derivation above that

when the same crystal response, hSei or hLei, excites both
phonons and magnons, the phonon excitation rate is para-

metrically suppressed by q2

mionω
∼ 10−2ð q

keVÞ2ð10 GeV
mion

Þð10 meV
ω Þ.

Thus, for example, for the second group of operators in
Table III with ψ ¼ e, which generates hSei response, single
magnon excitation is expected to achieve better sensitivity
than single phonon excitation for the same exposure and
detector efficiency. On the other hand, since phonons can
be excited also by other crystal responses, they have a
broader coverage of the DM theory space. We will
investigate the interplay between single phonon and mag-
non excitations in the context of our benchmark models in
the next section.

III. APPLICATION TO BENCHMARK MODELS

We now apply the general results of the previous section
to the set of benchmark models in Table II. The first step of
the calculation—matching the relativistic model onto the
NR EFT—was already done in Sec. II A. The results are the
operator coefficients cðψÞi listed in the second to last column
of Table II. We then need to substitute these operator
coefficients into the formulas derived in Secs. II B and II C
to compute direct detection rates ΓðvÞ—Eq. (31) together
with Eq. (27) for single phonon excitations, and Eq. (38)
together with Eq. (34) for single magnon excitations.
In order to present the results in a concise way, let us

introduce the following definitions. For single phonon
excitation, we define [cf. Eq. (31)]

FðψÞ
X;νðqÞ≡

X
j

e−WjðqÞeiG·x
0
j

q · ϵ�ν;k;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjων;k

p hXψij; ð39Þ

where X represents one of the crystal responses,

X ¼ N; S; L; L ⊗ S; note that FðψÞ
X;ν are vector (tensor)

quantities when X ¼ S, L (X ¼ L ⊗ S), and will be written

as FðψÞ
X;ν (F

ðψÞ
X;ν). These F

ðψÞ
X;ν play the role of form factors for

exciting a single phonon via a certain type of response. For
single magnon excitation, we define [cf. Eq. (38)]

EX;νðqÞ≡
X
j

eiG·x
0
j

ffiffiffiffiffi
Sj
2

r
ðU�

jν;krj þ V jν;−kr�jÞλX;j; ð40Þ

where X ¼ S, L. These are formally analogous to polari-
zation vectors of a vector field. In both Eqs. (39) and (40), k
is the phonon momentum inside the 1BZ that satisfies q ¼
kþ G for some reciprocal lattice vector G; as emphasized
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below Eq. (31), k is uniquely determined by mapping q into
the 1BZ through reciprocal lattice vectors. We further
define a set of quantities ΣνðqÞ, for both single phonon
and single magnon excitations, by [cf. Eq. (5)]

ΓðvÞ≡ 1

Ω

Z
d3q
ð2πÞ3

X
ν

2πδðων;k − ωqÞΣνðqÞ: ð41Þ

We will refer to ΣνðqÞ, which have mass dimension −4, as
“differential rates.” Practically, ΣνðqÞ are obtained simply

by taking Ṽlj in Eq. (27), substituting hXψ ilj by FðψÞ
X;ν (for

ψ ¼ p, n, e and X ¼ N; S; L; L ⊗ S) or EX;ν (for ψ ¼ e
only, and X ¼ S, L), squaring it and averaging over the
DM’s spin (which amounts to replacing SiχSkχ →

1
4
δik). As

we will see, written in terms of the dimensionless quantities

FðψÞ
X;ν and EX;ν defined above, ΣνðqÞ can be expressed in a

concise form for each benchmark model. This will be
convenient when we compare the rates between different
models, and between phonon and magnon excitations.
Our final results will be presented in terms of the rate per

unit target mass,

R ¼ 1

ρT

ρχ
mχ

Z
d3vfχðvÞΓðvÞ; ð42Þ

where ρT is the target’s mass density that we take from
Ref. [87], ρχ ¼ 0.4 GeV=cm3 is the local DMmass density,
and fχðvÞ is the DM’s velocity distribution, taken to be a
boosted and truncated Maxwell-Boltzmann distribution—
see Appendix C for technical details of evaluating the
velocity integrals. For the projected reach, we assume three
events per kilogram-year exposure, corresponding to
95% C.L. exclusion in a background-free counting experi-
ment, and assume a detector energy threshold of 1 meV.
While we will present full numerical results, the main
features can usually be understood by simple parametric
estimates. Generally, noting that the velocity integral over
the energy conserving delta function δðων;k − ωqÞ yields a
function that scales as q−1 (see Appendix C), we have from
Eqs. (41) and (42), parametrically,

R ∼
ρχ
mχ

1

mcell

Z
dqqΣ; ð43Þ

where mcell ¼ ρTΩ is the mass of the primitive cell, and as
before, q ¼ jqj. Then, from the formulas for ΣνðqÞ pre-

sented below for each model in terms of FðψÞ
X;ν and EX;ν

defined in Eqs. (39) and (40), we can estimate the rate R by

FðψÞ
X;ν ∼

qffiffiffiffiffiffiffiffiffiffiffiffi
mionω

p hXψ i; EX;ν ∼
ffiffiffiffiffiffiffiffi
Sion

p
: ð44Þ

In the case of single phonon excitations, we should further

note that ω, which appears in FðψÞ
X;ν above, can scale

differently with q for different models and DM masses.
Typically, either acoustic phonons (associated with in-
phase oscillations) or optical phonons (associated with
out-of-phase oscillations) dominate the total rate, depend-
ing on whether the DM model couples to different ions in a
correlated or anticorrelated way. For acoustic phonons, and
for q within the 1BZ, ω ∼ csq [with cs the sound speed that
is typically Oð10−5Þ], whereas for optical phonons or for q
beyond the 1BZ, ω ∼ q0. The size of the 1BZ is set by the
inverse lattice spacing a−1, and is typically OðkeVÞ. Since
v ∼Oð10−3Þ, contributions from outside the 1BZ are
possible for DM masses above around an MeV. We will
see below that in several cases, the curves scale differently
for mχ ≲MeV and mχ ≳MeV for this reason.
On the target side, we will consider the following

representative set of materials:
(1) GaAs [phonons, subject of R&D]. As the first-

studied target for DM detection via phonons, GaAs
is already in R&D as a target for both electron
excitations and phonon excitations [88]. Phonons in
GaAs form three acoustic and three optical branches,
and have energies up to ∼35 meV.

(2) SiO2 (quartz) [phonons, optimal sensitivity]. Based
on our previous theoretical study comparing
the phonon reach of a variety of target materials
[34], we have advocated quartz as having good
sensitivity to DM couplings to both acoustic and
optical phonons. Also, quartz has complementary
features compared to GaAs; while GaAs has a
simple crystal structure and relatively low phonon
energies, quartz has a large number of phonon
branches (3 acoustic, 24 optical), with energies up
to ∼150 meV.

(3) Y3Fe5O12ðYIGÞ [mostly magnons, also phonons
for comparison]. YIG is a well-studied material with
ferrimagnetic order, and is already used in an axion-
DM detection experiment QUAX [89–93]. The
effective spin Hamiltonian is a Heisenberg model,
with Sj ¼ 5

2
for the magnetic Fe3þ ions coming

entirely from electron spins hSei [i.e., λS;j ¼ 1,
λL;j ¼ 0 in Eq. (40)]. We take the antiferromagnetic
exchange coupling parameters from Ref. [94], to-
gether with the crystal parameters from Ref. [87], to
compute the magnon spectrum and rotation matri-
ces. YIG has 20 magnon branches, one of which is
gapless and has a quadratic dispersion at small k.
The gapped magnons have energies up to ∼90 meV.
We will mostly consider YIG as a candidate material
for DM detection via magnon excitations, but will
also consider phonon excitations in YIG via DM
couplings to the ordered electron spins in Sec. III A
for comparison; in this case the scattering potential is
determined by hSeilj of the Fe3þ ions, which have
magnitude 5

2
and directions set by the ferrimagnetic

order. YIG has 80 ions in total in the primitive cell
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and therefore 240 phonon branches (3 acoustic, 237
optical), with energies up to ∼120 meV.

(4) α-RuCl3 [small-gap magnons with orbital compo-
nent]. As discussed below Eq. (34), α-RuCl3 is one
of the materials where the effective ionic spins
involve orbital degrees of freedom, and is therefore
sensitive to DM couplings to the electrons’ orbital
angular momenta. The magnetic ions Ru3þ have
Slj ¼ 1

2
, coming from both hSei and hLei with

λS;j ¼ − 1
3
, λL;j ¼ − 4

3
, as discussed in Appendix B.

The effective spin Hamiltonian features Kitaev-type
bond-directional exchange couplings. We use the
Hamiltonian parameters derived from neutron scat-
tering data in Ref. [95], which also includes an

antiferromagneticHeisenbergexchange;seeRef. [86]
for a summary of some alternative model paramet-
rizations derived from a variety of experimental and
numerical techniques. The resultingmagnetic order is
zig-zag antiferromagnetic. Magnons in α-RuCl3, of
which there are four branches, are at very low energy,
below 7 meV, and can thus probe lighter DM than
YIG. Also, since all magnon branches are gapped at
zero momentum, the sensitivity is not significantly
affected by the finite detector threshold. This is in
contrast with YIG, where the assumed 1 meVenergy
threshold limits the momentum transfer to be greater
than ∼80 eV in order to excite magnons on the
gapless branch. Therefore, even though the exper-
imental prospects of α-RuCl3 itself are unclear, it can
be regarded as a useful benchmark which highlights
the generic advantage of small-gap targets.

Our main results are Figs. 1–4. We give a brief summary
here and discuss them in more detail in the following
subsections. A major issue of interest is the comparison of
sensitivity to various types of DM interactions, via single
phonon and magnon excitations induced by various crystal
responses. First, we consider the standard SD interaction in
Fig. 1, where we see that magnons outperform phonons,
typically, by more than an order of magnitude in terms of
the coupling reach. Next, in Fig. 2, we compare the phonon
and magnon rates for the four combinations of scalar
mediator couplings; the phonon production rate is larger
if the scalar and pseudoscalar couplings are of the same
order, while magnons allow access to the models where the
mediator dominantly couples to the pseudoscalar currents
of SM fermions. Next, we compare the reach of phonons
and magnons to multipole models in Fig. 3; for the
magnetic dipole and anapole models we expect the magnon

FIG. 1. Projected reach on the standard SD model listed in
Table II from single magnon (red) and phonon (blue) excitations
in YIG. The phonon rate is estimated in two ways, as discussed in
the text, which lead to the solid and dashed curves, respectively.
Since this model generates only the S response, magnons are seen
to have better sensitivity than phonons.

FIG. 2. Comparison of the total detection rate in models with a light (left panel) or heavy (right panel) scalar mediator. The couplings
to SM fermions are taken proportional to their masses, gp ¼ gn ¼ mp

me
ge, and we fix gχge ¼ 10−13. Each curve is labeled with the model

type as in Table II and the excitation type (phonon or magnon) that can probe each model. The phonon curves assume SiO2 (solid) and
GaAs (dashed) targets, and the magnon curves assume YIG (solid) and α-RuCl3 (dashed) targets.
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reach to be better, and indeed it is. However, the phonon
reach from quartz is sufficiently strong that, given the
greater experimental challenges currently associated with
magnon read out, quartz should be considered a competitor
for these models. Lastly, in Fig. 4, we compare theoretical
reach in the ðL · SÞ-interacting model, where magnons
outperform phonons for sub-MeV DM with the same
exposure; however, the ðL · SÞ-interacting model is difficult
to UV complete, and our calculation is perhaps somewhat
an academic exercise that demonstrate aspects of the EFT.
We now discuss each benchmark model in turn.

A. Standard spin-dependent interaction

For the standard SD interaction there is only one
operator, O4, which generates the S response, and can

excite both phonons and magnons in a magnetically
ordered target. Here, only couplings to electrons (whose
spins are ordered) are relevant, and we obtain, for the
differential rates,

ΣνðqÞphonon ¼
4g2χg2e
m4

V
jFðeÞ

S;νj2; ð45Þ

ΣνðqÞmagnon ¼
4g2χg2e
m4

V
jES;νj2: ð46Þ

In Fig. 1, we compare the phonon and magnon reach
with YIG. As a technical note, in the absence of a DFT
calculation for the crystal potential in YIG which is
necessary for computing the phonon eigenmodes, we

FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photonlike couplings to SM particles:
gp ¼ −ge; gn ¼ 0. The left panel shows the hierarchy of sensitivities of single phonon excitations, in GaAs and in SiO2, to the three
multipole DM models, together with the SI interaction model for comparison. The center and right panels focus on the magnetic dipole
and anapole DM models, respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach of
YIG (via the S response) and α-RuCl3 (via both S and L responses); these models are best probed by magnons, though the phonon
sensitivity with an optimal target like SiO2 may be competitive.

FIG. 4. Projected reach on the ðL · SÞ-interacting DM model in Table II, assuming coupling only to electrons, and κ ¼ 0. Single
phonon excitations in GaAs and SiO2 targets (via the N response) and single magnon excitations in YIG and α-RuCl3 targets (via the S
response) are seen to cover complementary regions of parameter space.
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estimate the rate in two ways. First, we carry out an
approximate analytic calculation taking into account long-
wavelength acoustic phonons, as explained in Appendix D.
This results in the dashed reach curve in Fig. 1, which is
truncated at the DM mass for which the maximum
momentum transfer reaches the edge of the 1BZ, so that
the approximations we make cease to hold. Second, we
borrow the crystal potential of Y3Ga5O12 (YGG) which is
publicly available [96]. YGG has the same crystal structure
as YIG, with Fe replaced by Ga, and the phonon dis-
persions we obtain for YGG are very similar to those of
YIG [97]. The resulting reach is shown by the solid blue
curve in Fig. 1. We see from the figure that both estimates
are in good agreement near mχ ∼ 10−2 MeV, where acous-
tic phonons dominate, while including optical phonon
contributions in the second approach improves the reach
at lower and higher mχ.
We can understand these curves by estimating the rates

using Eqs. (43) and (44). The q integrals are dominated by
qmax ∼mχv. As a result,

Rphonon∼
ρχ
mχ

1

mcell

g2χg2e
m4

V

S2ion
mion

Z
dq

q3

ω

∼

8>>><
>>>:

g2χg2e
m4

V

ρχ
mχ

S2ion
mcellmioncs

ðmχvÞ3 ðacoustic;mχv≲a−1Þ;

g2χg2e
m4

V

ρχ
mχ

S2ion
mcellmionhωi

ðmχvÞ4 ðotherwiseÞ;

ð47Þ

Rmagnon ∼
ρχ
mχ

1

mcell

g2χg2e
m4

V
Sion

Z
dqq ∼

g2χg2e
m4

V

ρχ
mχ

Sion
mcell

ðmχvÞ2:

ð48Þ

Fixing R, the coupling plotted in Fig. 1, gχge
m2

χ

m2
V
scales as

mχ , m1=2
χ and m3=2

χ , respectively, in the three cases, in
agreement with the high-mχ behaviors of the dashed blue,
solid blue and red curves in Fig. 1, respectively. Also,
magnons have better sensitivity than phonons to the SD

coupling by a factor of
ffiffiffiffiffiffiffiffiffiffiffi
Rmagnon

Rphonon

q
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mionω=Sion

p
mχv

, and the

advantage becomes more significant at smaller mχ (though
the magnon curve hits the kinematic threshold at higher mχ

due to the dispersion being quadratic).

B. Scalar mediator models

We next consider scalar mediator models with both
scalar and pseudoscalar couplings. We take the mediator
couplings to SM fermions to be proportional to their
masses, gψ ∝ mψ (motivated by Higgs-portal hidden sector
theories, see Ref. [98] for a recent review), and consider
each of the four combinations of currents, which we denote

by S × S, P × S, S × P and P × P. Among them,
S × S (i.e., standard SI considered previously in
Refs. [33,34,53,54]) and P × S can excite phonons via
the N response,9 while S × P and P × P can excite both
phonons and magnons in a magnetically ordered target via
the S response. However, similar to the standard SD
interaction in Sec. III A, the phonon excitation rate will
be suppressed relative to the magnon excitation rate, so we
focus on the latter here. We obtain the following expres-
sions for the differential rates defined in Eq. (41)

ΣνðqÞS×Sphonon ¼
g2χ

ðq2 þm2
ϕÞ2
����X

ψ

geffψ FðψÞ
N;ν

����2; ð49Þ

ΣνðqÞP×Sphonon ¼
g2χ

ðq2 þm2
ϕÞ2

q2

4m2
χ

����X
ψ

geffψ FðψÞ
N;ν

����2; ð50Þ

ΣνðqÞS×Pmagnon ¼
g2χg2e

ðq2 þm2
ϕÞ2

q2

m2
e
jq̂ · ES;νj2; ð51Þ

ΣνðqÞP×Pmagnon ¼
g2χg2e

ðq2 þm2
ϕÞ2

q4

4m2
χm2

e
jq̂ · ES;νj2: ð52Þ

Note that for the S × S and P × S models, screening effects
have been taken into account by using geffψ in place of gψ , as
discussed around Eq. (14); the dielectric tensors ε∞ of the
phonon targets GaAs and SiO2 are obtained from DFT
calculations [56].
In Fig. 2, we plot the expected rate for each of the four

coupling combinations, for a common value for the product
of couplings, to illustrate the hierarchy between the rate
from the different interactions. We have chosen to show the
rate instead of projected reach here so that the general case
where more than one types of interactions are present, it
would be straightforward to rescale the curves to see which

one is dominant. For example, if gðSÞχ ∼ gðPÞχ , gðSÞψ ∼ gðPÞψ , we
have the highest rate from phonon excitations via the S × S
coupling, i.e., the standard SI interaction, as expected. On
the other hand, if the couplings to SM fermions are

dominantly pseudoscalar, gðPÞψ =gðSÞψ ≳ 107, magnon excita-
tions have better sensitivity than phonon excitations for the
same exposure; this is one of the benchmark models
considered previously in Ref. [57]. The hierarchy seen
in Fig. 2, and also some main features of the curves, can be
understood following Eqs. (43) and (44), as we now
explain.

9These models generate additional operators when matched
onto the NR EFT beyond leading order, which could excite
magnons. We do not consider magnon excitation here due to the
severely suppressed rate. The same applies to the SI and electric
dipole DM models in Sec. III C.
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First consider the light mediator case,mV ≪ q (left panel
of Fig. 2). For phonon excitations in the S × S and P × S
models, since the couplings to all ions have the same sign,
the rate is dominated by acoustic phonons. For q within the
1BZ, setting ω ∼ csq, we obtain

RS×S
phonon ∼

ρχ
mχ

1

mcell
g2χg2p

hNp;ni2
mion

Z
dq

1

qω

∼ g2χg2p
ρχ
mχ

hNp;ni2
mcellmion

1

ωmin
; ð53Þ

RP×S
phonon ∼

ρχ
mχ

1

mcell
g2χg2p

hNp;ni2
mionm2

χ

Z
dq

q
ω

∼ g2χg2p
ρχ
mχ

hNp;ni2
mcellmion

v
mχcs

; ð54Þ

where ωmin ¼ csqmin. These are consistent with the m−1
χ

andm−2
χ scaling of the green and purple curves formχ up to

∼MeV. Also, consistent with the figure, the ratio between

them is
RP×S
phonon

RS×S
phonon

∼ ωmin
mχ

v
cs
∼ 10−6 ωmin

1 meV
10−1 MeV

mχ

v
10−3

10−5

cs
for cou-

plings of the same size. For heavier DM, on the other hand,
momentum transfers beyond the 1BZ are allowed. For the
S × S model, this is irrelevant since the integral is domi-
nated by small q, so the m−1

χ trend continues past MeV. For
the P × S model, since the integral is dominated by high q
where ω no longer scales with q, we have v2

hωi in place of
v

mχcs

in Eq. (54). This explains the m−1
χ scaling of the purple

curves past mχ ∼MeV in the left panel of Fig. 2.
For magnon excitations in the S × P and P × P models,

we have

RS×P
magnon ∼

ρχ
mχ

1

mcell
g2χg2e

Sion
m2

e

Z
dq

1

q
∼ g2χg2e

ρχ
mχ

Sion
mcellm2

e
;

ð55Þ

RP×P
magnon ∼

ρχ
mχ

1

mcell
g2χg2e

Sion
m2

em2
χ

Z
dqq ∼ g2χg2e

ρχ
mχ

Sion
mcellm2

e
v2;

ð56Þ

again consistent with the m−1
χ scaling of the

corresponding curves in Fig. 2 (though the YIG curves
have a bump near MeV due to the gapped magnons starting
to contribute, as discussed in Ref. [57], which slightly
obscures the overall scaling with mχ). Comparing the two

models, we see that RP×P
magnon

RS×P
magnon

∼ v2. Also, comparing with

phonon excitation in the S × S model, we have
RS×P
magnon

RS×S
phonon

∼ g2e
g2p

Sionmionωmin
hNp;ni2m2

e
∼ ωmin

mion
∼ 10−14 ωmin

1 meV
100 GeV
mion

, assuming

similar values of mcell, mion for the targets and
Sion ∼Oð1Þ, and noting that geffp ≃gp and

ge=gp ¼ me=mp. This is consistent with what we see
in Fig. 2.
The heavy mediator case,mV ≫ q (right panel of Fig. 2),

follows a similar analysis. All the q integrals are now
peaked at qmax ∼mχv, and we find

RS×S
phonon ∼

ρχ
mχ

1

mcell

g2χg2p
m4

V

hNp;ni2
mion

Z
dq

q3

ω

∼

8>>><
>>>:

g2χg2p
m4

V

ρχ
mχ

hNp;ni2
mcellmioncs

ðmχvÞ3 ðmχv≲ a−1Þ;

g2χg2p
m4

V

ρχ
mχ

hNp;ni2
mcellmionhωi

ðmχvÞ4 ðmχv≳ a−1Þ;

ð57Þ

RP×S
phonon ∼ v2RS×S

phonon; ð58Þ

RS×P
magnon ∼

ρχ
mχ

1

mcell

g2χg2p
m4

V

Sion
m2

e

Z
dqq3

∼
g2χg2e
m4

V

ρχ
mχ

Sion
mcellm2

e
ðmχvÞ4; ð59Þ

RP×P
magnon ∼ v2RS×P

magnon: ð60Þ

These equations explain both the hierarchy of the rates for

the four models, and the mχ scaling; in all cases, Rm4
V

m4
χ
∼

m−1
χ at large mχ , while the phonon curves switch to m−2

χ

scaling below ∼MeV.

C. Multipole dark matter models

We now turn to the electric dipole, magnetic dipole, and
anapole DM models in Table II. For comparison, we also
include the SI interaction model with a vector mediator.
Motivated by the kinetic mixing benchmark, we assume the
mediator couples to electric charge, gp ¼ −ge, gn ¼ 0, and
is much lighter than the smallest momentum transfer,
mV ≪ eV. The SI and electric dipole DM models generate
O1 and O11 at leading order, respectively, both of which
induce only the N response, which can be probed by single
phonon excitation. The differential rates are

ΣνðqÞSIphonon ¼
g2χg2e

ðq · ε∞ · qÞ2 jF
ðpÞ
N;ν − FðeÞ

N;νj2; ð61Þ

ΣνðqÞedmphonon ¼
g2χg2e

ðq · ε∞ · qÞ2
q2

4m2
χ
jFðpÞ

N;ν − FðeÞ
N;νj2: ð62Þ

Eq. (61) is in agreement with previous results in
Refs. [33,34,54]. The magnetic dipole and the anapole
DM models generate, in addition to N, also S and L
responses, and can therefore be probed by both phonons
and magnons. For single phonon excitation, we have
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ΣνðqÞmdm
phonon ¼

g2χg2e
4m2

χq2

�
q4

ðq · ε∞ · qÞ2
q2

4m2
χ
jFðpÞ

N;ν − FðeÞ
N;νj2

þ
���� q4

ðq · ε∞ · qÞ2 ðq̂ × vÞðFðpÞ
N;ν − FðeÞ

N;νÞ

− ð1 − q̂ q̂Þ ·
�
iq
2mp

ð2μ̃pFðpÞ
S;ν þ FðpÞ

L;νÞ

−
iq
2me

ð2μ̃eFðeÞ
S;ν þ FðeÞ

L;νÞ
�����2
	
; ð63Þ

ΣνðqÞanaphonon ¼
g2χg2e
16m4

χ

���� q4

ðq · ε∞ · qÞ2
�
v −

q
2mχ

�
ðFðpÞ

N;ν − FðeÞ
N;νÞ

þ iq
2mp

× ð2μ̃pFðpÞ
S;ν þ FðpÞ

L;νÞ

−
iq
2me

× ð2μ̃eFðeÞ
S;ν þ FðeÞ

L;νÞ
����2: ð64Þ

Note that for an unordered/unpolarized target, FðψÞ
S;ν ¼

FðψÞ
L;ν ¼ 0. For single magnon excitation, we have

ΣνðqÞmdm
magnon ¼

g2χg2e
16m2

χm2
e
jð1 − q̂ q̂Þ · ð2μ̃eES;ν þ EL;νÞj2;

ð65Þ

ΣνðqÞanamagnon ¼
g2χg2e

64m4
χm2

e
jq × ð2μ̃eES;ν þ EL;νÞj2; ð66Þ

which extend the results in Ref. [57].
A comparison of the phonon reach in these models is

shown in the left panel of Fig. 3. The center and right panels
of Fig. 3 zoom in on the magnetic dipole and anapole DM
models, respectively, and compare the reach of phonon and
magnon excitations.
We can carry out a similar analysis as in the previous

subsections to understand the main features in Fig. 3.
For single phonon excitation in GaAs and SiO2, we keep

only the FðψÞ
N;ν terms in the ΣνðqÞ formulas above, and note

that, as in the SI case discussed previously in
Refs. [33,34,53,54], the DM-ion couplings, being propor-
tional to hNpi − hNei ¼ Qion, have opposite signs for
oppositely charged ions, so the optical phonon modes
with ω ∼ q0 give the dominant contributions. Using
Eqs. (43) and (44), we obtain the following parametric
estimates,

RSI
phonon ∼

ρχ
mχ

1

mcell

g2χg2e
ε2∞

Q2
ion

mionω

Z
dq

1

q

∼ g2χg2e
ρχ
mχ

�
Q2

ion

ε2∞mcellmionω

�
; ð67Þ

Redm
phonon

RSI
phonon

∼
Rmdm
phonon

Redm
phonon

∼
Rana
phonon

Rmdm
phonon

∼ v2; ð68Þ

Rmdm
magnon ∼

ρχ
mχ

Sion
mcell

g2χg2e
m2

χm2
e

Z
dqq ∼ g2χg2e

ρχ
mχ

Sionv2

mcellm2
e
; ð69Þ

Rana
magnon

Rmdm
magnon

∼ v2: ð70Þ

Several comments are in order. First, Eq. (68) explains
the hierarchy of sensitivity of phonon excitations to the four
models in the left panel of Fig. 3, while Eq. (70) shows a
similar hierarchy of sensitivity of magnon excitations to the
magnetic dipole and anapole DMmodels. Also, note that in
all cases, R ∼m−1

χ , so the reach on gχge scales as m
1=2
χ , as

seen in Fig. 3.
Next, let us compare the reach of different target

materials, and via phonons versus magnons. For phonon
excitations, the factor in parentheses in Eq. (67) reproduces
the “quality factor” identified in Ref. [34], up to Oð1Þ
factors we have dropped here. It captures the material
properties that determine the sensitivity to the SI model
with a dark photon mediator, and is the quantity to
maximize in order to optimize target choice. For example,
SiO2 has a quality factor that is about 80 times that of
GaAs, which explains its significantly better reach, by
almost an order of magnitude on the coupling gχge, as seen
in Fig. 3 (and also previously in Ref. [34]).
For magnon excitations for the magnetic dipole and

anapole DM models, we have considered YIG, which
probes only the S response, and α-RuCl3, which probes
both S and L. Since for these models, DM couples to the
linear combination 2Se þ Le—the spin of an elementary
particle has a Landé g-factor of 2—the additional L
response that α-RuCl3 has does not qualitatively improve
the sensitivity. Indeed, we see from Fig. 3 that YIG and
α-RuCl3 have very similar reach around mχ ∼ 0.1 MeV. At
higher mχ, YIG performs better due to additional contri-
butions from the large number of gapped magnon modes.
On the other hand, α-RuCl3 extends the reach down to
much lower mχ ∼ keV. As discussed previously, this is
because the magnon modes at zero momentum are gapped
at a few meV (in contrast to YIG which has a gapless
magnon branch that dominates the coupling to DM in the
low-momentum transfer limit).
Finally, we can compare the magnon and phonon

excitation rates for the two models (magnetic dipole and
anapole DM) where both are available. Let us denote

Q≡ Q2
ion
ε2∞

m2
p

mcellmion

1 meV
ω , which is the phonon quality factor

with the dimensionful parameters normalized in a way
close to Ref. [34]. Its values are typically Oð10−7–10−5Þ,
with GaAs and SiO2 residing on the lower and higher ends
of the interval, respectively. We find
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Rmdm
phonon

Rmdm
magnon

∼
Rana
phonon

Rana
magnon

∼
Qmcellm2

ev2

Sionm2
p ·1meV

∼10−4
�

Q
1.4×10−7

�
;

ð71Þ

where mcell is for the target for magnon excitations, and we
have substituted the numbers for YIG in the last equation.
We see that, for the magnetic dipole and anapole DM
models, magnons are indeed more sensitive than phonons,
though choosing high phonon quality factor targets, such as
SiO2 with Q ∼ 10−5 can approach the magnon sensitivity.
Up to Oð1Þ factors, this is consistent with the center and
right panels of Fig. 3.

D. ðL · SÞ-interacting dark matter

We finally consider the ðL · SÞ-interacting DM model,
which induces N, S and L ⊗ S responses. Taking the
mediator to couple only to electrons for simplicity, we
obtain the differential rates,

ΣνðqÞphonon¼
g2χg2e

ðq2þm2
VÞ2
����� q24m2

e
½ð1þ κÞFðeÞ

N;ν

þ2trðð1− q̂ q̂Þ ·FðeÞ
L⊗S;νÞ�þ

�
iq
me

× v

�
·FðeÞ

S;ν

����2

þ q4

4m2
χm2

e
jð1− q̂ q̂Þ ·FðeÞ

S;νj2
	
; ð72Þ

ΣνðqÞmagnon ¼
g2χg2e

ðq2 þm2
VÞ2

q2

m2
e

�
q2

4m2
χ
jð1 − q̂ q̂Þ · ES;νj2

þ jðq̂ × vÞ · ES;νj2
�
: ð73Þ

In the absence of magnetic order, FðeÞ
S;ν ¼ 0. Also, unless κ is

tuned to be very close to −1, we do not expect the FðeÞ
L⊗S;ν

term in Eq. (72) to dominate—the total spin-orbit coupling
vanishes for full shells, and is otherwise often suppressed
by crystal fields, especially for lighter elements. Thus,
while an interesting feature of this model, the coupling to
L · S does not suggest a better probe than searching for
phonon excitations via the N response with already
proposed target materials. In Fig. 4, we include only the

FðeÞ
N;ν term when computing phonon reach for GaAs and

SiO2, and for concreteness set κ ¼ 0. Since the total
electron numbers of ions are all positive, the rate is
dominated by acoustic phonons, with ω ∼ csq. Again using
Eqs. (43) and (44), we can estimate

Rphonon ∼
ρχ
mχ

1

mcell
g2χg2e

hNei2
mionm4

e

Z
dq

q3

ω
∼

8<
:

g2χg2e
ρχ
mχ

hNei2ðmχvÞ3
mcellmionm4

ecs
ðmχv≲ a−1Þ;

g2χg2e
ρχ
mχ

hNei2ðmχvÞ4
mcellmionm4

ehωi ðmχv≳ a−1Þ;
ð74Þ

for a light mediator (mV ≪ q), and

Rphonon ∼
ρχ
mχ

1

mcell

g2χg2e
m4

V

hNei2
mionm4

e

Z
dq

q7

ω
∼

8>>><
>>>:

g2χg2e
m4

V

ρχ
mχ

hNei2ðmχvÞ7
mcellmionm4

ecs
ðmχv ≲ a−1Þ;

g2χg2e
m4

V

ρχ
mχ

hNei2ðmχvÞ8
mcellmionm4

ehωi
ðmχv ≳ a−1Þ;

ð75Þ

for a heavy mediator (mV ≫ q). These equations explain
the scaling of the phonon curves in Fig. 4: fixing R, we
obtain gχge ∼m−1

χ (m−3=2
χ ) for mχ below (above) about an

MeV in the light mediator case, and the same for gχge
m2

χ

m2
V
in

the heavy-mediator case.
The magnon reach curves for YIG and α-RuCl3 can be

understood in a similar way. We have

Rmagnon ∼
ρχ
mχ

1

mcell
g2χg2e

Sion
m2

em2
χ

Z
dqq ∼ g2χg2e

ρχ
mχ

Sionv2

mcellm2
e

ð76Þ

for a light mediator (mV ≪ q), and

Rmagnon ∼
ρχ
mχ

1

mcell

g2χg2e
m4

V

Sion
m2

em2
χ

Z
dqq5 ∼

g2χg2e
m4

V

ρχ
mχ

Sionm4
χv6

mcellm2
e

ð77Þ

for a heavy mediator (mV ≫ q). In contrast to the phonon

case, the reach on gχge (gχge
m2

χ

m2
V
) in the light (heavy)

mediator case scales as m1=2
χ . So, the magnon reach

becomes better at lower mχ as we can see in Fig. 4. In
particular, magnons outperform phonons for mχ below
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about an MeV, which we can understand from the estimate;
Rphonon

Rmagnon
∼ hNei2m3

χv
Sionmionm2

ecs
∼ ð mχ

MeVÞ3ðhNei
10

Þ2 10 GeV
mion

v
10−3

10−5

cs
, assuming

similar mcell and mion for the targets and Sion ∼Oð1Þ.

IV. CONCLUSIONS

We have formulated an EFT framework for computing
direct detection rates via single phonon and magnon
excitations for general DM interactions, and illustrated
its application with a set of benchmark models, listed in
Table II, that cover a wide range of possibilities for a spin-1

2
DM particle interacting with SM fermions ψ ¼ p, n, e
(proton, neutron, and electron). The procedure consists of
first matching a relativistic DM model onto a set of NR
effective operators, listed in Table III, and then matching
these operators onto lattice degrees of freedom, including
particle numbers hNψ i, spins hSψi, orbital angular
momenta hLψi and spin-orbit couplings hLψ ⊗ Sψi for
the ψ ¼ p, n, e particles in an ion. These define the four
types of crystal responses and enter the rate formula
for single phonon excitation, while a subset of them—
hSei and hLei—also enter the rate formula for single
magnon excitation.
A practical prescription for computing direct detection

rates, as explained around Eq. (41), utilizes the central
formula, Eq. (27), which gives the lattice scattering
potential in terms of the effective operator coefficients

cðψÞi . Upon plugging in the cðψÞi ’s generated by a relativistic
theory of DM (listed in Table II for our benchmark models),
one simply replaces the ionic expectation values hXψ ilj by
FðψÞ
X;ν defined in Eq. (39) (for ψ ¼ p, n, e, and

X ¼ N; S; L; L ⊗ S) or EX;ν defined in Eq. (40) (for ψ ¼
e and X ¼ S, L), squares the expression and takes the DM
spin average. This gives the differential rates ΣνðqÞ, which
are then substituted into Eqs. (41) and (42) for the total rate
of single phonon or magnon excitation.
The set of crystal responses that we have identified point

to various possibilities of optimizing detector target choice.
However, a general observation from our calculations in
Sec. III is that, among the four types of crystal responses,
hNψi and hSψ i, which are associated with pointlike degrees
of freedom, tend to dominate the rate, compared to the
composite responses hLψi and hLψ ⊗ Sψi. This implies
that, purely from the point of view of maximizing the rate,
exotic materials with orbital orders or strong spin-orbit
couplings are not necessary for improving the reach to a
broad class of DM models.
Meanwhile, as phonon DM experiments focused on

crystal targets, such as SPICE (Sub-eV Polar Interactions
Cryogenic Experiment), which is part of the TESSERACT
(Transition Edge Sensors with Sub-EV Resolution And
Cryogenic Targets) project [88], move into R&D, it is
important to note that their discovery potential extends well
beyond the simplest models with spin-independent

interactions studied previously. As we showed in
Sec. III, phonon excitations have broad sensitivity to light
DM models. Perhaps surprisingly, with judicious choice of
target material, phonon excitations may even be competi-
tive with magnon excitations for some DM models where
the latter is expected to have a parametrically higher rate,
such as the magnetic dipole and anapole DM models.
Given the greater challenges associated with single magnon
detection relative to phonons, this is encouraging for
phonon-based experiments in the near term.
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APPENDIX A: NONRELATIVISTIC MATCHING
FOR A FERMION FIELD

In this appendix we review the procedure of decompos-
ing a Dirac fermion field ψ in the NR limit. Consider the
following unperturbed relativistic Lagrangian,

L0 ¼ ψ̄ið∂μ − iAμÞγμψ −mψ ψ̄ψ : ðA1Þ

In free space, we would expand the ψ field in plane waves
multiplied by the usual u, v spinors satisfying the free
particle Dirac equation. Here, we allow the presence of an
external gauge potential Aμ ¼ ðΦ;AÞ, which may not be a
small perturbation. For example, if ψ is an electron in a
crystal, it is bound by the electromagnetic potential from
the ions, and the bound state wavefunctions are very
different from plane waves. Generally, we can expand
the ψ field in the basis of energy eigenstate wavefunctions.
Dropping the antiparticle part, we have

ψðx; tÞ ¼
X
I

uIðx; tÞb̂I ¼
X
I

e−iEItuIðxÞb̂I; ðA2Þ

where the c-number uI spinors satisfy

ðEIγ
0 − iγ ·∇ −mψ − γ0ΦðxÞ þ γ · AðxÞÞuIðxÞ ¼ 0: ðA3Þ

Writing

uIðxÞ ¼
1ffiffiffi
2

p
�ΨIðxÞ þ ΘIðxÞ
ΨIðxÞ − ΘIðxÞ

�
; ðA4Þ
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with ΨI , ΘI two-component wave functions, we see that
Eq. (A3) is solved by

ΘIðxÞ ¼
iσ · ð∇ − iAðxÞÞ
EI þmψ −ΦðxÞΨIðxÞ: ðA5Þ

This immediately leads to Eq. (8), repeated here for easy
reference,

ψðx; tÞ ¼ e−imψ t
1ffiffiffi
2

p
 ð1 − σ·k

2mψþεÞψþðx; tÞ
ð1þ σ·k

2mψþεÞψþðx; tÞ

!
; ðA6Þ

where k ¼ −i∇ − A, ε ¼ i∂t −Φ, and ψþðx; tÞ ¼P
I e

−iεI tΨIðxÞb̂I , with εI ¼ EI −mψ . The prefactor has
been chosen such that the NR field ψ�’s kinetic term is
normalized at leading order as in Eq. (11).
In the NR limit, jΘIj ≪ jΦIj. The large component ΨI

satisfies�
−σ · ð∇− iAðxÞÞ 1

2mψ þ εI −ΦðxÞσ · ð∇− iAðxÞÞ

þΦðxÞ
�
ΨIðxÞ¼ εIΨIðxÞ: ðA7Þ

At leading order, we replace 1
2mψþεI−ΦðxÞ →

1
2mψ

, and recover

the NR Schrödinger equation,

�
−
ð∇ − iAðxÞÞ2

2mψ
þ 1

2mψ
σ · ð∇ × AðxÞÞ þΦðxÞ

�
ΨIðxÞ

¼ εIΨIðxÞ: ðA8Þ

Corrections to this equation can be incorporated order by
order if needed.

APPENDIX B: PROJECTION OF ANGULAR
MOMENTUM OPERATORS

In this appendix we detail the steps that lead to the
numbers λS;j ¼ − 1

3
, λL;j ¼ − 4

3
in the case of α-RuCl3,

following the projection of angular momentum operators
Se, Le in Eq. (32). The formation of effective ionic spins
Sj ¼ 1

2
is due to the combined effect of crystal fields and

spin-orbit coupling [82]. First, octahedral crystal fields split
the five degenerate 3D orbitals (l ¼ 2) of Ru3þ into two
higher-energy eg orbitals and three lower-energy t2g orbi-
tals with an effective orbital moment leff ¼ 1. The energy
difference between the eg and t2g orbitals is OðeVÞ,
rendering the (unoccupied) eg orbitals irrelevant for the
discussion. For the t2g orbitals, spin-orbit coupling further
splits these leff ¼ 1 states into jeff ¼ 3

2
and 1

2
. With five 3D

electrons, the lower-energy jeff ¼ 3
2
states are fully occu-

pied, while the higher-energy jeff ¼ 1
2
Kramers doublet is

occupied by a single electron—it is this electron that
contributes to the magnetic order. Therefore, the goal is
to project the angular momentum operators S, L (dropping
subscript e from here on for simplicity) onto the jeff ¼ 1

2

subspace.
The first step is to project L onto the t2g subspace. The t2g

states are denoted by dyz, dzx, dxy. The angular part of their
wave functions are linear combinations of spherical har-
monics Ym

l¼2ðθ;ϕÞ (see e.g., Ref. [99]); equivalently, these
t2g states are linear combinations of jl; mli states with
l ¼ 2:

jdyzi ¼
iffiffiffi
2

p ðj2; 1i þ j2;−1iÞ;

jdzxi ¼ −
1ffiffiffi
2

p ðj2; 1i − j2;−1iÞ;

jdxyi ¼ −
iffiffiffi
2

p ðj2; 2i − j2;−2iÞ: ðB1Þ

To compute Pt2gLPt2g , with the projection operator

Pt2g ¼ jdyzihdyzj þ jdzxihdzxj þ jdxyihdxyj; ðB2Þ

we make use of the familiar formulas

hl0;m0
ljLzjl;mli¼mlδl0;lδm0

l;ml
;

hl0;m0
ljL�jl;mli¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl∓mlÞðl�mlþ1Þ

p
δl0;lδm0

l;ml�1;

ðB3Þ

where L� ¼ Lx � iLy, and obtain, for the matrix repre-
sentation in the jdyzi, jdzxi, jdxyi basis,

Pt2gLzPt2g _¼

0
B@

0 i 0

−i 0 0

0 0 0

1
CA;

Pt2gL�Pt2g _¼

0
B@

0 0 �1

0 0 i

∓1 −i 0

1
CA: ðB4Þ

These might not look familiar, but they are nothing but
l ¼ 1 angular momentum operators in the jpxi, jpyi, jpzi
basis, which is related to the jl; mli basis with l ¼ 1
by [99]

jpxi ¼ −
1ffiffiffi
2

p ðj1; 1i − j1;−1iÞ;

jpyi ¼
iffiffiffi
2

p ðj1; 1i þ j1;−1iÞ; jpzi ¼ j1; 0i: ðB5Þ

The angular momentum operators in this basis read
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Lz _¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; L� _¼

0
B@

0 0 ∓ 1

0 0 −i
�1 i 0

1
CA: ðB6Þ

Comparing Eqs. (B4) and (B6), we see that L acts as
an effective angular momentum with l ¼ 1 on the t2g
subspace,

Pt2gLPt2g ¼ −Lðl¼1Þ
eff : ðB7Þ

The second step is to combine this effective orbital
angular momentum leff ¼ 1 with the electron’s spin s ¼ 1

2
.

This follows the standard angular momentum addition, and
we obtain, for the jeff ¼ 1

2
states,

����jeff ¼ 1

2
;mjeff ¼

1

2




¼
ffiffiffi
2

3

r ����mleff ¼ 1;ms¼−
1

2



−

ffiffiffi
1

3

r ����mleff ¼ 0;ms ¼
1

2



;

ðB8Þ
����jeff ¼ 1

2
;mjeff ¼−

1

2




¼
ffiffiffi
1

3

r ����mleff ¼ 0;ms¼−
1

2



−

ffiffiffi
2

3

r
jmleff ¼−1;ms¼

1

2



;

ðB9Þ

where the coefficients are Clebsch-Gordan coefficients. It is
now straightforward to project Leff and S onto the jeff ¼ 1

2

subspace:

Pjeff¼1
2
Leff
z Pjeff¼1

2
_¼
� 2

3
0

0 − 2
3

�
;

Pjeff¼1
2
Leffþ Pjeff¼1

2
_¼
�
0 4

3

0 0

�
; ðB10Þ

Pjeff¼1
2
SzPjeff¼1

2
_¼
�−1

6
0

0 1
6

�
; Pjeff¼1

2
SþPjeff¼1

2
_¼
�
0 −1

3

0 0

�
:

ðB11Þ

We see that both Leff and S are proportional to Jeff ¼ σ
2

(identified as the total ionic spin as discussed above) when
acting on the jeff ¼ 1

2
subspace. So finally, we obtain

Pjeff¼1
2
LPjeff¼1

2
¼ −Pjeff¼1

2
LeffPjeff¼1

2
¼ −

4

3
Jeff ;

Pjeff¼1
2
SPjeff¼1

2
¼ −

1

3
Jeff : ðB12Þ

APPENDIX C: VELOCITY INTEGRALS

When thevelocity-dependent rateΓðvÞ, given byEq. (41),
is convoluted with the incoming DM’s velocity distribution
fχðvÞ to yield the total rate, Eq. (42), we encounter the
following scalar, vector and tensor velocity integrals,

g0ðq;ωÞ≡
Z

d3vfχðvÞ2πδðω − ωqÞ; ðC1Þ

g1ðq;ωÞ≡
Z

d3vfχðvÞ2πδðω − ωqÞvχ ; ðC2Þ

g2ðq;ωÞ≡
Z

d3vfχðvÞ2πδðω − ωqÞvχvχ ; ðC3Þ

where vχ ¼ v − q
2mχ

, and ωq ¼ q · v − q2

2mχ
. From the expres-

sions of differential ratesΣνðqÞ throughout Sec. III, it should
be easy to see how these integrals emerge. Note that for
velocity-independent interactions, only the scalar integral g0
appears [33,43,54].
As we now show, all three velocity integrals above can

be evaluated analytically for a boosted and truncated
Maxwell-Boltzmann distribution, which we assume in this
work,

fχðvÞ ¼
1

N0

e−ðvþveÞ2=v20Θðvesc − jvþ vejÞ; ðC4Þ

where

N0 ¼ π3=2v20

�
v0erfðvesc=v0Þ −

2vescffiffiffi
π

p expð−v2esc=v20Þ
�
; ðC5Þ

and we take v0¼230km=s, vesc¼600km=s, ve¼240km=s.
For all the target materials considered in Sec. III, the rates
are insensitive to the direction of ve. The analytic results
obtained here are key to efficient rate calculations, as they
reduce the six-dimensional integral

R
d3v

R
d3q to just a

three-dimensional integral
R
d3q, which we then compute

numerically.
First, the scalar integral g0 follows from Refs. [33,43,54].

Shifting v → v − ve, we obtain

g0ðq;ωÞ¼
2π

N0

Z
d3ve−v

2=v2
0Θðvesc−vÞ

×δ

�
q ·v−q · ve−

q2

2mχ
−ω

�

¼ 4π2

N0

Z
vesc

0

dvv2e−v
2=v2

0

×
Z

1

−1
dcosθδ

�
qvcosθ−q · ve−

q2

2mχ
−ω

�
:

ðC6Þ

TRICKLE, ZHANG, and ZUREK PHYS. REV. D 105, 015001 (2022)

015001-22



Let us define

v�≡ 1

q

�
q · veþ

q2

2mχ
þω

�
; v−≡minðjv�j;vescÞ: ðC7Þ

We then obtain

g0ðq;ωÞ ¼
4π2

N0q

Z
vesc

0

dvve−v
2=v2

0

Z
1

−1
d cos θδ

�
cos θ −

v�
v

�

¼ 4π2

N0q

Z
vesc

v−

dvve−v
2=v2

0

¼ 2π2v20
N0q

ðe−v2−=v20 − e−v
2
esc=v20Þ: ðC8Þ

Next, the vector integral g1 can be decomposed as

g1ðq;ωÞ ¼
Z

d3vfχðvÞðvþ veÞ −
�
ve þ

q
2mχ

�
g0ðq;ωÞ:

ðC9Þ

The first term can be computed by shifting v → v − ve as
before, but this time the integrand also depends on the
azimuthal angle ϕ,

Z
d3vfχðvÞðvþveÞ¼

2π

N0

Z
d3ve−v

2=v2
0Θðvesc−vÞδ

�
q ·v−q ·ve−

q2

2mχ
−ω

�
v

¼4π2

N0

Z
vesc

0

dvv3e−v
2=v2

0

Z
1

−1
dcosθδ

�
qvcosθ−q ·ve−

q2

2mχ
−ω

�Z
2π

0

dϕ
2π

½cosθq̂þsinθðcosϕn̂1þsinϕn̂2Þ�

¼4π2

N0

q̂
Z

vesc

0

dvv3e−v
2=v2

0

Z
1

−1
dcosθδ

�
qvcosθ−q ·ve−

q2

2mχ
−ω

�
cosθ

¼ 4π2

N0q
q̂
Z

vesc

0

dvv2e−v
2=v2

0

Z
1

−1
dcosθδ

�
cosθ−

v�
v

�
cosθ

¼4π2v�
N0q

q̂
Z

vesc

v−

dvve−v
2=v2

0 ¼v�q̂g0ðq;ωÞ; ðC10Þ

where n̂1, n̂2 are orthogonal unit vectors in the plane perpendicular to q. Plugging in the definition of v� in Eq. (C7), we
obtain

g1ðq;ωÞ ¼
�
ω

q
q̂ − ð1 − q̂ q̂Þ · ve

�
g0ðq;ωÞ: ðC11Þ

Finally, we compute the tensor integral g2, which can be similarly decomposed as

g2ðq;ωÞ¼
Z

d3vfχðvÞðvþ veÞðvþ veÞ−
��

veþ
q

2mχ

�
q̂þ q̂

�
veþ

q
2mχ

��
v�g0ðq;ωÞþ

�
veþ

q
2mχ

��
veþ

q
2mχ

�
g0ðq;ωÞ

¼
Z

d3vfχðvÞðvþ veÞðvþ veÞþ
��

ω

q
q̂− ð1− q̂ q̂Þ · ve

��
ω

q
q̂− ð1− q̂ q̂Þ · ve

�
−v2�q̂ q̂

	
g0ðq;ωÞ; ðC12Þ

where we have used Eq. (C10). The remaining integral can be evaluated similarly to Eq. (C10),
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Z
d3vfχðvÞðvþ veÞðvþ veÞ ¼

4π2

N0

Z
vesc

0

dvv4e−v
2=v2

0

Z
1

−1
d cos θδ

�
qv cos θ − q · ve −

q2

2mχ
− ω

�

×
Z

2π

0

dϕ
2π

½cos θq̂þ sin θðcosϕn̂1 þ sinϕn̂2Þ� ⊗ ½cos θq̂þ sin θðcosϕn̂1 þ sinϕn̂2Þ�

¼ 4π2

N0q

Z
vesc

0

dvv3e−v
2=v2

0

Z
1

−1
d cos θδ

�
cos θ −

v�
v

��
cos2θq̂ q̂þ 1

2
sin2θð1 − q̂ q̂Þ

�

¼ 4π2

N0q

Z
vesc

v−

dvve−v
2=v2

0

�
v2�q̂ q̂þ

1

2
ðv2 − v2�Þð1 − q̂ q̂Þ

�

¼ v2�q̂ q̂ g0ðq;ωÞ þ ð1 − q̂ q̂Þ π
2v20
N0q

½ðv20 − v2� þ v2−Þe−v2−=v20 − ðv20 − v2� þ v2escÞe−v2esc=v20 �

¼ v2�q̂ q̂ g0ðq;ωÞ þ ð1 − q̂ q̂Þ π
2v20
N0q

½v20e−v
2
−=v20 − ðv20 − v2− þ v2escÞe−v2esc=v20 �; ðC13Þ

where we have used n̂1n̂1 þ n̂2n̂2 ¼ 1 − q̂ q̂. Therefore,

g2ðq;ωÞ ¼
�
ω

q
q̂ − ð1 − q̂ q̂Þ · ve

��
ω

q
q̂ − ð1 − q̂ q̂Þ · ve

�
g0ðq;ωÞ þ ð1 − q̂ q̂Þ π

2v20
N0q

½v20e−v
2
−=v20 − ðv20 − v2− þ v2escÞe−v2esc=v20 �:

ðC14Þ

The following relations between the velocity integrals
often help simplify the calculation,

q · g1ðq;ωÞ ¼ ωg0ðq;ωÞ;
q · g2ðq;ωÞ ¼ g2ðq;ωÞ · q ¼ ωg1ðq;ωÞ: ðC15Þ

They follow from q · vχ ¼ ωq, and can be easily checked
using the explicit expressions above.

APPENDIX D: ESTIMATION OF SINGLE
PHONON EXCITATION RATE IN YIG

In this appendix we explain the analytic estimation that
results in the dashed curve in Fig. 1. For the standard SD
interaction considered in Sec. III A, the single phonon
excitation rate is

ΓðvÞ ¼ 4g2χg2e
m4

V

1

Ω

Z
d3q
ð2πÞ3

X
ν

2πδðων;k − ωqÞjFðeÞ
S;νj2; ðD1Þ

where

FðeÞ
S;νðqÞ ¼

X
j¼Fe3þ

e−WjðqÞeiG·x
0
j

q · ϵ�ν;k;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjων;k

p hSeij: ðD2Þ

See Eqs. (41), (45), and (39). For YIG, ν runs from 1 to
240. However, since DM has same-sign couplings to all the
Fe3þ ions (and zero couplings to the other ions), we expect
acoustic phonons to give an Oð1Þ contribution to the total
rate at low momentum transfer. Further, the dot product

q · ϵ�ν;k;j in F
ðeÞ
S;ν singles out the longitudinal acoustic branch,

ν ¼ 3, which has the following general properties at low
momentum [100],

ων¼3;k ≃ csk; ϵν¼3;k;j ≃
ffiffiffiffiffiffiffiffiffi
mj

mcell

r
k̂; ðD3Þ

where cs is the longitudinal acoustic sound speed. Also, we
can set G ¼ 0, k ¼ q, and Wj ≃ 0 at low q. Therefore,

FðeÞ
S;ν¼3ðqÞ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2mcellcs

r X
j¼Fe3þ

hSeij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
2mcellcs

r
Scell; ðD4Þ

and the velocity-dependent rate becomes

ΓðvÞ ≃ g2χg2e
m4

V

2S2cell
Ωmcellcs

Z
d3q
ð2πÞ2 δðcsq − ωqÞq

¼ g2χg2e
m4

V

S2cell
πΩmcellcs

Z
dqq3

×
Z

d cos θδ

�
csq − qv cos θ þ q2

2mχ

�

¼ g2χg2e
m4

V

S2cell
πΩmcellcs

1

v

Z
dqq2Θðv − vminðqÞÞ; ðD5Þ

where

vminðqÞ≡ q
2mχ

þ cs: ðD6Þ

Now we can write the total rate per unit target mass in terms
of the commonly used η function, defined by
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ηðvminÞ≡
Z

d3v
fðvÞ
v

Θðv − vminÞ: ðD7Þ

The result is

R ≃
1

ρT

ρχ
mχ

g2χg2e
m4

V

S2cell
πΩmcellcs

Z
dqq2ηðvminðqÞÞ

¼ 1

πcs

�
Scell
mcell

�
2 g2χg2e
m4

V

ρχ
mχ

Z
dqq2ηðvminðqÞÞ: ðD8Þ

This is the formula we use to estimate the single phonon
excitation rate in YIG in Sec. III A. The material parameters
are cs ¼ 7.2 km=s [101], Scell ¼ 10, mcell ¼ ρTΩ, with
ρT ¼ 4.95 g=cm3, Ω ¼ 990.683 Å3. The analytic expres-
sion for the ηðvminÞ function for the Maxwell-Boltzmann
distribution of Eq. (C4) can be found in e.g., Ref. [33]. Since
the η function has support up to qmax ≃ 2mχðve þ vescÞ, we
cut off the dashed curve in Fig. 1 at the mχ value for which
qmax reaches

π
Ω1=3, roughly the edge of the 1BZ.
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