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Detectors with low thresholds for electron recoil open a new window to direct searches of sub-GeV dark
matter (DM) candidates. In the past decade, many strong limits on DM-electron interactions have been set,
but most on the one which is spin-independent (SI) of both dark matter and electron spins. In this work, we
study DM-atom scattering through a spin-dependent (SD) interaction at leading order (LO), using well-
benchmarked, state-of-the-art atomic many-body calculations. Exclusion limits on the SD DM-electron
cross section are derived with data taken from experiments with xenon and germanium detectors at leading
sensitivities. In the DM mass range of 0.1–10 GeV, the best limits set by the XENON1T experiment:

σðSDÞe < 10−41–10−40 cm2, are comparable to the ones drawn on DM-neutron and DM-proton at slightly
bigger DM masses. The detector’s responses to the LO SD and SI interactions are analyzed. In
nonrelativistic limit, a constant ratio between them leads to an indistinguishability of the SD and SI
recoil energy spectra. Relativistic calculations however show the scaling starts to break down at a few
hundreds of eV, where the spin-orbit effects become sizable. We discuss the prospects of disentangling the
SI and SD components in DM-electron interactions via spectral shape measurements, as well as having
spin-sensitive experimental signatures without SI backgrounds.

DOI: 10.1103/PhysRevD.106.063003

I. INTRODUCTION

Direct searches of darkmatter (DM) through its scattering
with electrons have being a rapidly growing field in the past
decade.With low-threshold capabilities ofmodern detectors
in electron recoil (ER) and new ideas inspired by theoretical
studies, the coverage of DM mass, mχ , has gradually been
extended from sub-GeV towards increasingly lower reach
(for a comprehensive overview, see, e.g., Ref. [1]). So far,
most attention is given to the DM-electron interaction
which is spin-independent (SI) of both DM and electrons.
Various experiments have already set stringent exclusion

limits on its cross section, σðSIÞe , in the mass range of MeV to
GeV [2–19]. The current best limit above 30 MeV is set by
XENON1T for their huge exposure mass and time [8,11];
in the range of 1–30 MeV, several experiments capitalizing
the condensed phases of materials such as semiconductor
silicon [12,15] and germanium [14,16,19] show potential
improvements upon future scaleup. But, what about the
spin-dependent (SD) interactions?
At typical energy scales of DM direct detection, it is

customary to formulate the DM-electron interactions based
on effective field theory (EFT) [20–29], with the advantage
of being most general and model independent. The non-
relativistic (NR) nature of DM, i.e., its velocity vχ ∼ 10−3,
provides a parameter small enough so that the DM
interactions can be expanded in series economically. At
leading order (LO), i.e., v0χ ¼ 1, there are only two terms:

1χ · 1e (SI) and S⃗χ · S⃗e (SD), where 1 and S⃗ are unity and
spin operators, respectively. It is when matching these NR
effective operators to the underlying theories that the
generality and complementarity of such consideration
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shows its full power [30]. For example, at the relativistic
level, the SI term can come from either a scalar DM with a
scalar-scalar coupling, or a fermionic DM with a scalar-
scalar or vector-vector coupling to electrons; the SD term
can come from a fermionic DM with an pseudovector-
pseudovector or tensor-tensor coupling. As a result, null
observations of them constrain different parts of the broad
DM parameter space. On the other hand, an observation of
such a SD term would not only be a discovery of DM and a
new interaction, but also exclude all scalar DM scenarios—
this adds a stronger motivation to search for it.
The LO SD DM-nucleon interactions have been studied,

though not as extensively as its SI counterpart, with good
recent progress [33–40]. The best limits on the short-range
interactions with a neutron (n) and a proton (p), in terms of

total cross sections, are σðSDÞn <6.2×10−42 cm2 with mχ ¼
30 GeV by XENON1T [38], and σðSDÞp < 3.2 × 10−41 cm2

with mχ ¼ 25 GeV by PICO [39], respectively. Compared
with the best limits of order 10−46 cm2 on the SI inter-
actions, the huge order-of-magnitude difference is easily
understood from the (almost) coherent contributions of
A ∼ 100 nucleons for the SI and a single unpaired nucleon
for the SD case, respectively, in scattering amplitudes. On

the other hand, because a typical atom is of size ∼A
∘
, a cold

DM particle can not induce substantial coherent scattering
with atomic electrons unless it is as light as mχ ≲MeV.
Therefore, in direct searches of DM in the MeV–GeV mass
range, one can anticipate constraints of similar orders on
both LO SD and SI DM-electron interactions, for the latter
has no coherent enhancement in scattering cross sections.
In this work, we study DM-atom scattering through

the SD DM-electron interaction at leading order, using
well-benchmarked, state-of-the-art atomic many-body
approaches. Exclusion limits are derived from various
data of xenon and germanium detectors. The limit on
DM-electron cross section σðSDÞe < 10−41–10−40 cm2 with
mχ ¼ 0.1–10 GeV, set by XENON1T data, is comparable

to the best ones on σðSDÞn;p mentioned above at slightly bigger
mχ . Special attention is on the difference in detector
responses to the SI and SD interactions, with the spin-
orbit effects being found to be the deciding factor. Finally,
we discuss several strategies for sub-GeV DM searches that
can disentangle the SD and SI DM-electron interactions.

II. FORMALISM

At leading order (LO), the effective SD interaction
between DM (χ) and an electron (e) is

L
ðLOÞ
SD ¼ ðc4 þ d4=q2Þðχ†S⃗χχÞ · ðe†S⃗eeÞ; ð1Þ

where the coupling constants c4 and d4 (following the
convention of Refs. [21,22]) are for the short- and

long-range interactions, respectively, and q the magnitude
of the three-momentum transfer q⃗.
The unpolarized differential scattering cross section in

the laboratory frame can be derived straightforwardly (see
e.g., Ref. [26]), and we focus only on the ionization
processes that yield ER signals

dσ
dT

ðionÞ ¼ 1

2πv2χ

Z
qdqðc̄4 þ d̄4=q2Þ2RðionÞ

SD ðT; qÞ: ð2Þ

Note that for later convenience we redefine the coupling
constants ðc̄4; d̄4Þ ¼

ffiffiffiffiffiffiffiffiffi
s̄χ=4

p ðc4; d4Þ by absorbing (i) the
spin factor s̄χ ¼ sχðsχ þ 1Þ=3, which results from an
average of the initial, and a sum of the final DM spin
states, with sχ ¼ 1=2 or 1 applying to the case of a
fermionic or vector DM particle, and (ii) the square of
the electron spin se ¼ 1=2. The SD response function

RðionÞ
SD ðT; qÞ ¼

X
F

X
I

X
j

jhF j
XZ
i¼1

eiq⃗:r⃗iσDi;jjI ij2

× δðEF − EI − TÞ; ð3Þ
involves a statistical average of the initial states jI i and a
sum of all final states jFi allowed by energy conservation
(imposed by the delta function). To incorporate relativistic
effects in atoms, the electron spin operator is expressed by
the 4 × 4 Dirac spin matrices σ⃗De ¼ 2S⃗e, with σ⃗D ¼ γ0γ⃗ ¼
ðσ⃗
0
0
σ⃗Þ where σ⃗ are the normal 2 × 2 Pauli matrices. The

transition operator contains all Z electrons (the summation
of i), and spin operators of orthogonal j-directions con-
tribute incoherently (the summation of j).

Evaluation of RðionÞ
SD proceeds similarly to our previous

work on the SI case [8]. All the essential formulas,
including those new to the SD case, are given in the
Appendix. To emphasize once again the importance of
relativistic and many-body physics, we also highlight
therein the differences from NR, independent-particle
approaches widely adopted in literature.

While the computation of RðionÞ
SD involves completely

different multipole operators from its SI counterpart RðionÞ
SI ,

their definitions only differ formally in RðionÞ
SD having an

additional spin operator σ⃗D and the associated summation
of three directions. Therefore, before presenting our full
numerical results, it is instructive to study the possible
relationship between them. For the purpose, we define a

scaling factor ξ ¼ RðionÞ
SD =RðionÞ

SI .
First in Ref. [20], it was shown in DM scattering off

free electrons that ξð0Þ ¼ 3. Later in Ref. [26], the same con-
clusion was reached for hydrogen-like atoms that ξðHÞ ¼ 3.
Extending to many-electron atoms, it was recently men-
tioned in Ref. [3] and worked out explicitly in Ref. [13]
that atomic methods based on nonrelativistic dynamics
and independent particle picture will also yield that
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ξðNRÞ ¼ 3. Because a NR electron’s orbital and spin wave
functions are factorized, the scaling factor of 3 can be
deducted from the multiplicity of the σ⃗ (for the SD case)
over the unity (for the SI case) operator, when the transition
involves only one independent electron.
However, as there are spin-orbit interactions (SOIs) in

atoms, this scaling relation can only be approximate at best.
Its effects show up in all parts of the response function. First,
the SOI causes the energy shift of two electron states of the
same orbital angular momentum l but different total angular
momenta j ¼ l� 1=2, so the energy-conserving delta func-
tions are different. Second, the electron basis wave functions
(which are best solved by relativistic mean field methods),
their associated one-electron matrix elements, and the
density matrix (which contains the weights of all atomic
configurations that can be mixed by the residual interaction)
all have explicit dependence on j. Therefore, one chief goal
of this paper is to quantify to what extent that ξ ≈ 3 is a good
approximation to apply in DM-atom scattering.
It should be pointed out that the analogous behavior for

DM-nucleus scattering is rather different. Unlike the atomic
SOI, which is electromagnetic with its strength character-
ized by the fine structure constant αEM≊1=137, the nuclear
SOI is a component of the nuclear strong interaction, and its
strength is of the order of the strong coupling constant
αS ∼ 1. Consequently, there is no such simple scaling in
DM-nucleus scattering through the SD and SI DM-nucleon
interactions (see, e.g., Ref. [22]).

III. RESULTS

To get a prediction for the event rate at a detector withNT
atoms

dR
dT

¼ ρχNT

mχ

dhσvχi
dT

; ð4Þ

the differential cross section is weighted and averaged by
the standard Maxwell-Boltzmann velocity distribution of
DM [41], fðv⃗χÞ,

dhσvχi
dT

¼
Z

vmax

vmin

d3vχfðv⃗χÞvχ
dσ
dT

; ð5Þ

with conventional choices of DM parameters (same as in
Ref. [8]): the local density ρχ ¼ 0.4 GeV=cm3, circular v0,
escape vesc, and averaged Earth vE velocities are 220, 544,
and 232 km=s, respectively. The velocity cutoffs are vmax¼
vescþvE and vmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=mχ

p
. We follow the same effi-

cient velocity average scheme as in Refs. [20,42] via an eta
function ηðvminÞ ¼ hv−1χ θðv − vminÞi [41,43]. This simpli-
fication has been explicitly verified in Ref. [8] for the same
kinematic region.
In Fig. 1, the results of dhσvχi=dT are shown for

the cases with mχ ¼ 1 GeV, c1 ¼ c̄4 ¼ 1=GeV−2, and
d1¼d̄4¼10−9. The fully many-body calculations through
(multiconfiguration) relativistic random-phase approxima-
tion, (MC)RRPA, are performed at a few points (for them
being computer-time-consuming) labeled by circles (open
squares) for xenon (germanium) atoms as benchmarks. The
main results in solid curves are obtained from a more
efficient approach; the frozen core approximation (FCA),
which is in the spirit of an independent particle approxi-
mation but with a more realistic mean field to compute
the ionized electron wave function (details in Ref. [8]).

FIG. 1. Top: Averaged velocity-weighted differential cross sections dhσvχi=dT for ionizations of xenon (black) and germanium (red)
by leading-order spin-dependent (solid) and spin-independent (dashed) interactions of short (left) and long (right) range, atmχ ¼ 1 GeV
and coupling constants of c1 ¼ c̄4 ¼ 1=GeV−2 and d1 ¼ d̄4 ¼ 10−9. Points in circles (open squares) are benchmark calculations by
(MC)RRPA for xenon (germanium). Bottom: Lines are ratios of dhσvχi=dT resulting from the SD and the SI interactions (the ξ̄
parameters in text). Points in closed circles (open squares) are ratios of FCA to (MC)RRPA with the SD interaction for xenon
(germanium). The shaded bands are due to variation of the DM velocity spectrum (see text).
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In general, FCA shows good agreement with (MC)RRPA
benchmark points except near edge energies. Considering
the 5% accuracy of (MC)RRPA achieved in photoabsorp-
tion cross sections with T ≥ 12 eV and 80 eV for xenon
[44] and germanium [45,46], respectively, we conserva-
tively assign an overall theory error of 20%. [The theory
error can be reduced to 5%, if we perform (MC)RRPA
calculations throughout the work without the limitation of
computer resources.] Complete data of dhσvχi=dT with
different mχ are provided in Supplemental Material [47].
To explore the impact of uncertainties in the DM velocity

spectrum, we follow Ref. [48] and vary ðv0; vesc; vEÞ in
the range of ð220� 18; 580� 63; 242� 10Þ km=s. The
changes are illustrated by bands in Fig. 1 for the xenon
case. For the short-range interaction, the change is only
obvious at high energy where the phase space is determined
by the tail of the velocity spectrum. For the long-range
interaction, as the scattering amplitude has a 1=q2 depend-
ence on the momentum transfer, the change depends more
sensitively on the whole velocity profile.
Data from CDMSlite [34], XENON10 [2], XENON100

[4], XENON1T [11], and PandaX-II [17] are analyzed
against the theory predictions of dR=dT in the same way
as in Ref. [8]). In Fig. 2, the exclusion limits on the
coupling constants c̄4 and d̄4, and equivalently the SD

DM-electron total cross sections σðSDÞe ¼ 3c̄24μ
2
χe=π and

σ̄ðSDÞe ¼3d̄24μ
2
χe=ðπðmeαÞ4Þ, where μχe¼mχme=ðmχþmeÞ,

are presented on the right and left y-axis, respectively.
For mχ larger than 42 and 140 MeV, XENON1T provides
the most stringent limits for the short- and long-range
interactions, respectively, with its ton-year scale exposure.
Particularly in the range between 0.1–10 GeV, the limits on

σðSDÞe < 10−41–10−40 cm2 are of similar order of magnitude

as the ones of σðSDÞn;p at slightly bigger mχ. This is an
important complement to mainstream searches of weakly

interacting massive particles through DM-nucleus scatter-
ing; not only because of some overlapping in mass range
(1–10 GeV), but also for classes of DM which can be both
hadrophilic and leptophilic. For smaller mχ down to
10 MeV, PandaX-II instead set better limits because of
its lower ER threshold at 80 eV. It defines the exclusion
boundary at low mχ for having lower background ∼2.64 ×
10−4 cpd=kg=keV compared to ∼0.2 of XENON10,
despite the latter has an even lower threshold at 13.8 eV.
The shaded bands are resulted from the same variation of
DM velocity parameters mentioned above.
We emphasize here the derived exclusion limits depend

critically on the theory predictions for the DM scattering
event rates. Substantial differences exist between our
relativistic many-body approach and several NR mean-
field approaches Refs. [2,4,5,13,42] including the package
QEdark that was used in the data analyses of Refs. [11,17].
Detailed comparisons, reasons that cause the differences,
and justifications of our approach are presented in Ref. [8].
Based on similar arguments, one would generically antici-
pate weaker limits on the short-range interaction in the
high-mass region, and tighter limits on the long-range
interaction in the low-mass region, when above-mentioned
approaches are applied. The main reasons are: (i) the
relativistic effects substantially increase the scattering event
rate at high T, and (ii) the many-body effects play an
important role at all distances, including the Coulomb
screening at long distances which substantially decrease the
scattering rate at very low T.
Not included in our data analyses are several low-

threshold semiconductor experiments, which already set
limits on σðSIÞe below 10 MeV and have the potential to
compete with liquid noble-gas detectors above the 10 MeV
region, particularly for the long-range interactions, in the
future. The associated many-body physics of condensed
matter is beyond the scope of this work, but has been taken
in Refs. [49–56] for the SI interaction, and recently in

FIG. 2. Top: Exclusion limits at 90% C.L. on the spin-dependent short- (left) and long- (right) range DM-electron interactions
as functions of mχ derived from data of CDMSlite [34], XENON10 [2], XENON100 [4], XENON1T [11], and PandaX-II [17] data.
The shaded bands are due to variation of the DM velocity spectrum (see text).
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Refs. [29,55–57] that also include the SD interactions.
Currently, there are discrepancies among predictions from
different theoretical schemes.

IV. DISENTANGLEMENT OF SD
AND SI INTERACTIONS

Conventional DM detectors only measure recoil energy.
Detector responses to SI and SD signatures must be
different in order to disentangle them. Therefore, if the
NR scaling ξðNRÞ ¼ 3 is valid, the SD and SI signals are
indistinguishable in the measurable recoil energy spectrum

shapes and the exclusion limits of σðSDÞe and σðSIÞe would
have identical mχ dependence.
In the bottom panel of Fig. 1, this statement is examined

through the ξ̄ parameter, which is the ratio of dhσvχi=dT
with the SD to the SI interaction, for the case of
mχ ¼ 1 GeV. The overbar in ξ̄ indicates the responses
functions are integrated over q and averaged over the DM
flux in dhσvχi=dT. At T ≲ 200 eV, the scaling relation
ξ̄ ≈ 3 works well for both xenon and germanium. The
scaling deviation starts to grow as T increases, and the
larger deviations in xenon than germanium demonstrates
the effects of a stronger SOI in an atom of higher Z. We
note that the SOI is only part of the relativistic corrections
in atoms. Therefore, even though it has been shown that
relativistic corrections become sizable for T ≳ 200 eV in
DM-xenon scattering [8], the departure of ξ̄ from the NR
prediction ξ̄ðNRÞ ¼3 is comparatively modest. Furthermore,
as the figure shows, the ξ̄ parameter is insensitive to the
variation of the DM velocity spectrum.
The significance of the scaling deviation at high

energy is that it allows the SD and SI signals to be
distinguished, most practically by the precision spectral
shape measurements that follow the discovery experiments.
In contrast, exclusion limits are dominated by low-energy
events. We note that the SD exclusion curves in Fig. 2 are
indistinguishable from the ones for SI given in Fig. 2 of
Ref. [8]. However, a higher energy cutoff will result in
noticeable differences; an example is given in the figure
with a 0.4 keV cutoff applied to the XENON1T data (the
solid and dotted red lines).
To estimate the precision requirement, consider a xenon

target with 50 eV threshold as an example. The energy bin
expected to yield the largest event count is T ¼ 80ð50Þ eV
for the short-range (long-range) interaction. Suppose this
bin has 1,000,000 events, the “tail” 400 eV energy bin
will have ∼16; 600 (22) events in the SD channel, and
∼18; 100 (23) events in the SI channel. That is, the SD and
SI signals can be distinguished with a ∼1.5×10−3ð1×10−6Þ
precision. While this seems rather demanding, we note that
the situation is similar for the DM-nucleon interactions.
Due to the coherent scattering, the nuclear SI cross section
is enhanced by A2 ∼ 104 compared to the SD one. As a
result, the separation of the SI and SD DM-nucleon

interactions in EFT, when both present, is not less chal-
lenging experimentally. In recent years, the exclusion of
DM-nucleon interactions in EFT has progressed from
one interaction term at a time to multicomponent analy-
ses [58–61], the breaking of the SD-SI degeneracy in
DM-electron scattering in detectors implies similar prac-
tices can be applied.
There are intriguing possibilities of experimental sig-

natures unique to SD interactions without SI backgrounds.
For example, in a spin polarizable target and with known
spin states of the ionized electrons, only part of the SD
interaction

P
λ¼�1ð−1ÞλSχ;λSe;−λ (where λ denotes the

spherical component) can generate signals as spin flips.
There are intense recent interests to seek solutions in
condensed phases of matter which have natural spin, or
magnetic, orders. For instance, a ferrimagnetic material—
yttrium iron garnet—has been proposed as a candidate
target [29,57] for light DM searches with mχ ≤ 10 MeV.
The SD DM-electron interaction can perturb this spin
system and generate magnons, which are the low-energy
quanta of spin waves and experimentally measurable.
Motivated by the role of SOI, another approach is to

realize experimental configurations where spins couple
strongly to orbital angular momenta. For atoms, the fine
structure constant is fixed, so that SOI enhancement can
only be found in the inner-shell electrons, which have
higher ionization energies. The novel Dirac materials
do have the desired property that the effective fine
structure constants can be larger than αEM. Take graphene
as an example; a naive dimensional analysis yields αg ¼
αEM=vF ≈ 2.2, adopting a generic Fermi velocity at Dirac
cone vF ≈ 106 m=s. While recent calculations [62] and
measurements [63,64] reported smaller values in between
0.1 and 1 (mostly due to the suppression by Coulomb
screening), they are still significantly bigger than αEM. The
smallness of vF compared to the speed of light is the most
important factor that lowers the bar to reach the relativistic
limit. Unfortunately, the intrinsic SOI in graphene is
found to be small [65], so whether it could generate a
sufficiently different SD response requires more study.
More promising candidates are topological insulators
[66,67] and transition-metal dichalcogenides [68], whose
structures critically depend on SOIs. In addition, among a
few Dirac materials being proposed to search for SI DM-
electron interactions, the semimetal ZrTe5 [69–71] and
organic crystal ðBEDT − TTFÞ · Br [72] show corrections
from SOIs in band structure calculations.

V. SUMMARY

The SD DM-electron interactions is an important, but
less-attended subject in direct DM searches. Its studies
complement the very active research on the SI interactions,
and together they can provide a more comprehensive
understanding about the nature of DM and its interactions
with matter. We derive in this paper, for the first time, limits
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on the SD DM-electron cross sections at leading order with
state-of-the-art atomic many-body calculations and current
best experiment data. As a result of the spin-orbit inter-
action, the spectral shapes of SD and SI recoil spectra differ
at high energies, which provides a way of differentiating
them experimentally. In addition, signals unique to SD
interactions and systems of enhanced SOIs that can be
found in novel phases of matter may offer more direct
experimental probes for SD from sub-GeV DM searches in
the future.

ACKNOWLEDGMENTS

Thisworkwas supported in part under ContractNos. 106-
2923-M-001-006-MY5, 108-2112-002-003-MY3, 108-
2112-M-259-003, and 109-2112-M-259-001 from the
Ministry of Science and Technology, 2019-20/ECP-2 and
2021/TG2.1 from the National Center for Theoretical
Sciences, and the Kenda Foundation (J.-W. C.) of Taiwan;
the Canada First Research Excellence Fund through the
Arthur B. McDonald Canadian Astroparticle Physics
Research Institute (C.-P. W.); and Contract F.30-584/2021
(BSR), UGC-BSR Research Start Up Grant, India (L. S.).

APPENDIX: ATOMIC MANY-BODY
RESPONSE FUNCTIONS

It is a well-acknowledged fact that a detector’s response
to scattering of nonrelativistic sub-GeV DM involves
many-body physics at atomic, molecular, or condensed
matter scale, depending on the configuration of a detector.
In this appendix we summarize the important steps and
formulas in a truly many-body calculation of the atomic
response functions, and illustrate the differences to
approaches based solely on independent particle pictures,
either relativistically or nonrelativistically. We shall follow
the notations and terminology of Ref. [22] (a seminal work
on the nuclear responses to DM-nucleus scattering) as
much as possible. However, a necessary addition is using
Dirac spinors for electrons, as relativistic effects are
important and manifest in atomic physics. A further note
is, while a formulation in molecular or condensed matter
systems proceeds similarly in spirit, there are substantial
changes of basic elements and notations which we leave for
future work.
For brevity, consider only the short-range DM-electron

interactions

L ðLOÞ ¼ c1ðχ†1χχÞ · ðe†1eÞ þ c4ðχ†S⃗χχÞ · ðe†S⃗eeÞ; ðA1Þ

with both leading-order SI (c1) and SD (c4) terms included.
The unpolarized differential scattering cross section in the
laboratory frame is given by

dσ
dT

ðionÞ
¼ 1

2πv2χ

Z
qdqc21R

ðSIÞðT;qÞþ c̄24R
ðSDÞðT;qÞ; ðA2Þ

where c̄4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sχðsχ þ 1Þ=12p

c4 that absorbs the factors due
to DM spin, sχ , and electron spin se ¼ 1=2. The SI and SD
detector responses are encoded in two functions

RðionÞ
SI ðT; qÞ ¼

X
F

X
I

����hF j
XZ
i¼1

eiq⃗:r⃗i jI i
����
2

δðE…Þ; ðA3aÞ

RðionÞ
SD ðT; qÞ ¼

X
F

X
I

X
k

����hF j
XZ
i¼1

eiq⃗:r⃗σDi;kjI i
����
2

δðE…Þ;

ðA3bÞ

where the delta function imposes energy conservation
EF ¼ EI þ T.
A substantial simplification to the problem can usually

be achieved by multipole expansion. First, because total
angular momentum and its z-projection are good quantum
numbers, so we label the initial and final states as jI i ¼
jI; JIMJIi and jFi ¼ jF; JFMJFi, respectively, where I
and F are collective labels for other quantum numbers.
Second, each multipole operator has its definite spherical
rank, J, component, MJ, and parity, so the selection rules
help to organize all allowed transitions in a systematic way.
Third, by the Wigner-Eckart theorem, the summation over
MJF , MJI , and MJ can be carried out easily, and what
remain to be calculated are the reduced matrix elements.
Most important of all, for low-energy processes, the
expansion in spherical rank converges efficiently.
Following the notation of Ref. [22], the SI and SD

response functions can now be decomposed as

RðionÞ
SI ðT; qÞ ¼

X
FJF

X
IJI

4π

2JI þ 1

X
J¼0

jhF; JFkM̂JðqÞkI; JIij2

× δðE…Þ; ðA4aÞ

RðionÞ
SD ðT;qÞ¼

X
FJF

X
IJI

4π

2JIþ1

�X
J¼1

jhF;JFkΣ̂JðqÞkI;JIij2

þ
X
J¼1

jhF;JFkΣ̂0
JðqÞkI;JIij2

þ
X
J¼0

jhF;JFkΣ̂00
JðqÞkI;JIij2

�
δðE…Þ; ðA4bÞ

and the relevant four types of multipole operators are

M̂MJ
J ðqÞ ¼

XZ
i¼1

jJðqriÞYMJ
J ðΩriÞ; ðA5aÞ

Σ̂MJ
J ðqÞ ¼

XZ
i¼1

jJðqriÞY⃗MJ
JJ ðΩriÞ · σ⃗Di ; ðA5bÞ
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Σ̂0MJ
J ðqÞ ¼

XZ
i¼1

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

2J þ 1

r
jJþ1ðqriÞY⃗MJ

JJþ1ðΩriÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

2J þ 1

r
jJ−1ðqriÞY⃗MJ

JJ−1ðΩriÞ
�
· σ⃗Di ; ðA5cÞ

Σ̂00MJ
J ðqÞ ¼

XZ
i¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

2J þ 1

r
jJþ1ðqriÞY⃗MJ

JJþ1ðΩriÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J
2J þ 1

r
jJ−1ðqriÞY⃗MJ

JJ−1ðΩriÞ
�
· σ⃗Di ; ðA5dÞ

where jJðqrÞ is the spherical Bessel function, YMJ
J ðΩrÞ the

spherical harmonics of solid angle Ωr, and Y⃗MJ
JL ðΩrÞ the

vector spherical harmonics formed by recoupling of
YML
L ðΩrÞ and the unit vector r̂, whose spherical projection

is proportional to Yλ
1.

A general feature of all these matrix elements to be
computed is they involve many-body states jI i and jFi,
but the operators are one-body, i.e., only one electron
makes transition at one time. Such matrix elements of a
generic one-body operator Ôð1Þ ¼ P

i ô
ðiÞ can be com-

pactly written by second quantization that

hF jÔð1ÞjI i ¼
X
αβ

ΨFI ðα; βÞhαjôjβi; ðA6Þ

where the one-body density matrix

ΨFI ðα; βÞ ¼ hF jĉ†αĉβjI i ðA7Þ

gives the statistical weight of annihilating an electron with a
quantum state labeled by β and creating an electron with a
quantum state labeled by α in this transition, and the total
transition amplitude is the weighted sum of each single-
particle transition with an amplitude given by hαjôjβi (the
reference to the ith electron is dropped because electrons
are identical).
Implementing the above scheme to a spherical basis with

spherical operators is standard but too lengthy to reproduce
here, but we should mention two basic ingredients. First, all
single-particle states have good quantum labels of total
angular momentum, so one can label them as jαi ¼
jajamjai and jβi ¼ jbjbmjbi. Second, by recoupling the

creation and annihilation operator ĉ†α and ĉβ, a spherical
tensor operator of rank J and componentMJ can be formed

½ĉ†α ⊗ ĉβ�MJ
J ¼

X
mjamjb

hjajb; JMJjjajb;mjamjbiĉ†αĉβ; ðA8Þ

where the bra-ket is the standard Clebsch-Gordan coef-
ficient. Consequently, the reduced matrix element of a
spherical operator can be recast as

hF; JFjjÔð1Þ
J jjI; JIi ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p
X
ajabjb

Ψ̄J
FJF;IJI

ðaja; bjbÞ

× hajajjôJjjbjbi; ðA9Þ

and the resulting density matrix is also reduced

Ψ̄J
FJF;IJI

ðaja; bjbÞ ¼ hF; JFk½ĉ†α ⊗ ĉβ�JkI; JIi; ðA10Þ

in the sense that it no longer depends on total angular
momentum substates mja and mjb , and the spherical
multipole component MJ.
At this point we should note that as long as many-body

wave functions can be obtained exactly, the choice of a
complete set of single-particle basis states fjαi; jβi;…g is
irrelevant, because the density matrix is also known exactly.
However, this does not happen in practical cases, and the
arts of many-body methods is mostly about choosing good
sets of basis states and solving the density matrix reliably.
The approach by Ref. [22], the nuclear shell model, is built
upon a simple basis spanned by the harmonic oscillator
eigenstates, which have nice properties that yield algebraic
results of single-particle matrix elements. This simplistic
mean field is compensated by diagonalizing the residual
interaction in a large, but still truncated, model space with
proper care in using the effective operators. Our approach,
the (multiconfiguration) relativistic random phase approxi-
mation [(MC)RRPA], proceeds in a rather different direc-
tion. The mean field is first solved self-consistently by the
Dirac-Hartree-Fock equation, so the single-particle basis
states are optimized, i.e., they already include a large part of
many-body physics. Then the effects due to the residual
interactions are accounted for by the random phase
approximation. The resulting density matrices, though
not as dense as the ones of shell model approaches, are
certainly not sparse when residual correlation induces
substantial configuration mixing.

1. Independent particle approximation

Full-scalemany-bodycalculations of the atomic responses
by (MC)RRPA, or other methods that take residual inter-
actions into account, usually have high demandof computing
resources. Therefore, it is desirable to seek approximations
that perform reasonably good but more efficiently. For the
purpose, the independent particle approximation (IPA)
based on mean field approaches serves as a good starting
point.
In such a picture, the ground state of an atom is

approximated by filling all electrons to lowest Z single-
particle orbitals, which are solutions of the mean field
equation, and the resulting many-body wave function, as a
Slater determinant (or a linear combination of several
equivalent configurations for open-shell atoms), can suc-
cessfully describe a lot, if not all, static ground state
properties of an atom. When considering the action of a
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one-body operator on this assembly of Z noninteracting
electrons, called core electrons, then the excited state is
simply one electron leaving the core and occupying a
higher energy level (for ionization, a positive-energy state
in continuum). Conventionally, this final state is called a
one-particle-one-hole (1p1h) excitation of the initial ground
state, which is taken to be the physical vacuum j0i of zero
particle and zero hole, and also zero total angular momen-
tum JI ¼ 0. A final state of JF ¼ J that corresponds to one
bound electron in the orbital jnilijii being ionized to a
continuum orbital jkflfjfi) can be completely specified as
jðkflfjfÞðnilijiÞ−1; JF ¼ Ji ¼ j1p1h; Ji. As a result, the
density matrix in the independent particle picture is
extremely simple,

h1p1h; Jk½ĉ†α ⊗ ĉβ�Jk0; 0i
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J þ 1
p

δa;kflfδjajfδb;niliδjbji ; ðA11Þ

and the many-body matrix element is reduced to the one
with single-particle states

h1p1h; JjjÔð1Þ
J jj0; 0i ¼ hkflfjfjjôJjjnilijii; ðA12Þ

where jjf − jij ≤ J ≤ jf þ ji.
The spin-angular parts of the relevant single-particle

matrix elements can be worked out algebraically as follows:
First, we express the relativistic single-particle orbital
functions in coordinate space as

ϕεljmðr⃗Þ ¼
1

r

� gεljðrÞY m
jlðΩrÞ

−ifεljðrÞðσ⃗ · r̂ÞY m
jlðΩrÞ

�
; ðA13Þ

where ε refers to nðkÞ for the bound (free) electron, and
Y m

jlðΩrÞ the spin-angular function. Then the reduced matrix
elements are simplified by the following two formulas,

hεflfjfjjjJðqrÞYJðΩrÞjjεilijii ¼
ð−1ÞJþjiþ1=2ffiffiffiffiffiffi

4π
p ½lf�½li�½jf�½ji�½J�

�
lf jf 1=2

ji li J

��
lf J li
0 0 0

�
hεflfjfjjJðqrÞjεilijii; ðA14aÞ

hεflfjfjjjLðqrÞY⃗JLðΩrÞ · σ⃗Djjεilijii ¼
ð−1Þlf ffiffiffi

6
p

ffiffiffiffiffiffi
4π

p ½lf�½li�½jf�½ji�½L�½J�
8<
:

lf li L

1=2 1=2 1

jf ji J

9=
;
�
lf L li
0 0 0

�
hεflfjfjjLðqrÞjεilijii;

ðA14bÞ

where the shorthand notation ½x� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ 1

p
, and the stan-

dard forms of theWigner 3-j, 6-j, and 9-j symbols are used.
The most important structure information is contained in

the radial integrals

hεflfjfjjJðqrÞjεilijii ¼
Z

dr jJðqrÞðgεflfjfðrÞgεilijiðrÞ

þ fεflfjfðrÞfεilijiðrÞÞ; ðA15Þ

which depend on the single-particle orbital wave functions.
For the electrons in the core, as the mean field methods
based on variational principles are designed to get a best
approximation for the ground state energy, the resulting
wave functions can be taken with certain confidence.
However, it is more problematic for the ionized electron,
and such a highly excited state goes beyond the reach of
conventional mean field design. There are many methods
applied to DM-atom scattering, including plane wave,
hydrogen-like, and frozen core approximations. We refer
readers to Ref. [8] for more discussions and comparison of
these methods, and only point out here that even though our
main results in this paper are obtained with a frozen core
approximation (FCA), the latter approach is justified by a
few benchmark calculations using (MC)RRPA.

2. Nonrelativistic limit

By further taking the nonrelativistic (NR) limit to the
above independent particle approximation, we now show
explicitly how our formulation can be reduced to the
conventional form widely used in the literature, and recover
the NR scaling factor ξðNRÞ ¼ 3.
In numerical computations, the NR limit can be

implemented by taking the speed of light to infinity.
Theoretically, the most important features are (i) the
Dirac spinor now has a vanishing small component and
collapses to a Pauli spinor, i.e., all functions fεljðrÞ can be
taken to zero, and (ii) the radial wave functions now only
depends on ε and l, since there is no longer a spin-orbit
interaction to break the j ¼ l� 1=2 degeneracy. As a
result, the only change in our formulation is in the radial
integral

hεflfjfjjJðqrÞjεilijii→hεflfjjJðqrÞjεiliiðNRÞ
¼
Z

drjJðqrÞuεflfðrÞuεiliðrÞ; ðA16Þ

where uεljðrÞ’s are the NR radial wave functions.
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In the NR-IPA scheme, the SI response function

RðionÞ
SI ðT; qÞ ¼

X
kflfjf

X
niliji

X
L¼0

4πjhkflfjfjjjLðqrÞYLðΩrÞjjnilijiij2δðE…Þ;

¼
X
kflf

X
nili

X
L¼0

2½lf�2½li�2½L�2
�
lf L li
0 0 0

�
2

hkflfjjLðqrÞjnilii2ðNRÞδðE…Þ; ðA17Þ

with the summations over jf and ji being done by the
identity

Xlfþ1=2

jf¼jlf−1=2j

Xliþ1=2

ji¼jli−1=2j
½jf�2½ji�2

�
lf jf 1=2

ji li L

�
2

¼ 2: ðA18Þ

Note that the multipole rank is renamed from J to L to
reflect the fact that the operator is purely spatial.
If one uses the continuum wave function normalization

hk0l0m0
ljklmli¼ð2πÞ3=k2δðk−k0Þδl0lδm0

lml
and integrate out

kf ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meεf

p
through the energy conservation delta func-

tion δðk2f=2me − εnili − TÞ, where εnili is the energy of the
nili shell,

RðionÞ
SI ðT;qÞ¼

X
nili

X
lf

X
L¼0

2mekf
ð2πÞ3 ½lf�

2½li�2½L�2
�
lf L li
0 0 0

�
2

× hkflfjjJðqrÞjnilii2ðNRÞHðTþ εniliÞ;

¼
X
nili

HðTþ εniliÞ
4ðTþ εniliÞ

jfniliion ðT;qÞj2: ðA19Þ

This equation connects our definition of the SI response
function to the conventional atomic ionization form factor
fniliion ðT; qÞ [2,4,42], which is based on a nonrelativistic,
independent particle approximation. The Heaviside func-
tion HðT þ εniliÞ is to ensure the energy transfer is big
enough to ionize a nili-shell electron.

The SD response function can be worked out similarly
with slightly more cumbersome algebra. There are two key
steps. One is the identity that furnishes the summation over
jf and ji,

Xlfþ1=2

jf¼jlf−1=2j

Xliþ1=2

ji¼jli−1=2j
½jf�2½ji�2½L�2½1�2

8<
:

lf li L

1=2 1=2 1

jf ji J

9=
;

×

8<
:

lf li L0

1=2 1=2 1

jf ji J

9=
; ¼ δLL0 : ðA20Þ

The other is reorganizing the summation over the rank of
multipole J to the one over the rank of orbital angular
momentum L. Among the three types of operators
involved, Σ̂J has different parity than Σ̂0

J and Σ̂00
J . For Σ̂J,

the orbital rank L ¼ J; for Σ̂0
J and Σ̂00

J , the orbital rank can
be L ¼ J � 1, so we call them Σ̂0

J� and Σ̂00
J�. As the above

9-j orthogonality shows, there is no mixing between
operators of different orbital rank. Therefore, for a given
L, the SD response function contains contributions from
jΣLj2, jΣ0

ðL−1Þþj2, jΣ00
ðL−1Þþj2, jΣ0

ðLþ1Þ−j2, and jΣ00
ðLþ1Þ−j2 with

a requirement that J ≥ 1 for Σ̂J and Σ̂0
J and J ≥ 0 for Σ̂00

J.
Eventually, we can reduce the SD response function in the
NR-IPA scheme as

RðionÞ
SD ðT; qÞ ¼

X
kflf

X
nili

2½lf�2½li�2
�
½1�2

�
lf 0 li
0 0 0

�
2

þ
X
L¼1

ð½L�2 þ ½L − 1�2 þ ½Lþ 1�2Þ
�
lf L li
0 0 0

�
2
�
hkflfjjLðqrÞjnilii2ðNRÞδðE…Þ

¼
X
kflf

X
nili

X
L¼0

6½lf�2½li�2½L�2
�
lf L li
0 0 0

�
2

hkflfjjLðqrÞjnilii2ðNRÞδðE…Þ

¼ 3RðionÞ
SI ðT; qÞ; ðA21Þ

and prove explicitly the scaling relation ξðNRÞ ¼ 3.
We note that the scaling relation ξðNRÞ ¼ 3 can

be derived rather straightforwardly starting from the
basis where the spatial and spin part of the single
particle wave functions are decoupled and factorized.

However, the lengthy derivation presented here
should help readers appreciate the differences between
a truly many-body and relativistic calculation from
the ones based on nonrelativistic, independent particle
approximations.
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