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Accepted 2015 February 11. Received 2015 February 11; in original form 2015 January 6

ABSTRACT
Using the Two Micron All Sky Survey Photometric Redshift catalogue we perform a number of
statistical tests aimed at detecting possible departures from statistical homogeneity and isotropy
in the large-scale structure of the Universe. Making use of the angular homogeneity index, an
observable proposed in a previous publication, as well as studying the scaling of the angular
clustering and number counts with magnitude limit, we place constraints on the fractal nature
of the galaxy distribution. We find that the statistical properties of our sample are in excellent
agreement with the standard cosmological model, and that it reaches the homogeneous regime
significantly faster than a class of fractal models with dimensions D < 2.75. As part of our
search for systematic effects, we also study the presence of hemispherical asymmetries in our
data, finding no significant deviation beyond those allowed by the concordance model.

Key words: cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

In the last decades, due to the increasing abundance and quality of
astronomical observations, we have been able to draw a fairly com-
plete picture of the Universe on cosmological scales. The so-called
� cold dark matter (�CDM) model can successfully explain the
vast majority of observational data, and we are now able to con-
strain the value of many of its free parameters to per cent precision
(Planck Collaboration XVI 2014). This model is based on a small
number of premises, arguably the most fundamental of which is the
cosmological principle (CP), which states that on large scales the
distribution of matter in the Universe is homogeneous and isotropic.

The exact validity of the CP is unfortunately difficult to ver-
ify. While the high degree of isotropy of the cosmic microwave
background (CMB; Fixsen et al. 1996; Planck Collaboration XXIII
2014) certainly supports this assumption in the early Universe, as
well as during most of its history, it is not possible to unequivo-
cally relate that to the degree of homogeneity of the present-day
Universe.1 Large-scale homogeneity and isotropy are usually taken
for granted without proof in the application of many cosmological

� E-mail: david.alonso@astro.ox.ac.uk
1 It is worth noting that the late-time, non-linear evolution of density per-
turbations can potentially affect the background expansion of the Universe
in a process called ‘back-reaction’ (Räsänen 2011). However, since general

probes (Durrer 2011). This is often a reasonable approach, as long as
the assumptions that go into the analysis methods are clearly stated
and understood. However, since multiple cosmological observables
rely on the validity of the CP, it would be desirable to verify these
assumptions independently. Since the standard cosmological model
allows for the presence of small-scale inhomogeneities, and it only
approaches the ideal CP asymptotically on large scales, it is nec-
essary to quantify the departure from the �CDM prediction as a
function of scale. In the late-time Universe this can be done by
studying the fractality of the galaxy distribution: in a pure fractal
distribution, structures are found with the same amplitude on arbi-
trarily large scales, and homogeneity is never reached. The reader
is referred to Martı́nez & Saar (2002), and references therein, for a
thorough introduction to the theory of fractal point processes.

Fractal dimensions quantify different moments of the counts-in-
spheres in a point distribution. The most commonly used of them
is the so-called correlation dimension D2(r), which quantifies the
filling factor of spheres of different radii centred on points in the dis-
tribution. Using this kind of observables, different groups have been
able to measure the transition from a fractal with D2 < 3 to a homo-
geneous distribution D2 = 3 on scales rH ∼ 100 Mpc (Guzzo 1997;
Pan & Coles 2000; Kurokawa, Morikawa & Mouri 2001; Hogg et al.

back-reaction models preserve statistical homogeneity and isotropy, they
cannot be constrained by our analysis.
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2005; Seshadri 2005; Sarkar et al. 2009; Scrimgeour et al. 2012;
Nadathur 2013), while other authors claim that such transition has
not yet been observed (Joyce, Montuori & Labini 1999; Joyce et al.
2005; Sylos Labini 2011a,b; Sylos Labini, Tekhanovich & Baryshev
2014). In order to perform such analyses, full three-dimensional
information for all the galaxies is necessary, and therefore these
methods have only been used on spectroscopic catalogues, which
traditionally cover much smaller volumes than their photometric
counterparts. As we however showed in a previous publication
(Alonso et al. 2014), it is possible to adapt this kind of study to
two-dimensional data projected on the celestial sphere and still be
able extract information regarding the fractality of the local large-
scale structure. This method can be combined with the traditional
analysis of the scaling of the one- and two-point statistics of the
galaxy distribution with magnitude limit to study the effective frac-
tal dimension of the galaxy distribution using only angular informa-
tion. With extra radial information, such as photometric redshifts,
the constraints on possible departures from the CP can be enhanced
further.

In this work we apply these techniques to the Two Micron All Sky
Survey (2MASS) Photometric Redshift catalogue (2MPZ; Bilicki
et al. 2014a), an almost full-sky data set providing comprehensive
information on the galaxy distribution in the local Universe (z̄ ∼
0.1). We are thus able to study possible departures from the CP
on very large angular scales at late times, when these departures
are expected to be maximal. The paper is structured as follows. In
Section 2 we present the methods and observables implemented on
our data, as well as the �CDM predictions for these observables.
Section 3 gives an overview of the 2MPZ, the sample used in this
work and the criteria used in its selection. Section 4 presents our
results regarding the fractality of the galaxy distribution in our
sample. In Section 4.3 we study the impact of different potential
sources systematics that could affect our results. In particular we
investigate the presence of hemispherical asymmetries in our final
sample. Finally, Section 5 summarizes our results. We also present,
in Appendices A and B, the methods to generate mock �CDM and
fractal realizations of the galaxy distribution that were used in this
analysis.

2 T E S T S O F H O M O G E N E I T Y U S I N G
A N G U L A R I N F O R M ATI O N

Often in optical and near-infrared galaxy surveys it is not possi-
ble to measure precise redshifts for every object, mainly due to
the large amount of time needed to integrate down the noise in
a narrow-band spectrograph. Complete spectroscopic samples are
thus typically shallower than photometric ones, reaching the shot
noise limit faster. The situation is particularly striking in the context
of all-sky (4π sr) galaxy surveys. While the largest photometric cata-
logues covering the whole celestial sphere [optical SuperCOSMOS,
infrared 2MASS and Wide-field Infrared Survey Explorer (WISE)]
include hundreds of millions of sources, their largest spectroscopic
counterpart, the 2MASS Redshift Survey (Huchra et al. 2012), con-
tains only 45 000 galaxies, hardly reaching beyond z = 0.05. Deep
all-sky catalogues are however essential if one desires to test the
isotropy in matter distribution, and certainly favourable also for
studying its homogeneity.

If large volumes or number densities are needed for a particular
study, it is often necessary to use data sets containing only angu-
lar coordinates and measured fluxes in a few wide bands for each
object. Although this severely constrains the range of analyses that
can be performed on these catalogues, there is still a great deal of

cosmological information that can be extracted. In this section we
will describe different studies, related to the degree of homogeneity
of the galaxy distribution, which can be performed using only an-
gular information, starting with a brief review of angular clustering
statistics.

2.1 Angular clustering

Probably the most informative observable regarding the statistics of
the projected galaxy distribution is the angular two-point correlation
function w(θ), defined as the excess probability of finding two
galaxies with an angular separation θ with respect to an isotropic
distribution:

dP (θ ) = n̄2
� [1 + w(θ )] d�1 d�2, (1)

where n̄� is the mean angular number density of galaxies.
The modelling of w(θ ) has been extensively covered in the liter-

ature (Peebles 1980; Crocce, Cabré & Gaztañaga 2011) and we will
only quote the main results here. The angular density of galaxies
can be expanded in terms of its harmonic coefficients alm, which for
a statistically isotropic distribution are uncorrelated and described
by their angular power spectrum Cl ≡ 〈|alm|2〉. The Cl are straight-
forwardly related to P0(k), the 3D power spectrum at z = 0:

Cl = 2

π

∫ ∞

0
dk k2 P0(k)|ωl(k)|2, (2)

where

ωl(k) ≡
∫ ∞

0
dχ χ2 W (χ ) G(z) [b(z)jl(kχ ) − f (z)j ′′

l (kχ )]. (3)

Here b(z) is the galaxy bias, χ is the radial comoving distance,
related to the redshift in a homogeneous background through

χ (z) =
∫ z

0

c dz

H (z)
, (4)

jl(x) is the lth order spherical Bessel function and G(z) and f(z)
are the linear growth factor and growth rate, respectively (implic-
itly functions of the comoving distance χ on the light cone). The
quantity W(χ ) above is the survey selection function, describing the
average number density of sources as a function of the comoving
distance to the observer and normalized to∫ ∞

0
W (χ ) χ2 dχ = 1. (5)

Finally, the angular power spectrum is related to the angular cor-
relation function through an expansion in Legendre polynomials
Ll:

w(θ ) =
∞∑
l=0

2l + 1

4π
Cl Ll(cos θ ). (6)

For small angular separations it is possible to use the so-called
Limber approximation (Limber 1953), which simplifies the rela-
tions above:

Cl =
∫ ∞

0
dχ [χ W (χ ) b(z) G(z)]2 P

(
k = l + 1/2

χ

)
, (7)

w(θ ) =
∫ 2

0
dχ χ4 W 2(χ )

∫ ∞

−∞
dπ ξ (

√
π2 + χ2θ2), (8)

where ξ (r) is the three-dimensional correlation function, and π is
the radial separation between two galaxies.
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2.2 The angular homogeneity index

In a three-dimensional framework, one of the most commonly used
observables to describe the fractality of a point distribution is the
so-called correlation dimension. Let us first define the correlation
integral C2(r) as the average number of points contained by spheres
of radius r centred on other points of the distribution. For an infi-
nite homogeneous point process this quantity would grow like the
volume C2(r) ∝ r3. The correlation dimension is thus defined as the
logarithmic tilt of the correlation integral:

D2(r) ≡ d log C2

d log r
, (9)

and hence, if the point distribution is uncorrelated on large scales,
D2(r) should approach 3 for large r. In a Friedmann–Robertson–
Walker (FRW) universe we can expect deviations from this value
due to the gravitational clustering of density perturbations,2 but the
homogeneous result should be approached asymptotically on large
scales according to the CP. See Bagla, Yadav & Seshadri (2008)
and Yadav, Bagla & Khandai (2010) for a thorough modelling of
these quantities within the standard cosmological model.

In our case, due to the lack of precise radial information, we
will use instead the angular homogeneity index H2(θ ), defined in
Alonso et al. (2014) by directly adapting the definitions of C2 and
D2 to a two-dimensional spherical space. That is, we define the
angular correlation integral G2(θ ) as the average counts of objects
in spherical caps (instead of spheres), and the angular homogeneity
index H2(θ ) as the tilt of G2 with the area of these spherical caps
V (θ ) ≡ 2π(1 − cos θ ). Thus H2 is normalized to be 1 for an infinite
homogeneous distribution, and in a FRW universe it can be related
to the angular correlation function (to first order) via

H2(θ ) = 1 − w̄(θ ) − w(θ )

1 + w̄(θ )
− 1

2πn̄� (1 − cos θ )
, (10)

where

w̄(θ ) ≡ 1

1 − cos θ

∫ θ

0
w(θ ) sin θ dθ. (11)

We elaborate further on the technical details regarding the esti-
mation of the angular homogeneity index from a galaxy survey and
how to deal with boundary effects in Section 4.2. These are also
more thoroughly discussed in Alonso et al. (2014), and we refer the
reader to that paper for further information.

One may think that the net effect of using only angular infor-
mation directly translates in a decrease of sensitivity, but this is
not necessarily the case, especially when the aim is to provide
model-independent constraints. Using only angular, and therefore
observable information has the advantage that no assumption about
the underlying cosmological model is necessary in order to con-
vert redshifts into distances. This therefore allows for a cleaner test
of homogeneity. Other probes, although more sensitive a priori,
are ultimately a consistency test of some classes of cosmological
models.

2.3 Scaling relations

As pointed out by Peebles (1993), a lot of information regarding the
degree of homogeneity of the galaxy distribution can be extracted

2 The finiteness of the point distribution will also cause deviations from ho-
mogeneity due to shot noise. This can be fully incorporated in the modelling
of D2 and H2(θ ). See Alonso et al. (2014) for further details.

from the scaling of different observables with the limiting flux for a
magnitude-limited survey. Given the sample’s luminosity function
φ(L, z), describing the number density of galaxies in an interval dL
of luminosity at redshift z, a survey with a limiting flux Fc should
observe a number density of galaxies as a function of distance χ

given by

n̄(χ,> Fc) =
∫ ∞

Lmin

φ(L, z(χ ))dL, (12)

where Lmin = 4π Fc d2
L(χ ) is the limiting luminosity at a distance

χ and dL is the luminosity distance. For low redshifts we can
approximate dL ∼ χ , and hence, for a non-evolving population
(φ(L, z) ≡ φ(L)) we obtain that the number density should be
purely a function of the combination

√
Fcχ :

n̄(χ,> Fc) ≡ g(x ≡
√

Fcχ ) =
∫ ∞

4πx2
φ(L) dL. (13)

Without any redshift information we will actually observe the
projected number density of galaxies, defined as the number of
galaxies observed per unit solid angle:

n̄�(>Fc) =
∫ ∞

0
n̄(χ,> Fc) χ2 dχ, (14)

from which it is easy to extract the scaling law:

n̄�(>Fc) ∝ F−3/2
c ∝ 10β mlim , (15)

where mlim is the apparent magnitude limit and β = 0.6. Although
it is not easy to assess the expected observational uncertainty on β,
as shown in Peebles (1993), fractal models would predict a much
smaller value. In particular it is easy to prove that for a model with a
fractal dimension D, in which number counts follow the law N ∝ RD,
we would measure β ∼ 0.2 D.

An even stronger relation can be found for the two-point angular
correlation function. Using equation (8) and the fact that W (χ ) ∝
n̄(χ,> Fc), it is straightforward to show that for two different flux
cuts F1 and F2 the corresponding correlation functions would be
related by

w2(θ ) = w1(Bθ )

B
, (16)

where the scaling factor B is3 B ∼ √
F1/F2.

This is a well-known result: as we increase the depth of the
survey, we increase the chance that pairs of galaxies that are distant
from each other (and therefore uncorrelated) will subtend small
angles, thus decreasing the amplitude of the angular correlation
function. Traditionally the scaling relation above has been used as a
tool to rule out systematic errors associated with incorrect angular
masking, however, it can also be used as a consistency check to
verify the statistical homogeneity of the galaxy distribution.

The reason for this can be understood intuitively. Consider a
perfect fractal distribution, for which structures are found on all
scales with the same amplitude. As we increase the survey depth,
we will also include larger and larger structures, an effect which
compensates for the loss of correlation described above. The result is
that for a scale-independent fractal, the angular correlation function
is independent of the survey depth, and hence of the magnitude limit
(see Peebles 1993 for a precise derivation of this result in the case
of Rayleigh–Levy flights). This test complements the calculation

3 This scaling factor has traditionally been labelled D instead of B, but
we use a different convention here to avoid any confusion with the fractal
dimension.
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of the angular homogeneity index, described in the next section, in
that it is able to probe the degree of homogeneity also in the radial
direction.

Although the measurement of these scaling relations is an impor-
tant test of homogeneity and isotropy, these analysis suffer from a
number of caveats that must be highlighted. First of all, assuming
a non-evolving luminosity function is not necessarily correct for
all galaxy populations, and could induce a bias in our measure-
ment of β. Secondly, while nothing prevents us from computing
the two-point correlation function in an inhomogeneous data set, its
interpretation in terms of an excess probability of finding pairs of
galaxies is only valid in the homogeneous case. Because of this, the
study of the scaling relations should be understood as a consistency
test of the homogeneous model, and not as a model-independent
constraint on inhomogeneous cosmologies. Finally, it is worth not-
ing that the exact form of the scaling relations presented here should
vary in deeper catalogues reaching larger redshifts, which will be a
concern for future surveys. This is, however, not an issue for 2MPZ,
where z̄ ∼ 0.1.

3 TH E DATA

3.1 The 2MASS Photometric Redshift catalogue

The 2MPZ (Bilicki et al. 2014a) is the first publicly available4

all-sky data set that provides photometric redshift information. Its
parent sample, the 2MASS Extended Source Catalogue (XSC;
Jarrett et al. 2000) includes over 1.6 million resolved sources
(mostly galaxies), detected on most of the sky except for the highly
confused Galactic bulge, and provides precise astrometric and pho-
tometric information, the latter in three near-infrared (IR) bands, J,
H and Ks. About 1 million of the 2MASS galaxies are within its
approximate completeness limit of Ks � 13.9 mag (Vega). By cross-
matching the 2MASS XSC sample with two other major all-sky
photometric surveys (deeper than 2MASS), SuperCOSMOS scans
of photographic plates (Hambly et al. 2001) and mid-IR satellite
data from WISE (Wright et al. 2010), Bilicki et al. (2014a) ob-
tained multiwavelength information for the majority (95 per cent)
of 2MASS galaxies. This allowed further to derive photometric
redshifts for these sources, by employing the empirical ANNz al-
gorithm (Collister & Lahav 2004) trained on subsamples drawn
from spectroscopic redshift surveys overlapping with 2MASS. The
2MPZ is an extension of earlier attempts by Jarrett (2004) and
Francis & Peacock (2010) who derived less accurate photo-zs for
2MASS, not having access to the WISE data collected in 2010. The
median redshift of the 2MPZ sample is z̄ = 0.08 and its typical
photo-z errors are 13 per cent (rms in δz of ∼0.013).

3.2 Sample selection

Even though 2MASS has virtually 100 per cent sky coverage, a
number of observational effects will inevitably reduce the fraction
of the sky that can be used for cosmological studies. The most
important of these result from our Galaxy obscuring the view and
creating the so-called Zone of Avoidance. In addition, as 2MPZ
was built by cross-correlating the 2MASS XSC with WISE and
SuperCOSMOS, the two latter catalogues bring their own addi-
tional incompletenesses, which need to be accounted for. In order
to determine the regions of the sky that should be masked for the

4 Available for download from http://surveys.roe.ac.uk/ssa/TWOMPZ

subsequent analysis, we have performed a standard study of source
number counts in the presence of the different possible systematics.
For the 2MASS XSC, and hence 2MPZ, there exist four potential
sources of systematic effects: Galactic dust extinction, stars, see-
ing and sky brightness. The effects of each of these on the angular
correlation function of 2MASS galaxies were studied by Maller
et al. (2005), who found that both sky brightness and seeing had a
negligible effect. We have therefore focused our analysis on dust
extinction and star density.

For a particular region in the sky, the contamination due to Galac-
tic dust can be quantified in terms of the K-band correction for
Galactic extinction, AK = 0.367 E(B − V), where the reddening
E(B − V) was derived for the whole sky by Schlegel, Finkbeiner
& Davis (1998). Star density in turn was computed at the position
of each 2MASS extended sources based on local counts of point
sources (stars) brighter than Ks = 14 mag (Skrutskie et al. 2006).
This information (log star density per deg2) is provided for every
source in the public 2MPZ data base, and can be used to create a
full-sky map of nstar. We generated maps of AK and nstar using the
HEALPix5 pixelization scheme (Górski et al. 2005) with a resolution
parameter NSIDE=64 (pixels of δ� � 0.84 deg2). This is the fiducial
resolution that was used for most of this work, unless otherwise
stated.

Following an analysis similar to Afshordi, Loh & Strauss (2004)
we computed the angular number density of sources for objects
with different magnitude Ks and residing in pixels with a differ-
ent value of AK and nstar, and selected threshold values AK,max and
nstar,max as those beyond which a substantial decrease in the observed
number densities was observed. The results are shown in Fig. 1 for
dust extinction (left-hand panel) and star density (right-hand panel).
In view of this result we chose the thresholds AK,max = 0.06 and
log10(nstar,max) = 3.5, which eliminates the areas near the Galactic
plane and at the Magellanic Clouds (the latter were additionally
cut out manually for better completeness), reducing the usable sky
fraction to about 69 per cent. Besides this, a small subset of pixels
had to be discarded due to incompleteness in WISE and Super-
COSMOS. The former, in its ‘All-Sky’ release used for 2MPZ con-
struction, is incomplete in two strips at ecliptic λ, β = 100◦, +45◦

and 290◦, −45◦ due to so-called ‘torque rod gashes’;6 these were
masked out manually. In the latter, a small fraction of data were
missing due to issues with ‘step wedges’, which affected mostly
plate corners; these create a regular pattern near the equator and
were identified by comparison of the parent 2MASS XSC data set
with the final 2MPZ sample. The same comparison allowed us also
to identify other sources of incompleteness brought about by WISE
and SuperCOSMOS, which is mostly saturation around the bright-
est stars. The final footprint used for the best part of our analysis is
shown in Fig. 2 together with the maps of AK and nstar, and covers
fsky = 0.647.

For most of this work we used a fiducial sample of galaxies with
12.0 < Ks < 13.9. The lower magnitude cut was chosen to slightly
reduce the number of local structures that could complicate the
analysis, as well as the interpretation of the results. The upper cut
was in turn estimated by Bilicki et al. (2014a) to give a uniform
sky coverage. It is worth noting that we verified that slight varia-
tions in these magnitude limits did not vary our results significantly.
Taking into account the mask described above, our fiducial sample

5 http://healpix.sourceforge.net/
6 http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec6_2.
html#lowcoverage
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Figure 1. Number density of 2MPZ galaxies in four bins of magnitude measured in pixels with varying dust extinction (left-hand panel) and star density
(right-hand panel). The vertical dashed lines show the values of AK,max and nstar,max chosen to avoid these two systematics.

Figure 2. Sky maps of the two main sources of systematics: dust extinction
(upper panel) and star density (middle panel). Our final mask is shown in the
lower panel, and was defined by minimizing the effects of these systematics
as described in Sections 3.2 and 4.3.

contains 628 280 galaxies. In the analysis of the homogeneity index
(Section 4.2), we have further divided the survey into two photo-
metric redshift bins, with 0.03 ≤ zph < 0.08 and 0.08 ≤ zph ≤ 0.3,
each containing 264 158 and 351 383 objects, respectively. From
here on we will refer to these subsamples as ‘Bin 1’ and ‘Bin 2’.
The number density field corresponding to our fiducial sample is
displayed in the upper panel of Fig. B1.

In order to verify that the cuts defining our sample do not in-
troduce any systematic biases in our results we have studied their
effect on the two-point clustering statistics as well as the presence
of hemispherical asymmetries in our final density maps. This is
described in Section 4.3.

3.3 Clustering analysis and galaxy bias

In order to characterize the possible deviations from statistical ho-
mogeneity that we will study in the next section, it is necessary
to compare them with the expected statistical uncertainties allowed
within the standard cosmological model. The most reliable way of
estimating these is by using mock galaxy catalogues that reproduce
the statistical properties of our survey. For this we have used the
method described in Appendix A, which requires a correct model
of the best-fitting angular power spectrum of the data.

A crucial step in characterizing the clustering statistics of our
galaxy sample within �CDM is modelling its redshift distribution
dN/dz. Although 2MPZ provides photometric redshifts for all the
sources with a remarkably small uncertainty (on average), it is not
possible to estimate the true dN/dz reliably using these: dN/dzphot is
a convolution of the underlying dN/dzspec with the photometric red-
shift error, which typically makes the photo-z distribution narrower
than the true one. Fortunately, at high Galactic latitudes b � 60◦

there is practically full spectroscopic coverage from Sloan Digi-
tal Sky Survey (SDSS),7 which we can use for this task.8 In total
we identified a subset of ∼105 objects in this region with spectro-
scopic redshifts measured by SDSS, which we binned to estimate the

7 2MPZ used SDSS Data Release 9 (Ahn et al. 2012).
8 Spectroscopic redshifts, where available, are also provided in the 2MPZ
data base.
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Table 1. Summary of the galaxy samples used in this work. Column 2 lists the cuts imposed in each case
(besides those used to define the mask), and column 3 lists the total number of objects in each sample. Columns
4–6 contain the best-fitting parameters for the redshift distributions according to the model in equation (17),
and column 7 shows the value of the best-fitting galaxy bias.

Sample name Cuts Ngal α β z0 Bias b

Fiducial Ks ∈ [12, 13.9] 628 280 2.21 1.43 0.053 1.24 ± 0.03
Bin 1 Ks ∈ [12, 13.9] and zph ∈ [0.03, 0.08) 264 158 2.61 3.36 0.066 1.18 ± 0.03
Bin 2 Ks ∈ [12, 13.9] and zph ∈ [0.08, 0.3] 351 383 6.51 1.30 0.032 1.52 ± 0.03

redshift distributions of our galaxy samples. We fit a smooth func-
tion of the form

dNmodel

dz
∝ zα exp

[
−

(
z

z0

)β
]

(17)

to each of these histograms, obtaining the best-fitting parameters
listed in Table 1. In order to verify that the redshift distribution esti-
mated from this spectroscopic sample can be extrapolated to the rest
of the survey, we calculated the angular two-point correlation func-
tion in this region and in the whole survey for our fiducial sample
and compared both of them. A difference in the redshift distribu-
tions would cause a difference in the amplitude of the correlation
functions, which we did not observe.

For each of the three subsamples listed above (Fiducial, Bin
1 and Bin 2) we determined a single effective bias parameter b
that best fits its clustering statistics. To do this we first created
a map of the projected overdensity of galaxies with the angular
resolution parameter NSIDE=64 by assigning to each pixel i the
value δi = Ni/N̄ − 1, where Ni is the number of galaxies in that
pixel and N̄ is the average number of galaxies per pixel. We then
computed the angular power spectrum Cl of this overdensity field,
fully accounting for the angular mask using the POLSPICE software
package (Chon et al. 2004). The theoretical power spectrum we
fitted to these data was calculated using the fits to the redshift
distribution described above as proxy for the radial window function
(W(χ )χ2dχ/dz ∝ dN/dz) and equations (2) and (3), with the linear
power spectrum at z = 0, P0(k), predicted by CAMB (Lewis, Challinor
& Lasenby 2000). We fixed all cosmological parameters except
for the linear galaxy bias to their best-fitting values as measured
by Planck Collaboration XVI (2014), (�M, ��, �b, h, σ8, ns) =
(0.315, 0.685, 0.049, 0.67, 0.834, 0.96). The best-fitting value of
the bias b was found by minimizing the χ2:

χ2 ≡
∑
l1,l2

[
Ĉl1 − Cmodel

l1
(b)

] C−1
l1l2

[
Ĉl2 − Cmodel

l2
(b)

]
, (18)

where Ĉl is the measured power spectrum, Cl(b) is the linear �CDM
model for a bias b and Cl1l2 is the covariance between different
multipoles.

For this exercise we assumed a diagonal covariance matrix, es-
timated theoretically as (Francis & Peacock 2010; Crocce et al.
2011)

Cl1l2 = 2

fsky(2l1 + 1)

(
Ĉl1 + 1

n̄�

)
δl1l2 . (19)

This assumption is exact for a statistically isotropic distribution
observed across the whole sky, however, it is well known that partial
sky coverage introduces correlations between different multipoles.
In order to avoid this we grouped the multipoles into bins of width
�l = 4, thus reducing the correlation between neighbouring bins.
A posteriori we also confirmed the validity of this approximation
by computing the full covariance matrix Cl1l2 from 10 000 mock

Figure 3. Correlation matrix (rij ≡ Cij /
√CiiCjj ) of the uncertainties in

the angular power spectrum for our fiducial sample. The measurements in
different bins of l are almost completely uncorrelated.

catalogues generated using our best-fitting values for the bias b
(see Fig. 3). It is also worth noting that in order to avoid using an
incorrect model for the angular power spectrum or its covariance
matrix due to small-scale non-linearities we limited the range of
multipoles used for this analysis to l ∈ [2, 56], corresponding to
scales k � 0.3 h Mpc−1.

The best-fitting values of b in the three samples are listed in the
last column of Table 1, and are in good agreement with prior es-
timates of the bias for 2MASS galaxies (Maller et al. 2003; Frith,
Outram & Shanks 2005; Francis & Peacock 2010). Fig. 4 shows the
power spectra computed in our three samples together with their
best-fitting theoretical predictions. It is worth noting that these es-
timates rely heavily on the assumed amplitude of the dark matter
power spectrum (i.e. σ 8), and therefore our results must be under-
stood as measurements of the combination b × (σ 8, Planck/σ 8), with
σ 8, Planck = 0.834.

4 R ESULTS

This section presents in detail our analysis regarding the fractal-
ity of the galaxy distribution in our sample. Sections 4.1 and 4.2
discuss, respectively, the scaling relations and the angular homo-
geneity index derived for the 2MPZ sample, while in Section 4.3 we
analyse the possible systematic effects that could have an impact on
these results, including the presence of significant hemispherical or
dipolar asymmetries.
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676 D. Alonso et al.

Figure 4. Angular power spectrum measured for the three samples listed in
Table 1 (points with error bars) together with the �CDM prediction (solid
lines) using the best-fitting bias parameters.

4.1 Scaling relations

As a means to probe the possible fractal structure of the galaxy
distribution we have studied the scaling of the number density and
angular correlation function of galaxies with magnitude limit and
verified the predictions described in Section 2.3 for homogeneous
cosmologies.

In order to form a quantitative idea regarding the agreement of
our results with the standard cosmological model we have com-
pared the results obtained from the 2MPZ with those of a suite of
mock realizations of the fractal β-model, described in Appendix B.
These mocks were made to follow the Ks-band luminosity function
estimated by Appleby & Shafieloo (2014), and span a physical vol-
ume equivalent to that probed by 2MPZ. Note that the luminosity
function used to simulate the fractal realizations was derived from
the 2MPZ data assuming an FRW background, and it is therefore
inconsistent in principle to apply it to the inhomogeneous fractal
models. However, since we only aim to use the scaling relations as
a consistency test of the CP, the use of this luminosity function does
not affect our final results. We generated 100 mock realizations for
three different values of the fractal dimension: D = 2.5, 2.75 and
2.90.

4.1.1 Number density

As shown in Section 2.3, for a homogeneous Universe the number
of galaxies observed by a survey with magnitude limit mlim should
follow an exponential distribution given by equation (15). Conse-
quently the probability distribution function of magnitudes should
follow a similar behaviour with the same index β = 0.6:

log10 pdf(m) = β m + C. (20)

Deviations with respect to β = 0.6 can be expected within the
standard model due to clustering variance and shot noise, and the
exact uncertainty on this parameter is difficult to assess without an
accurate model of the three-dimensional distribution of galaxies.

In order to estimate β from the data we made a histogram of
the number counts of galaxies as a function of apparent magnitude
in the Ks band. The value of β was computed by fitting the loga-
rithmic number counts to the linear model in equation (20). Doing

Figure 5. Probability distribution for Ks derived from the number counts
histograms for fractal models with different fractal dimensions (points with
error bars) together with the best-fitting parametrization β = 0.63 for the
2MPZ sample (black solid line). The black histogram shows the actual
2MPZ data.

this we obtained a best-fitting value β = 0.63, which is 5 per cent
above the homogeneous value. Understanding the significance of
this deviation requires computing the uncertainty on this parame-
ter, which is related to the variance of the number counts. As we
discuss further in the context of hemispherical asymmetries (Sec-
tion 4.3.2), the errors in the number counts are dominated by cosmic
variance, and are a factor of ∼12.5 larger than the Poisson errors
(∝√

N ) for our fiducial sample. In order to estimate the error of β

we have therefore used the Poisson error of the histogram scaled by
a constant factor of 12.5, obtaining �β � 0.015, i.e. our measure-
ment is consistent with the homogeneous prediction within ∼2σ .
Similar positive deviations have also been reported by other studies
(Sandage, Tammann & Hardy 1972; Afshordi et al. 2004). As noted
by Keenan et al. (2010), a positive deviation with respect to the
homogeneous β = 0.6 value also suggests that the local Universe
could be underdense on scales of a few hundred Mpc. This under-
density could have an impact in explaining the differences between
local measurements of the expansion rate and those derived from
CMB observations (Keenan et al. 2012).

The values of β measured from the mock fractal realizations
further support this result. Fig. 5 shows the mean value and standard
deviation of the normalized number counts histograms for the three
different values of the fractal dimension D = 2.5, 2.75 and 2.9,
together with the best-fitting prediction for the 2MPZ data. The
measured values of β are

β(D = 2.50) = 0.51 ± 0.05,

β(D = 2.75) = 0.55 ± 0.03,

β(D = 2.90) = 0.59 ± 0.02,

in excellent agreement with the prediction β = 0.2 D. We can see
that the value measured from the data lies more than 2 standard
deviations away from the fractal predictions for D = 2.5 and 2.75.

4.1.2 Scaling of the angular two-point correlation function

In order to test the scaling law for the angular correlation function
as a function of magnitude limit, equation (16), from the 2MPZ
sample, we generated four subsamples with different maximum
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Homogeneity and isotropy in 2MPZ 677

Ks magnitude. These were chosen to have the same bright limit
Ks,min = 12.0 and a varying faint limit Ks,max = 12.5, 13.0, 13.5 and
13.9.

For each of these subsamples we compute the angular two-point
correlation function using the estimator introduced by Landy &
Szalay (1993):

w(θ ) = DD(θ ) − 2DR(θ ) + RR(θ )

RR(θ )
, (21)

where DD, DR and RR are the normalized counts of pairs of objects
separated by angle θ for ‘data–data’, ‘data–random’ and ‘random–
random’ pairs, respectively. The correlation function was estimated
using the software presented in Alonso (2012), with random cata-
logues containing 10 times as many objects as our data. In order to
compute the statistical uncertainties in w(θ ) we divided our cata-
logue into NS = 50 samples, each covering approximately the same
area. These were chosen evenly in the north and south Galactic
hemispheres in the region with |b| > 13◦. The covariance matrix
Ci, j ≡ 〈�w(θ i)�w(θ j)〉 was estimated as the sample covariance
matrix of the measurements of w(θ ) made in each of these samples
scaled by a factor 1/NS to account for the smaller area covered by
each of them:

Ĉij =
NS∑
n=1

[wn(θi) − w̄(θi)][wn(θj ) − w̄(θj )]

NS(NS − 1)
, (22)

where wn is the angular correlation function measured in the nth
region and w̄ ≡ ∑

n wn/NS. The inverse covariance matrix used
later to compute the χ2 was estimated in terms of the inverse of Ĉij

as (Hartlap, Simon & Schneider 2007)

[C̃−1]ij = NS − nθ − 2

NS − 1
[Ĉ−1]ij , (23)

where nθ is the number of bins of θ in which the correlation function
was measured.

As is now well known in the field (Maller et al. 2005; Crocce
et al. 2011), the measurements of the angular correlation function
show large correlations between different angles, and therefore it is
important to consider the non-diagonal elements of the covariance
matrix in order to assess the goodness of fit of a particular model.
These large off-diagonal elements strongly penalize any deviation
from the theoretical model and can cause a seemingly valid model
to yield a bad minimum χ2. Furthermore, these correlations often
cause the covariance matrix to be almost degenerate and difficult
to invert due to statistical noise. Since the number of independent
realizations needed to estimate an invertible nθ × nθ covariance
matrix is usually of the order n2

θ , we performed the fits described
below in a reduced range of scales (clearly stated in each case).

In order to test the scaling relation in equation (16) we use
the measured correlation function in the fiducial magnitude bin
12.0 < Ks < 13.9 as a template that we can rescale to fit for the
scaling parameter B in the other bins. Other possibilities would be
using a template based on the theoretical prediction for the corre-
lation function or a simple power-law model. The latter option has
been shown to be a bad approximation to the correlation function
on small scales (Maller et al. 2005), while the former is affected
by theoretical uncertainties. Since our method uses only observed
quantities, we avoid any of these potential biases, and purely test
the predicted scaling relation. Our method is therefore as follows.

(i) We find the cubic spline Wsp(θ ) that interpolates through the
measurements of the correlation function in our widest magnitude
bin.

Table 2. Values of the scaling parameter B measured
from the angular correlation function in different mag-
nitude bins, together with their reduced χ2 and asso-
ciated p-value for the best-fitting model in equation
(24).

(Ks,min, Ks,max) B χ2/dof p-value

(12.0, 13.5) 0.85 ± 0.01 0.91 0.51
(12.0, 13.0) 0.71 ± 0.01 0.72 0.70
(12.0, 12.5) 0.61 ± 0.01 1.45 0.16

Figure 6. Angular correlation functions for the four Ks magnitude bins
considered in this analysis. The points with error bars show the actual
measurements and estimated uncertainties, while the solid lines correspond
to the best-fitting templates rescaled using equation (24).

(ii) We use a rescaling of this spline as a template to fit for the
scaling parameter B in the other three bins. Thus, for each bin we
find the parameter B that best fits the data given the model:

w(θ, B) = Wsp(Bθ )

B
. (24)

This fit is performed by minimizing the corresponding χ2 using the
full covariance matrix.

In order to avoid using an incorrect template due to the statisti-
cal uncertainties in the correlation function of the first magnitude
bin, caused by shot noise (mainly on the smallest scales) and cos-
mic variance (largest scales), we performed this fit in the range
0.◦16 < θ < 3.◦15, using 10 logarithmic bins of θ .

The values of B estimated using this method are shown in
Table 2 together with their corresponding χ2. These results are
also displayed in Fig. 6. In all cases we find that the scaling law
is a good description of the relation between the correlation func-
tions with different magnitude limits. The agreement between the
measured values of B and the prediction B ∼ √

F1/F2 is difficult
to address due to the presence of a low magnitude cut. However, in
the case of the first magnitude bin (B = 0.85 ± 0.01), which is less
affected by this cut, the agreement is excellent (

√
F1/F2 � 0.83).

For the narrowest bin (12.0 < Ks < 12.5) we find a slightly higher
χ2/dof, which is still statistically insignificant well within 2σ .

As described in Section 2.3, larger structures are found in a per-
fect fractal model as the survey depth is increased, and thus the
amplitude of the angular correlation function should stay almost
constant with the magnitude limit. We have tested this explicitly
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Figure 7. Mean (lines) and variance (coloured bands) of the angular cor-
relation function in a suite of 100 mock fractal realizations described in
Appendix B. The results for fractal dimensions D = 2.5, 2.75 and 2.9 are
shown in green, red and blue, respectively, while the correlation functions
measured from 2MPZ are shown as black lines. In all cases solid, dashed,
dot–dashed and dotted lines correspond to the mean correlation function in
the magnitude bins Ks ∈ (12.0, 12.5), Ks ∈ (12.0, 13.0), Ks ∈ (12.0, 13.5)
and Ks ∈ (12.0, 13.9), respectively, and the coloured bands around them
show the 1σ deviations. Fractal models show a much milder variation in the
amplitude of w(θ ) as a function of magnitude limit.

using the mock fractal realizations described in Appendix B. We
computed the angular correlation functions, in the same magnitude
bins, from a suite of 100 mock catalogues with fractal dimensions
D = 2.5, 2.75 and 2.9. The coloured lines in Fig. 7 show the mean
correlation functions measured for 12 different cases: D = 2.5 in
green, D = 2.75 in red and D = 2.9 in blue, with different line
styles showing the results for the different magnitude bins (see de-
scription in caption). The coloured bands around these lines show
the 1σ dispersion around this mean estimated from the 100 realiza-
tions. For comparison, the correlation functions measured in 2MPZ
are also shown as black lines in this plot. Although the variance
associated with fractal models is significantly larger than in the
standard cosmological model, it is easy to see that the amplitude of
the correlation function varies a lot less with the magnitude limit in
these models. While this amplitude roughly doubles in the 2MPZ
data from the deepest to the shallowest magnitude bin, we do not
observe variations larger than ∼10 per cent between the mean cor-
relation functions of the fractal realizations. Although this is further
evidence of the compatibility of our measurements with the standard
cosmological model, the large variance of the correlation function
in fractal scenarios makes it difficult to impose tighter constraints
on them.

4.2 The angular homogeneity index

We have studied the possible fractal nature of the galaxy distribution
in the 2MPZ sample further by analysing the angular homogeneity
index H2(θ ), described in Section 2.2. In order to optimize the use
of our data, we have used the estimator E3 described in Alonso
et al. (2014), to measure this quantity. This estimator is based on
the method used by Scrimgeour et al. (2012) to measure the fractal
dimension, and makes use of a random catalogue with the same
angular mask as the data to correct for edge effects. The process is
as follows.

(i) For the ith object in the data, we compute nd
i (<θ ) and nr

i(<θ ),
the number of data and random objects, respectively, found in a
spherical cap of radius θ centred on i.

(ii) For Nc objects in the data thus used as centres of spherical
caps, we define the scaled counts-in-caps N (θ ) as

N (θ ) = 1

Nc

Nc∑
i=1

nd
i (<θ )

fr n
r
i(<θ )

, (25)

where fr ≡ D/R is the ratio between the number of data and random
objects.

(iii) N (θ ) is directly related to the angular correlation integral
G2(θ ) as

G2(θ ) = N̄ (θ )N (θ ) − 1, (26)

where N̄ (θ ) is the expected number of galaxies in a spherical cap
of radius θ , N̄ (θ ) ≡ n̄�V (θ ) ≡ n̄� 2π(1 − cos θ ), and we have ex-
plicitly subtracted the Poisson contribution due to linear shot-noise.

(iv) The homogeneity index is then estimated by numerical dif-
ferentiation of G2:

H2(θ ) = d log G2(θ )

d log V (θ )
. (27)

The main advantage of this estimator is that, since it attempts to
correct for edge effects using random realizations, it is possible, in
principle, to use all the objects in the data as centres for spherical
caps of any scale θ , thus minimizing the statistical uncertainties on
H2. However, by doing this we can potentially bias our estimate
of H2(θ ) towards the homogeneous value H2 = 1. The reason for
this is that weighting by the random number counts nr

i is equivalent
to assuming that our sample is homogeneous in the parts of the
spherical caps that lie inside the masked regions. Therefore this
potential bias will be more important for larger θ , for which a larger
fraction of the spherical caps will be masked. In order to limit the
effects of this bias we have performed two different tests.

(i) Using the mask described in Section 3.2 (see bottom panel in
Fig. 2) we found, for every unmasked pixel, all other pixels lying
within a distance θ from it and computed the fraction of those pixels
that are unmasked. We thus estimated the average completeness
of spherical caps as a function of their radius θ . The potential
systematic edge effects mentioned in the previous paragraph should
become more important as this completeness decreases, and thus
we can limit their impact by constraining our analysis to scales with
a mean completeness above a given threshold. We determined that
using a fiducial completeness threshold of >75 per cent limits the
spherical caps that can be used for our analysis to scales smaller
than θmax = 40◦. A more stringent completeness cut of 85 per cent
would translate into a scale cut θ � 20◦.

(ii) For scales below the threshold θmax it would be desirable to
estimate the magnitude of the systematic error induced on the mea-
surement of H2(θ ) by the incomplete sky coverage. This can be done
using the fact that these systematic effects should vanish entirely in
the absence of an angular mask, and thus they can be quantified by
comparing the measurements made on simulated catalogues with
and without mask. We computed the mean value of H2(θ ) in our
fractal and lognormal realizations in these two cases and estimated
the average fractional deviations between them. For our lognormal
realizations, as well as for the fractal mocks with D = 2.9 and 2.75,
a small systematic bias smaller than 0.1–0.2 per cent is found, which
increases to ∼0.6 per cent for D = 2.5. As we will see below, this
small bias does not affect any of the results found in this work, and
can therefore be neglected.
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Figure 8. Angular homogeneity index computed in our three samples (see
Table 1). In each panel the solid line shows our measurements from the
2MPZ data, while the dashed, thinner lines correspond to the mean value
found for a suite of 200 lognormal mock catalogues. These mock realizations
were used to compute the 1σ and 1.96σ (95 per cent C.L.) regions, shown
as the darker and lighter bands around the measurements.

In view of these results we determined that limiting our analysis
to scales θ < 40◦ should limit the potential bias of our estimator to
an acceptable level.

We computed the homogeneity index for our fiducial sample, as
well as for the two photometric redshift bins listed in Table 1, in
order to study the evolution of H2(θ ) with redshift. This was done
in the range θ ∈ [0◦, 40◦], using 40 bins of width �θ = 1◦. The
results are shown in Fig. 8. In descending order each panel presents
the results for our Fiducial sample, Bin 1 and Bin 2. The solid lines
show our measurements from the 2MPZ, while the darker bands
around them provide the 1σ uncertainties, estimated as the stan-
dard deviation of a suite of 200 lognormal mock catalogues (see
Appendix A). The mean value of the mock realizations, shown as
thin dashed lines in this figure, can be used as a proxy for the the-
oretical expectation within �CDM. As could be expected, due to
the growth of structure and to projection effects (the same angu-
lar separation corresponds to shorter physical distances on small
redshifts), the low-redshift sample (Bin 1) is more inhomogeneous
than the high-redshift one. It is also worth noting that the measure-
ments agree qualitatively well with the mean value of the lognormal
realizations. This was not guaranteed a priori: even though lognor-
mal realizations are able to reproduce the two-point statistics of the
galaxy distribution superbly, the homogeneity index depends also
on higher order correlations (Bagla et al. 2008).

The homogeneity index, as measured in 2MPZ, seems to ap-
proach the perfect homogenous prediction H2 = 1 on large scales,
although it deviates slightly from it. As we have mentioned, these
deviations are expected within �CDM, and we should therefore
quantify their significance. In order to do so we have estimated
the angular scale of homogeneity θH, proposed in Alonso et al.
(2014) as the largest angle for which the measured value of H2

Table 3. Angular homogeneity scale for our three samples.
The second column shows the values of θH measured from
the data, while the third column shows the mean value and
variance estimated from the mock catalogues. The last column
shows the fraction of mock realizations in which homogeneity
is attained on scales larger than the value of θH measured in
the data.

Sample name θH (2MPZ) θH (Mocks) fabove

Fiducial 35◦ 26◦ ± 5◦ 10.5 per cent
Bin 1 39◦ 28◦ ± 5◦ 14 per cent
Bin 2 24◦ 24◦ ± 5◦ 54.5 per cent

deviates from the homogeneous value of 1 at 95 per cent C.L. (i.e.
1 − H2(θH ) = 1.96 σH2 (θH ), where σH2 is the statistical error on
H2). We computed θH for the same three samples as well as for
their corresponding 200 mock realizations in order to quantify the
expected variance of this quantity. For each sample we estimated
the mean value of θH and its variance from the mock lognormal
catalogues, as well as the fraction of mock catalogues in which
homogeneity is reached on scales larger than the value of θH found
in the 2MPZ data (fabove). The results are summarized in Table 3:
in agreement with our previous result, we find that our samples
containing low-redshift objects (‘Fiducial’ and ‘Bin 1’) reach ho-
mogeneity on scales exceeding the average value found in the mock
realizations by about 2 standard deviations. The higher z sample
(‘Bin 2’), nevertheless, agrees very well with the expected value of
θH � 24◦. In all cases at least 10 per cent of the mock realizations
were found to reach homogeneity on scales larger than the values
of θH measured in the data, which places the level of disagreement
with the �CDM expectation well below 2σ .

Thus far we have shown that the measurements of H2(θ ) are
fully compatible with the expectations of the standard cosmolog-
ical model. However, we can also use these measurements of the
asymptotic value of H2(θ ) to explore the viability of fractal models.
As has been noted in the literature (Durrer et al. 1997), the fractal
nature of a three-dimensional point distribution cannot be com-
pletely determined from its distribution projected on the sphere in
a model-independent way, and therefore we cannot hope to rule out
fractal models in general with this test. However, using the fractal
β-model described in Appendix B we can study the values of H2(θ )
that can be expected from a cascading fractal model, which could
potentially apply (at least qualitatively) to more general scenarios.
Fig. 9 shows the mean value and expected variance of H2(θ ) on
large scales (θ > 20◦) computed from a suite of 100 β-model real-
izations with fractal dimensions D = 2.5, 2.75 and 2.9, together with
our measurements for the fiducial 2MPZ sample. The large-scale
behaviour of the different projected distributions is clearly distinct,
and allows us to quantify the disagreement between our measure-
ments and these fractal models. We did so by computing the number
of fractal realizations in which the value of H2(θ ) is consistently
larger than our measurement from 2MPZ in the last 10 angular bins
(i.e. θ > 30◦), which we can interpret as the probability of finding
a fractal Universe that is at least as isotropic as ours as implied by
our measurements. While 12 of our 100 simulations with D = 2.9
are found above the measurements in our fiducial sample, this is not
the case in any of the realizations with D = 2.75 or 2.5. This result
reinforces the compatibility of our measurements with the standard
cosmological model.
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Figure 9. Angular homogeneity index measured from the 2MPZ data
(points with error bars), as well as the mean value and variance (solid lines
and light coloured bands, respectively) estimated for the fractal β-model
from the suite of mock catalogues described in Appendix B. The results for
the fractal models correspond to fractal dimensions D = 2.5 (bottom curve,
red), D = 2.75 (middle curve, green) and D = 2.9 (top curve, blue).

4.3 Systematics

In this section we present a set of tests aimed at discarding possible
systematic effects in our results which could arise from the sample
selection described in Section 3.2.

4.3.1 Clustering systematics

In order to ensure that the cuts in dust extinction and star density
specified in Section 3.2 are enough to prevent any significant sys-
tematic effect in the two-point clustering statistics of the galaxy
density field, we studied its cross-correlation with these two possi-
ble systematics.

We first generated maps of the anisotropies in the 2MPZ galaxy
density, AK and nstar. This was done by computing, for each ob-
servable x and in each pixel i, the quantity δi

x = (xi − x̄)/x̄, where
x̄ is the mean value of x averaged over all unmasked pixels. We
then computed the cross- and autocorrelations of each pair of ob-
servables, wx, y(θ ) = 〈δxδy〉, where the expectation value was esti-
mated by averaging over all pairs of unmasked pixels subtending an
angle θ . Fig. 10 shows these cross-correlations for our fiducial sam-
ple (see Section 3.3). The errors on these measurements were com-
puted as the standard deviation for a suite of 100 mock galaxy cata-
logues described in Appendix A. In both cases the cross-correlation
of the galaxy overdensity with each systematic is compatible with 0,
thus confirming our choice of AK,max and nstar,max. The bottom panel
of Fig. 10 shows the same auto- and cross-correlations in harmonic
space (i.e. the power spectrum Cl), which confirm this result. Since,
as stated above, the main contribution to the homogeneity index H2

is due to the two-point correlation function, we do not expect any
significant systematic effect on this quantity either.

4.3.2 Hemispherical differences

Assuming an isotropic galaxy distribution, an incorrect choice of
AK or nstar,max could cause an asymmetry in the properties of the
galaxy sample in the north and south Galactic hemispheres. Like-
wise, errors in the calibration of the two twin facilities used to
compile 2MASS, located in the two terrestrial hemispheres, could

Figure 10. Auto- and cross-correlation in real space (top panel) and har-
monic space (bottom panel) of the galaxy density field for our fiducial sample
with the two potential sources of systematics: dust extinction (blue) and star
density (green). The red points show the galaxy autocorrelation, which has
a much bigger amplitude than any of the cross-correlations, both of which
are consistent with 0. The correlations were computed for our fiducial mask,
and the error bars were estimated using 100 mock catalogues described in
Appendix A.

potentially generate a similar asymmetry with respect to the equato-
rial plane. Thus, investigating the presence of hemispherical differ-
ences is a good way of identifying systematic effects in a full-sky
galaxy survey. Furthermore, this type of effects has been studied
in different cosmological observations. Probably the most notable
of these is the CMB dipolar asymmetry detected at ∼3.5σ in both
Planck and Wilkinson Microwave Anisotropy Probe (WMAP; Park
2004; Eriksen et al. 2007; Hoftuft et al. 2009; Akrami et al. 2014;
Planck Collaboration XXIII 2014) (although see Quartin & Notari
2015). Similar studies have been conducted with other data sets, in-
cluding 2MASS (Gibelyou & Huterer 2012; Appleby & Shafieloo
2014; Yoon et al. 2014), radio galaxies (Fernández-Cobos et al.
2014), luminous red galaxies (Pullen & Hirata 2010), radio sources
(Fernández-Cobos et al. 2014) and high-redshift quasars (Hirata
2009), finding however only marginal dipolar signals, if any. Un-
derstanding the origin of these asymmetries, when they arise, can-
not only shed light on the possible systematic effect affecting CMB
measurements, but also tell us something about our relative mo-
tion with respect to the CMB rest frame (Itoh, Yahata & Takada
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2010; Bilicki et al. 2011). Therefore, investigating the presence of
these asymmetries in different data sets is also interesting in its own
right, besides it being an additional test of the isotropy of the galaxy
distribution.

We have searched for hemispherical differences both in the over-
all galaxy number counts and in the clustering variance of the galaxy
overdensity.

Number counts. We have studied the differences in the number of
galaxies observed in two opposite hemispheres in our fiducial data
set (12 < K < 13.9) in relation to the variance of this difference
expected within the standard cosmological model. In order to do so
we considered hemispheres defined in terms of planes tilted by an
angle α with respect to three fundamental planes: Galactic, ecliptic
and equatorial. The reason for considering a varying angle α is that
any potential systematic effects (e.g. instrumental differences in the
case of the equatorial plane) would become gradually more evident
as α → 0. For each pair of hemispheres we computed the angular
number density of galaxies in each of them as n̄� = Ngal/(4π fsky),
where Ngal is the number of galaxies observed in that hemisphere and
fsky is the corresponding observed sky fraction (note that due to the
incomplete sky coverage, fsky will be different for both hemispheres
and also for different values of α). In terms of these measurements,
as a statistical observable we used the relative difference between
both number densities:

�n ≡ 2
∣∣n̄N

� − n̄S
�

∣∣
n̄N

� + n̄S
�

. (28)

We computed the value of �n in the data as well as in 1000
independent mock catalogues, and used the mock measurements to
estimate the probability distribution of this observable p(�n|α). We
then characterized the compatibility between the number densities
in each hemisphere measured in the data by computing the fraction
of mocks for which we find a value of �n larger than the one
measured in the data, �d

n:

PTE
(
�d

n, α
) ≡

∫ ∞

�d
n

p(�n|α) d�n. (29)

We note that, even for the fairly large volume probed by 2MASS
(χ (zmax) ∼ 800 Mpc h−1), the variance of �n is by far dominated by
clustering variance, and not Poisson noise. In comparison with the
total error (cosmic variance+Poisson), computed from our lognor-
mal realizations, Poisson errors are a factor of 12–13 times smaller.
This must be taken into account when interpreting the significance
of the observed asymmetries. The values of PTE(�d

n, α) estimated
through this method are shown in Fig. 11 for the three fundamental
planes. In no case do we find evidence for a hemispherical asym-
metry in the galaxy number counts with a significance larger than
2σ .

Clustering. In order to detect possible hemispherical power asym-
metries in our data we have performed an analysis similar to that
carried out recently by Akrami et al. (2014) on CMB data. The
method proceeds as follows.

(i) We first find discs of different angular sizes centred on the
pixels of a HEALPix map of resolution NSIDE=64 (i.e. 3072 pixels).
For this analysis we considered discs of radius θ = 10◦ and 20◦.

(ii) We create a map of the overdensity field for our fiducial sam-
ple as described in Section 3.3 using our fiducial pixel resolution
NSIDE=64. From this map we compute the variance of the overden-
sity field inside each of the discs found in the previous step. This
yields a low-resolution map of the local variance. We neglect any
discs for which more than 90 per cent of the pixels were masked.

Figure 11. Probability to exceed for the normalized difference in the galaxy
number counts measured in hemispheres defined by an angle α with respect
to the three fundamental planes: Galactic (solid line), equatorial (dashed
line) and ecliptic (dash–dotted line). In all cases the observed asymmetry
can be explained by the statistical uncertainties for a �CDM model well
within 2σ .

Figure 12. Probability distribution for the amplitude of the dipole in the
local variance maps for discs of size 10◦, derived from a suite of 10 000
lognormal mock realizations. The value of Ad measured in our fiducial
sample is shown as a vertical solid line in this figure, and is in good agreement
(within 1.3σ ) with the expected �CDM value.

(iii) We repeat the previous step on a suite of 10 000 mock
lognormal realizations. From these we compute the mean local
variance across the sky, as well as its standard deviation.

(iv) We subtract this mean map from the local variance map com-
puted for our data, and fit a dipole to the resulting zero-mean map
using an inverse-variance scheme. We perform the same operation
on the local variance maps found for the 10 000 mocks and store
the values of the dipole amplitude Ad found in each case.

(v) We characterize the significance of the power asymmetry in
our data in terms of the number of mocks found with a value of Ad

larger than the one found in our sample.

Fig. 12 shows the distribution of dipole amplitudes Ad computed
from the 10 000 mock catalogues, for discs of size 10◦, together with
the value found in the data. The quantitative results are displayed
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Table 4. Values dipole amplitude and direction in
the local variance maps constructed for our fidu-
cial sample, for discs of aperture 10◦ and 20◦. The
fourth column shows the fraction of mock cata-
logues found with a dipole amplitude Ad larger
than the one measured in the data. In both cases
the data are found to be compatible with the ex-
pected �CDM dipole well within 2σ .

Disc radius Ad (l, b) p-value

10◦ 0.024 (311◦, 0◦) 0.19 (1.3σ )
20◦ 0.028 (320◦, 6◦) 0.13 (1.5σ )

in Table 4. For discs of both 10◦ and 20◦ we consistently found a
dipole of amplitude Ad ∼ 0.025 in the direction (l, b) ∼ (310◦, 5◦),
which is close to the direction of the dipole found by Gibelyou
& Huterer (2012) using 2MASS. The amplitude of this dipole is,
however, in excellent agreement (within ∼1.5σ ) with the variance
expected within �CDM. We can thus conclude that there are no
significant hemispherical asymmetries in our data.

5 D ISCUSSION

In this paper we have presented an analysis of the homogeneity
and isotropy of the low-redshift galaxy distribution using data from
2MPZ. Making use of a set of observational probes relying mainly
on angular information we have been able to study possible de-
viations of a fractal nature from the standard cosmological model.
These probes included the scaling laws of the source number counts
and angular correlation function as a function of magnitude limit
and the measurement of the so-called homogeneity scale, which
can be interpreted as the effective correlation dimension of the pro-
jected distribution. The 2MPZ sample is particularly well suited
for this kind of studies for several reasons: first of all, its almost
complete sky coverage makes it possible to study clustering on the
largest angular scales. Secondly, the low median redshift of the
survey implies that we can probe the evolution of the galaxy distri-
bution at late times, where deviations from statistical homogeneity
and isotropy due to gravitational clustering are potentially larger.
Finally, the availability of photometric redshifts for all 2MPZ
sources makes it possible to explore the evolution of the homo-
geneity index with redshift and compare that evolution with the
expected behaviour within the �CDM model. We have found that,
in terms of these observables, the data are in excellent agreement
with the standard cosmological model, and no significant departure
from its predictions has been observed.

The main results of this paper can be summarized as follows.

(i) Our measurements of the homogeneity index H2(θ ) show a
good agreement of the data with the standard cosmological model,
and we have verified that the galaxy distribution approaches homo-
geneity within the expected range of angular scales. We have shown
that this agreement holds also as a function of cosmic time by repeat-
ing the analysis in two bins of photometric redshift. We repeated this
analysis on a suite of mock fractal realizations and found that none
of those with fractal dimensions D � 2.75 approached homogeneity
faster than the 2MPZ sample.

(ii) We have shown that the measurements of the scaling laws
for number counts and correlation function closely follow the ex-
pectation of a statistically homogeneous cosmology, while our tests
using a particular fractal scenario (see Appendix B) have shown
that these models display evident tension with these observables for
fractal dimensions D � 2.75.

(iii) As part of our search for systematics we perform an extra test
of statistical isotropy by investigating the presence of hemispherical
asymmetries in our data. We find a dipole in the clustering variance
of the data in the same direction [(l, b) ∼ (310◦, 5◦)] as previous
studies. The amplitude of this dipole is, nevertheless, in perfect
agreement with the variance expected within �CDM.

Testing the validity of the CP is a necessary step before using
any cosmological probe that implicitly or explicitly assumes this
validity. The observational evidence backing the large-scale homo-
geneity and isotropy of the matter distribution has grown signifi-
cantly in the last few decades, and our results certainly support this
evidence in the local Universe. In the near future it will be possible
to impose further constraints on possible departures from the CP
by performing this kind of analyses on deeper wide-area surveys.
We plan to apply our methodology to the forthcoming WISE-based
photometric catalogues probing 75 per cent of the sky at redshifts
z < 0.5 (Bilicki et al. 2014b; Bilicki et al., in preparation), as well
as to the Dark Energy Survey data (Flaugher 2005) covering less of
the sky but at larger depths.
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A P P E N D I X A : MO C K �C D M C ATA L O G U E S

The possible deviations with respect to statistical homogeneity
explored in this paper must be evaluated in terms of the sta-
tistical uncertainties already allowed by the presence of cluster-
ing anisotropies in the standard cosmological model. Although
there exist analytical approximations to calculate these uncertain-
ties (Crocce et al. 2011; Xu et al. 2013), the most reliable method
to estimate them in the presence of practical complications, such
as the complex sky coverage of our sample, is to use large en-
sembles of independent mock catalogues reproducing the expected
statistical behaviour of our data. These ensembles should mimic
the properties of the galaxy sample under analysis and cover a sim-
ilar volume. To our knowledge, no public simulations exist with
the volume of 2MASS and a sufficiently small mass resolution
(Mhalo ∼ 1011 M� h−1), and even if they did, at least O(100) of
them would be needed in order to obtain reliable estimates of the
uncertainties.

A historically popular alternative method is to generate lognormal
realizations of the galaxy density field and Poisson sample them
with galaxies (Beutler et al. 2011; Blake et al. 2011). The lognormal
distribution has been advocated as a possible model to describe the
distribution of the non-linear matter density in the Universe (Coles
& Jones 1991), and, since it is based on locally transforming a
Gaussian random field, it can be used to generate large numbers of
fast independent realizations. Because of its simplicity it is easy to
guarantee that the mock realizations will reproduce the input power
spectrum with a very good accuracy (White, Tinker & McBride
2014), however, its validity must be carefully assessed on non-linear
scales (Kitaura, Jasche & Metcalf 2010).

Although this method has been traditionally used to generate
three-dimensional realizations, we have adapted it to use only an-
gular information, using an approach similar to that of Francis &
Peacock (2010). Starting from a map of the angular overdensity
field in our data δd(n̂), computed as described in Section 3.3, the
steps used to generate each full realization are the following.

(i) Interpreting δd(n̂) as the lognormal counterpart of an underly-
ing Gaussian field δG,d(n̂), we invert the lognormal transformation
as

δG,d = log
[
(1 + δd)

√
1 + σ 2

d

]
, (A1)

where σ 2
d is the variance of δd.

(ii) We compute the power spectrum of the Gaussian density and
find its best-fitting bias as explained in Section 3.3, finding the
values listed in the last column of Table 1.

(iii) We generate a Gaussian realization δG of the best-fitting
theoretical power spectrum using the HEALPix routine SYNFAST.

(iv) The corresponding lognormal density field is computed as

1 + δLN = exp
[
δG − σ 2

G/2
]
, (A2)

where σ 2
G ≡ 〈δ2

G〉.
(v) A discrete number of galaxies are then assigned to each pixel

by Poisson sampling the lognormal field with a mean:

N (n̂) = N̄ [1 + δLN(n̂)] , (A3)

where N̄ is the mean number of galaxies per pixel in the data. These
mock galaxies are then distributed at random inside each pixel.

We find that this method is able to generate mock catalogues that
recover the best-fitting cosmological power spectrum to excellent
precision on linear scales. However care must be taken when using
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them on small scales, where, as noted by White et al. (2014), they
may not be able to reproduce the higher order correlations of the
density field. The second panel in Fig. B1 shows the Mollweide
projection of one of these realizations corresponding to our fiducial
sample.

A P P E N D I X B: MO C K FR AC TA L C ATA L O G U E S

The fractal β-model (Castagnoli & Provenzale 1991) describes a
multiplicative cascading process that is easy to simulate for any
fractal dimension D ≤ 3. We generated mock realizations of this

Figure B1. Number density (in deg−2) of objects in our fiducial sample
(upper panel), for one of the lognormal realizations described in Appendix A
(middle panel) and for a mock fractal realization with D = 2.75 (lower panel).

model with dimensions D = 2.5, 2.75 and 2.90 using the following
method.

(i) We divide a cubic box of size L, corresponding to
twice the maximum comoving distance covered by 2MPZ
(χmax ∼ 850 Mpc h−1), into eight sub-boxes by dividing each axis
in half.

(ii) We give each sub-box a probability p of surviving to the next
iteration, and we select the survivor sub-boxes at random according
to that value of p. The value of p is related to the desired fractal
dimension through

D = 3 + log2 p. (B1)

(iii) We repeat the two previous steps on the surviving sub-boxes
of the previous generation, until we reach the desired resolution.

(iv) We place one object at random inside each surviving box in
the final set, and assign a Ks-band luminosity to each of these objects
using the luminosity function for 2MASS measured by Appleby
& Shafieloo (2014). This consists of a Schechter function with
characteristic absolute magnitude M∗ − 5 log h � −23.5 and power-
law index α � −1.02.

(v) In terms of this absolute magnitude MK, each object is as-
signed an apparent Ks magnitude in terms of its distance d to the
observer, located at the centre of the box:

Ks = MK + 5 log10

(
d

1 Mpc

)
+ 25. (B2)

Only objects with magnitude Ks ≤ 13.9 are included in the final
catalogue.

The third panel in Fig. B1 shows an example of one of these
mock realizations for D = 2.75. Note that we do not intend for this
model to constitute a viable alternative to �CDM, but only to use
it as a toy model to verify the validity of the methods applied to our
galaxy sample. For the same reason, the fact that we use a luminosity
function which was derived assuming a FRW background should
not affect our final results.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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