Measurement of the W Boson Mass at CDF
Ashutosh Kotwal
Duke University

Riken Brookhaven Research Center Workshop
June 24-25, 2010
Spontaneous Symmetry Breaking

- **2008 Nobel Prize in Physics**

 "for the discovery of the mechanism of spontaneously broken symmetry in subatomic physics"

 Yoichiro Nambu

- Experimentally, jury is still out on Higgs mechanism of Electroweak Symmetry Breaking in the Standard Model of Particle Physics
From the Tevatron, $\delta M_{\text{top}} = 1.3 \text{ GeV} \Rightarrow \delta M_H / M_H = 11\%$

equivalent $\delta M_W = 8 \text{ MeV}$ for the same Higgs mass constraint

Current world average $\delta M_W = 23 \text{ MeV}$

- progress on δM_W now has the biggest impact on Higgs constraint!
Motivation II

- SM Higgs fit: $M_H = 83^{+30}_{-23}$ GeV (gfitter.desy.de)

- LEPII direct searches: $M_H > 114.4$ GeV @ 95% CL (PLB 565, 61)

In addition to the Higgs, is there another missing piece in this puzzle?

$\left(A_{FB}^b \text{ vs } A_{LR} : 3.2\sigma \right)$

Must continue improving precision of M_W, M_{top}...

Other precision measurements constrain Higgs, equivalent to $\delta M_W \sim 15$ MeV

Motivate direct measurement of M_W at the 15 MeV level and better
Motivation II

- SM Higgs fit: $M_H = 83^{+30}_{-23}$ GeV (gfitter.desy.de)
- LEPII direct searches: $M_H > 114.4$ GeV @ 95% CL (PLB 565, 61)

In addition to the Higgs, is there another missing piece in this puzzle?

(A_{FB}^b vs A_{LR}: 3.2σ)

Must continue improving precision of M_W, M_{top}...

other precision measurements constrain Higgs, equivalent to $\delta M_W \sim 15$ MeV

Motivate direct measurement of M_W at the 15 MeV level and better
Can the χ^2 parabola in $\ln M_H$ be narrowed?

Where will it minimize in the future?

Will Tevatron exclude the Higgs in the preferred ($M_H < 200$ GeV) range?

Will LHC see the (SM or non-SM) Higgs inside or outside the preferred mass range?
W Mass Analysis Strategy
Quark-antiquark annihilation dominates (80%)

Lepton p_T carries most of W mass information, can be measured precisely (achieved 0.03%)

Initial state QCD radiation is $O(10 \text{ GeV})$, measure as soft 'hadronic recoil' in calorimeter (calibrated to ~1%)
Pollutes W mass information, fortunately $p_T(W) \ll M_W$
W Boson Production at the Tevatron

Quark-antiquark annihilation dominates (80%)

Lepton p_T carries most of W mass information, can be measured precisely (achieved 0.03%)

Initial state QCD radiation is $O(10 \text{ GeV})$, measure as soft 'hadronic recoil' in calorimeter (calibrated to ~1%)
Pollutes W mass information, fortunately $p_T(W) \ll M_W$
Quadrant of Collider Detector at Fermilab (CDF)

Select W and Z bosons with central (|\eta| < 1) leptons
Collider Detector at Fermilab (CDF)

- Muon detector
- Central hadronic calorimeter
- Central outer tracker (COT)
CDF W & Z Data Samples

- **W, Z, J/ψ** and Upsilon decays triggered in the dilepton channel

- Analysis of 2.3 fb$^{-1}$ data in progress

 - Electron channel: $L = 218$ pb$^{-1}$

 - Muon channel: $L = 191$ pb$^{-1}$

- Event selection gives fairly clean samples

 - W boson samples' mis-identification backgrounds ~ 0.5%

<table>
<thead>
<tr>
<th>Sample</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow e\nu$</td>
<td>63964</td>
</tr>
<tr>
<td>$W \rightarrow \mu\nu$</td>
<td>51128</td>
</tr>
<tr>
<td>$Z \rightarrow e^+e^-$</td>
<td>2919</td>
</tr>
<tr>
<td>$Z \rightarrow \mu^+\mu^-$</td>
<td>4960</td>
</tr>
</tbody>
</table>
Outline of CDF Analysis

Energy scale measurements drive the W mass measurement

- **Tracker Calibration**
 - alignment of the central drift chamber (COT with ~2400 cells) using cosmic rays
 - COT momentum scale and tracker non-linearity constrained using $J/\psi \rightarrow \mu\mu$ and $\gamma \rightarrow \mu\mu$ mass fits
 - Confirmed using $Z \rightarrow \mu\mu$ mass fit

- **EM Calorimeter Calibration**
 - COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around $E/p \sim 1$
 - Calorimeter energy scale confirmed using $Z \rightarrow ee$ mass fit

- **Tracker and EM Calorimeter resolutions**

- **Hadronic recoil modelling**
 - Characterized using p_T-balance in $Z \rightarrow ll$ events
Drift Chamber (COT) Alignment

COT endplate geometry
Internal Alignment of COT

- Use a clean sample of ~200k cosmic rays for cell-by-cell internal alignment

- Fit COT hits on both sides simultaneously to a single helix (AK, H. Gerberich and C. Hays, NIMA 506, 110 (2003))
 - Time of incidence is a floated parameter

- Same technique being used on ATLAS and CMS
Residuals of COT cells after alignment

CDFII

Before alignment

after alignment

Final relative alignment of cells ~5 μm (initial alignment ~50 μm)
Cross-check of COT alignment

- Final cross-check and correction to track curvature based on difference of \(\langle E/p \rangle \) for positrons vs electrons (red points)
- Smooth ad-hoc curvature corrections applied \(\Rightarrow \delta M_w = 6 \text{ MeV} \)
- Systematic effects also relevant for LHC trackers
Signal Simulation and Fitting
Signal Simulation and Template Fitting

- All signals simulated using a custom Monte Carlo
 - Generate finely-spaced templates as a function of the fit variable
 - Perform binned maximum-likelihood fits to the data
- Custom fast Monte Carlo makes smooth, high statistics templates
 - And provides analysis control over key components of the simulation

- CDF and D0 extract the W mass from three kinematic distributions: Transverse mass, charged lepton p_T and neutrino p_T
Generator-level input for W & Z simulation provided by RESBOS (C. Balazs & C.-P. Yuan, PRD56, 5558 (1997) and references therein), which

- Calculates triple-differential production cross section, and p_T-dependent double-differential decay angular distribution

- Calculates boson p_T spectrum reliably over the relevant p_T range: includes tunable parameters in the non-perturbative regime at low p_T

Radiative photons generated according to energy vs angle lookup table from WGRAD (U. Baur, S. Keller & D. Wackerroth, PRD59, 013002 (1998))
Constraining Boson p_T Spectrum

- Fit the non-perturbative parameter g_2 in RESBOS to $p_T(ll)$ spectra:

 $g_2 = 0.685 \pm 0.048$

 - Consistent with global fits (Landry et al, PRD67, 073016 (2003))

- Negligible effect of second non-perturbative parameter g_3

 Position of peak in boson p_T spectrum depends on g_2
Fast Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data

- First-principles simulation of tracking
 - Tracks and photons propagated through a high-resolution 3-D lookup table of material properties for silicon detector and COT
 - At each material interaction, calculate
 - Ionization energy loss according to complete Bethe-Bloch formula
 - Generate bremsstrahlung photons down to 4 MeV, using detailed cross section and spectrum calculations
 - Simulate photon conversion and compton scattering
 - Propagate bremsstrahlung photons and conversion electrons
 - Simulate multiple Coulomb scattering, including non-Gaussian tail
 - Deposit and smear hits on COT wires, perform full helix fit including optional beam-constraint
Fast Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
 - Tracks and photons propagated through a high-resolution 3-D lookup table of material properties for silicon detector and COT
Tracking Momentum Scale
Tracking Momentum Calibration

- Set using $\Upsilon \rightarrow \mu \mu$ and $\gamma \rightarrow \mu \mu$ resonances
 - Consistent within total uncertainties

- Use Υ to study and calibrate non-linear response of tracker

- Systematics-dominated, improved detector modelling required

\[
\langle \frac{1}{p_T(\mu)} \rangle \text{(GeV}^{-1})
\]

Υ mass independent of $p_T(\mu)$

\[
\Delta p/p = (-1.376 \pm 0.064_{\text{stat}}) \times 10^{-3}
\]

$\chi^2/\text{dof} = 26/18$

Data

Simulation
Tracking Momentum Scale Systematics

Systematic uncertainties on momentum scale

<table>
<thead>
<tr>
<th>Source</th>
<th>$J/\psi \times 10^{-3}$</th>
<th>$\Upsilon \times 10^{-3}$</th>
<th>Common $\times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED and energy loss model</td>
<td>0.20</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Magnetic field nonuniformities</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Beam constraint bias</td>
<td>N/A</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Ionizing material scale</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>COT alignment corrections</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Fit range</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>p_T threshold</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Resolution model</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Background model</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>World-average mass value</td>
<td>0.01</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Statistical</td>
<td>0.01</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.25</td>
<td>0.21</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Uncertainty dominated by QED radiative corrections and magnetic field non-uniformity.
EM Calorimeter Response
Electromagnetic Calorimeter Calibration

- E/p peak from $W \rightarrow e\nu$ decays provides EM calorimeter calibration relative to the tracker
 - Calibration performed in bins of electron energy

![Graph showing data and simulation comparison with statistical uncertainty]

$S_E = 1 \pm 0.00025_{\text{stat}}$

$\chi^2/\text{dof} = 17 / 16$

Tail region of E/p spectrum used for tuning model of radiative material
Calorimeter Simulation for Electrons and Photons

- Distributions of energy loss calculated based on expected shower profiles as a function of E_T
 - Leakage into hadronic calorimeter
 - Absorption in the coil
 - Relevant for E/p lineshape
Consistency of Radiative Material Model

- Excellent description of E/p spectrum tail
- Radiative material tune factor: $S_{X0} = 1.004 \pm 0.009_{\text{stat}} \pm 0.002_{\text{background}}$
 achieves consistency with E/p spectrum tail
 - CDF detector geometry confirmed as a function of pseudorapidity: S_{MAT}, independent of $|\eta|$

![CDF data vs simulation](image)

Default energy loss * 1.004
Measurement of EM Calorimeter Non-linearity

- Perform E/p fit-based calibration in bins of electron E_T
- Parameterize non-linear response as: $S_E = 1 + \zeta \left(\frac{E_T}{\text{GeV}} - 39 \right)$
- Tune on W and Z data: $\zeta = (6 \pm 7_{\text{stat}}) \times 10^{-5}$

$\Rightarrow \Delta M_W = 23$ MeV
Z → ll Mass Cross-checks

- Z boson mass fits consistent with tracking and E/p-based calibrations

CDF II, $L \sim 200$/pb

$M_Z = (91190 \pm 67_{\text{stat}})$ MeV

$\chi^2/\text{dof} = 34 / 38$

$M_Z = (91184 \pm 43)$ MeV

$\chi^2/\text{dof} = 32 / 30$
Hadronic Recoil Model
Constraining the Hadronic Recoil Model

Exploit similarity in production and decay of W and Z bosons

Detector response model for hadronic recoil tuned using p_T-balance in $Z \rightarrow ll$ events

Transverse momentum of Hadronic recoil (u) calculated as 2-vector-sum over calorimeter towers
Tuning Recoil Response Model with Z events

Project the vector sum of $p_T(ll)$ and u on a set of orthogonal axes defined by lepton directions.

Mean and rms of projections as a function of $p_T(ll)$ provide information on hadronic model parameters.

Hadronic model parameters tuned by minimizing χ^2 between data and simulation.

$\Delta M_W = 9$ MeV
Tuning Recoil Resolution Model with Z events

At low $p_T(Z)$, p_T-balance constrains hadronic resolution due to underlying event.

At high $p_T(Z)$, p_T-balance constrains jet resolution.

Resolution of p_T-balance (GeV)

CDF II

$\int L \, dt \approx 200 \, \text{pb}^{-1}$

$\chi^2 / \text{DoF} = 4.8 / 10$

Data

Simulation

$\Delta M_W = 7 \, \text{MeV}$
Testing Hadronic Recoil Model with W events

Compare recoil distributions between simulation and data

Recoil projection (GeV) on lepton direction

$p_T(W)$ comparison
W Mass Fits
W Transverse Mass Fits

CDF II

$\int L \, dt \approx 200 \, \text{pb}^{-1}$

Muons

$M_W = (80349 \pm 54_{\text{stat}}) \, \text{MeV}$

$\chi^2/\text{dof} = 59 / 48$
W Lepton p_T Fits

CDF II

$\int L \, dt \approx 200 \, \text{pb}^{-1}$

Electrons

$M_W = (80451 \pm 58_{\text{stat}}) \, \text{MeV}$

$\chi^2/\text{dof} = 63 / 62$

- Data
- Simulation

events / 0.25 GeV

$E_T(e)$ (GeV)
Transverse Mass Fit Uncertainties (MeV)

<table>
<thead>
<tr>
<th></th>
<th>electrons</th>
<th>muons</th>
<th>common</th>
</tr>
</thead>
<tbody>
<tr>
<td>W statistics</td>
<td>48</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Lepton resolution</td>
<td>9</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>Recoil energy scale</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Recoil energy resolution</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Selection bias</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lepton removal</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>production dynamics</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Parton dist. Functions</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>QED rad. Corrections</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Total systematic</td>
<td>39</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Systematic uncertainties shown in green: statistics-limited by control data samples

W charge asymmetry from Tevatron helps with PDFs
Tevatron Run 1 (100 pb⁻¹) W Mass Systematic Uncertainties (MeV)

<table>
<thead>
<tr>
<th></th>
<th>CDF m</th>
<th>CDF e</th>
<th>D0 e</th>
</tr>
</thead>
<tbody>
<tr>
<td>W statistics</td>
<td>100</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>85</td>
<td>75</td>
<td>56</td>
</tr>
<tr>
<td>Lepton resolution</td>
<td>20</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Recoil model</td>
<td>35</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>production dynamics</td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Selection bias</td>
<td>18</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>25</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Parton dist. Functions</td>
<td>15</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>QED rad. Corrections</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>$\Gamma(W)$</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>144</td>
<td>113</td>
<td>84</td>
</tr>
</tbody>
</table>

For comparison to run 2 analysis
W Boson Mass Measurements

CDF: 200 pb\(^{-1}\), electron and muon channels
D0: 1 fb\(^{-1}\), electron channel

(D0 Run II: PRL 103:141801, 2009)
Pre-Run 2 M_W vs M_{top}

Experimental errors 68% CL:

- LECP2/Tevatron (1998)

- Light SUSY
- MSSM
- Heavy SUSY

- SM
- $M_H = 114$ GeV
- $M_H = 400$ GeV

Heinemeyer, Hollik, Stockinger, Weber, Weiglein
Post-Run 2 M_W ν M_{top}
Improvement of M_W Uncertainty with Sample Statistics

Next target: 15-20 MeV measurement of M_W from the Tevatron
Preliminary Studies of 2.3 fb\(^{-1}\) Data from CDF

CDF has started the analysis of 2.3 fb\(^{-1}\) of data, with the goal of measuring \(M_W\) with precision better than 25 MeV.

Lepton resolutions as good as they were in 200 pb\(^{-1}\) sample.
Preliminary Studies of 2.3 fb$^{-1}$ Data

Statistical errors on all lepton calibration fits have scaled with statistics

Detector and data quality maintained over time

detailed calibrations in progress
Preliminary Studies of 2.3 fb$^{-1}$ Data

Recoil resolution not significantly degraded at higher instantaneous luminosity

CDF II preliminary $\int L \, dt = 2.4$ fb$^{-1}$

W\rightarroweν

$\Delta m_W^{\text{stat}} = 15$ MeV/c2
χ^2/dof = 70 / 48

CDF II preliminary $\int L \, dt = 2.3$ fb$^{-1}$

W\rightarrow\muν

$\Delta m_W^{\text{stat}} = 16$ MeV/c2
χ^2/dof = 72 / 48

statistical errors on transverse mass fits are scaling with statistics
M_W Measurement at LHC

- Very high statistics samples of W and Z bosons
 - 10 fb$^{-1}$ at 14 TeV: 40 million W boson and 4 million Z boson candidates per decay channel per experiment

- Statistical uncertainty on W mass fit \sim 2 MeV

- Calibrating lepton energy response using the $Z \rightarrow ll$ mass resonance, best-case scenario of statistical limit \sim 5 MeV precision on calibrations

- Calibration of the hadronic calorimeter based on transverse momentum balance in $Z \rightarrow ll$ events also \sim 2 MeV statistical limit

- Total uncertainty on M_W \sim 5 MeV if $Z \rightarrow ll$ data can measure all the W boson systematics
M_W Measurement at LHC

- Can the $Z \rightarrow ll$ data constrain all the relevant W boson systematics?

- Production and decay dynamics are slightly different
 - Different quark parton distribution functions
 - Non-perturbative (e.g. charm mass effects in $cs \rightarrow W$) effects
 - QCD effects on polarization of W vs Z affects decay kinematics

- Lepton energies different by $\sim 10\%$ in W vs Z events
- Presence of second lepton influences the Z boson event relative to W
- Reconstructed kinematic quantity different (invariant vs transverse mass)
- Subtle differences in QED radiative corrections
-

M_W Measurement at LHC

- Can the $Z \to ll$ data constrain all the relevant W boson systematics?

- Can we add other constraints from other mass resonances and tracking detectors?

- With every increase in statistics of the data samples, we climb a new learning curve on the systematic effects
 - Improved calculations of QED radiative corrections available
 - Better understanding of parton distributions from global fitting groups (CTEQ, MSTW, Giele et al)

- Large sample statistics at the LHC imply the potential is there for 5-10 MeV precision on M_W
Summary

- The W boson mass is a very interesting parameter to measure with increasing precision

- CDF Run 2 W mass result with 200 pb$^{-1}$ data:

 $$M_W = 80413 \pm 48 \text{ MeV}$$

- D0 Run 2 W mass result with 1 fb$^{-1}$ data:

 $$M_W = 80401 \pm 43 \text{ MeV}$$

- Most systematics limited by statistics of control samples

 - CDF and D0 are both working on $\delta M_W < 25 \text{ MeV}$ measurements from $\sim 2 \text{ fb}^{-1}$ (CDF) and $\sim 4 \text{ fb}^{-1}$ (D0)

- Learning as we go: Tevatron \rightarrow LHC may produce $\delta M_W \sim 5-10 \text{ MeV}$
A possible Future Scenario

Higgs discovery with a large Higgs mass

\[\delta M_W = 10 \text{ MeV} \]

\[\delta m_{\text{top}} = 0.5 \text{ GeV} \]
Combined Results

- Combined electrons (3 fits): $M_W = 80477 \pm 62$ MeV, $P(\chi^2) = 49\%$
- Combined muons (3 fits): $M_W = 80352 \pm 60$ MeV, $P(\chi^2) = 69\%$
- All combined (6 fits): $M_W = 80413 \pm 48$ MeV, $P(\chi^2) = 44\%$

Lepton p_T and Missing E_T Fit Uncertainties

<table>
<thead>
<tr>
<th>Uncertainty (p_T)</th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u_\parallel Efficiency</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>9</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PDF</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>QED</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>45</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Statistical</td>
<td>58</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>77</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncertainty (MET)</th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>16</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>u_\parallel Efficiency</td>
<td>16</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>7</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PDF</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>QED</td>
<td>9</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>54</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>Statistical</td>
<td>57</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>80</td>
<td>42</td>
</tr>
</tbody>
</table>
Backgrounds in the W sample

<table>
<thead>
<tr>
<th>Source</th>
<th>Fraction (electrons)</th>
<th>Fraction (muons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z -> ll</td>
<td>0.24 ± 0.04 %</td>
<td>6.6 ± 0.3 %</td>
</tr>
<tr>
<td>W -> τν</td>
<td>0.93 ± 0.03 %</td>
<td>0.89 ± 0.02 %</td>
</tr>
<tr>
<td>Mis-identified QCD jets</td>
<td>0.25 ± 0.15 %</td>
<td>0.1 ± 0.1 %</td>
</tr>
<tr>
<td>Decays-in-flight</td>
<td></td>
<td>0.3 ± 0.2 %</td>
</tr>
<tr>
<td>Cosmic rays</td>
<td></td>
<td>0.05 ± 0.05 %</td>
</tr>
</tbody>
</table>

Backgrounds are small (except Z → μμ with a forward muon)

backgrounds contribute systematic uncertainty of 9 MeV on transverse mass fit