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The transition from Hamiltonian to dissipative systems is studied. In the dissipative standard
map the area-preserving map becomes dissipative as the dissipation parameter is varied and ulti-
mately turns into a one-dimensional circle map. All periodic orbits on the Hamiltonian map go over
smoothly into orbits in the circle map. Many-piece strange attractors on the one-dimensional map
are gradually wiped out as the dissipation disappears.

INTRODUCTION

The standard map is one of the most widely studied
area-preserving (Hamiltonian) maps.'~® Like all maps
corresponding to nonintegrable Hamiltonian systems, it
has stable and unstable periodic orbits, Kolmogorov-
Arnol’d-Moser (KAM) surfaces, and chaotic regions. As
the nonintegrability parameter is increased KAM surfaces
disintegrate, and chaotic regions spread. It has a “last”
KAM surface at the golden-mean rotation number’ a
member of the most robust, noble KAM surfaces’ whose
rotation numbers have continued-fraction expansion end-
ing in an infinite sequence of 1's [a,b,c,...,1,1,1,...].
The stability properties of any KAM surface can be in-
ferred from the stability of periodic orbits with rotation
numbers convergent to that of the KAM surface. A con-
venient way of viewing the stability properties of these
surfaces is by constructing fractal diagrams.* When
stable periodic orbits become unstable they appear to go
through universal period-doubling sequences.’

Here we study the dissipative standard map'!

x'=x+y’,
(1)
y'=by +(K /27)sin(2mx) .

When b =1 this is just the standard map with the non-
linearity parameter K. When the “dissipation parameter”
b (the Jacobian of the map) equals unity, the two-
dimensional map has contracted to a line and the one-
dimensional circle map

x'=x+(K /27)sin(2mx)=f (x) (2)

results. We study the range 0<b < 1. Equatlon (1) can be
written as a difference equation

xn+1_2xn +x,,__1+(1-b)(x,, _'xn—l)

=(K /2w)sin(2mx, ).

The corresponding differential equation obviously de-
scribes the damped pendulum with the damping rate
1—b.

While the standard map has symmetries in x and y so
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that the map of the plane reduces to the map of the torus
0<x <1, 0<y<]1, the symmetry in y is broken when
b1 and our map is a map of the cylinder O0<x <1,
—o<y<Loo.

When studying the stability domains of periodic orbits
in the K-b parameter plane (an extension of the fractal di-
agram®), it appears that all stable periodic orbits on the
Hamiltonian map connect continuously all the way to the
one-dimensional map. This is remarkable since the Ham-
iltonian map has an infinity of stable periodic orbits for a
fixed K, while the circle map has essentially only one
stable orbit for a given value of K. The periodic orbits
map from the three-dimensional K-x-y space (for b =1)
to the two-dimensional K-x plane for b =0.

Recently Holmes studied'? the quadratic Hénon map
with a dissipation parameter connecting the one-
dimensional quadratic map with the area-preserving quad-
ratic map. He found that the stable orbits of the one-
dimensional map connect with the area-preserving limit.
It is perhaps even more remarkable that the inverse ap-
pears also to be true for a map as rich as the standard
map.

In fact we find that there are orbits of the one-
dimensional map that have no counterpart in the Hamil-
tonian map. For the circle map (2), just like for the 1D
quadratic map,'® the period-doubling sequence ends at
some K. When K > K an inverse bifurcation sequence
of bands results, giving rise to 2"-piece strange attractors.
With increasing K this sequence merges until only a one-
piece strange attractor is left. We find that as b is in-
creased this sequence is gradually wiped out so in the
Hamiltonian limit when K >K_ only connected (one
piece) chaos is found. This is intuitively satisfying since
Hamiltonian multipiece chaos could only exist if local
KAM surfaces survived for K >K

The attractive bands (strange attractors) of the 1D map
undergo an infinite sequence of crises,'* where a small
change in K results in transitions from strange to regular
attractors and back again. This may be called “sensitive
dependence on the parameter.”” We find that this
behavior persists for finite b values. This lack of
structural stability is of concern for experimental observa-
tions, since a slight variation of parameter values during
the course of the experiment is unavoidable.
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PERIODIC ORBITS

There are two types of periodic orbits for area-
preserving maps. One type is unstable for any value of
the parameter, the other is stable for a range in K, and
typically becomes unstable via a period-doubling bifurca-
tion sequence, at some parameter value K,. For the stan-
dard map, periodic orbits are conveniently characterized
by their rotation number.? If an orbit has period Q, and
the number of rotations executed in Q iterations either on
the torus or around a fixed point is R, the rotation num-
ber is r =R /Q. The fractal diagram is formed by plot-
ting the K, values for rational rotation numbers by fami-
ly. The points for each family exhibit an ordered pat-
tern.*

We wish now to calculate the extension of the fractal
diagram to the dissipative case.

The period-one orbit with rotation number 0/1 is calcu-
lated from

x'=x =x +by + (K /2m)sin(2mx) ,

3)
y'=y =by +(K /2m)sin(2mx) ,

with solution x =%, y =0 (x =0, y =0 is always unsta-
ble). Stability can be determined from the eigenvalue
equation of the Jacobian matrix

A2—(TrJ)A+b =0, 4)

where the trace of the Jacobian matrix, TrJ=1—K +b.
The orbit is stable when |A| <1,0<K <2(1+b). Atthe
upper limit K,=2(1+b), A=—1, so there is a period-
doubling bifurcation at this point.

The period-two orbit created by this bifurcation con-

sists of a pair of points with x'=1—x, y'=—y (x"=x,
y"=y). From Eq. (1)
1—2x =[K /2m(1+b)]sin(27x) . (5)

For the once iterated Jacobian
TrJ =14+ K2cos?(2mx)+2K (1+b)cos(2mx) +b? ,

and the eigenvalue equation is A2—(TrJ)A+b*=0. The
range of stability is 2(1+b) <K <w(1+b). The lower
limit is the K value where this orbit is born by bifurcation
of the period-one orbit, while at the upper limit the orbit
becomes unstable. Since A= +1 at the upper limit it does
not give rise to a period-four orbit but two period-two or-
bits.

For these orbits x'=x +%, y'= —y which yields for
the location of the four x values Ksin(2mx)=tm(1+b).
The stability calculation can again be carried out without
difficulty to find

m(1+b) <K <[2(1+bH)+72(1+b)*]V2.

At the upper limit A= —1, and both period-two orbits bi-
furcate into period-four orbits. Further bifurcation can be
obtained numerically. They are period doubling with
Q =2", and n— o« at the K line shown in Fig. 1.

The period-one family contains orbits with arbitrary in-
teger rotation numbers. These orbits are located at
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FIG. 1. Parameter-space diagram of stable periodic orbits,
for different rotation numbers. Index f signifies orbits rotating
around the fixed point 0.5,0 rather than around the cylinder.
Period 2 bifurcates into 2'.

x'=x +R =x +by +(K /2m)sin(2mx) ,
6)
y'=y =by +(K /2m)sin(2mx) .

Expressing y from the second equation and substituting
into the first one results in :

R =[K /2m(1—b)Jsin(2mx)

and y=R. The stability calculation leads for these
r =R /1 orbits,

27R(1—b) <Ky <2[172(1_b)2R2+(1+b)2]1/2 .

These orbits are born at the lower limit as tangent bifurca-
tions and become unstable at the upper limit via period-
doubling bifurcations. The range of stable existence of
some of these orbits in the K-b parameter space is also
show on Fig. 1.

There is another set of period-two orbits where the sta-
bility limits can be analytically calculated. These are the
x''=x orbits (note that x’ =x +integer are also period-
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two not calculated here). These all have solutions y'= —y F(x)
and sin27x +sin27x’=0. For details see Appendix A. I
Two types of solutions exist: x'=m —x and .81
x'=x+m ——% with m integer. ek

The first type, x'=m —x, is born at K,, =(1+b)q,,, al
where the g,, values are calculated in Appendix A. The i
orbit is stable in the range 2

.0 y ‘
(1+b)g,, <K <2m(1+b)(m — %) . 6. .z 4 & .8 I

When the upper limit is reached these orbits become un-
stable and give rise to period-two orbits of the second
type, x'=x +m —+, with a range of stability

2m(14-b)(m —5) <K <[2(1+b2?)

+(2m2(m —$)(14+b)2]12

At the upper limit A=—1 so the orbits destabilize via
period-doubling bifurcations.

The stability limits of several other orbits have been ex-
tended numerically from the Hamiltonian (b =1) case to
the one-dimensional limit. Some of these orbits have been
plotted in the parameter-space diagram in Fig. 1. We find
that all orbits calculated with a range of stability in the
Hamiltonian map extend all the way to the one-
dimensional map. As the Hamiltonian map accommo-
dates an infinity of stable orbits for a given value of the
parameter K, the stability regions become narrower in pa-
rameter space, and separate, as b is reduced. For a given
b as K is increased the orbits are born by a tangent bifur-
cation and destabilize by period doubling. When b =0
there are at most a finite number of stable orbits for a
given value of K.

Orbits of the one-dimensional circle map have been
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FIG. 2. Attractors of the circle map x'=x
+(K /27 )sin(2mx ).

FIG. 3. Construction for the calculation of K;, the smallest
K to give orbits rotating on the cylinder.

plotted in Fig. 2. As K is increased starting from K=0 a
period-doubling bifurcation sequence, similar to that of
the quadratic map, takes place. When K, =3.5315 is
surpassed, bands (strange attractors) of period 2" are
formed and merge finally into a single band. The bands
are interrupted by the sudden appearance of stable period-
ic orbits of finite period followed by their own bifurcation
sequences. While this fact is a well-known characteristic
of one-dimensional maps it appears now in a new light;
the periodic orbits are the extensions of the Hamiltonian
orbits that have no other place to go.

Unlike the quadratic map, the circle map extends all
the way to K— w0, and so do the interruptions by stable
periodic orbits. The most important of these (producing
the largest gaps in Fig. 2), correspond to the period-one
and period-two stable orbits calculated above.

The orbits that rotate on the cylinder for bs~0 make
their appearance on the circle map when a critical param-
eter value K; =4.60333 has been surpassed. The con-
struction of Fig. 3 shows how this value is calculated.
The condition that successive mappings of a point in the
O0< x <1 interval can ultimately carry it outside this re-
gion is that the first maximum of f(x)=f,,(x)> 1. This
condition leads to the equations for the threshold

Kpsinf=27r—§,
(7
KycosE=—1,

where §=2mx, and x, is the position of the maximum.
These equations yield £=1.789 776 and K; =4.603 33.

We have also calculated the ranges of stability of some
golden-mean convergents. Details are given in Appendix
B. On the circle map the K values of these converge very
rapidly, and the range of K where they exist becomes very
narrow as the Fibonacci numbers (whose ratio is the rota-
tion number) are increased. In the Hamiltonian map these
orbits converge to the golden-mean KAM surface. When
b <1 they converge to a stable orbit of infinite period
which is no longer continuous and whose range of stabili-
ty in K has shrunk to zero.

STRANGE ATTRACTORS

Chaos appears in the one-dimensional map as K >K
as a set of bands of period 2", where n— 0 as K—K
and the period becomes one (n =0) at some finite value of
K. When 1>b >0 one expects these bands to become
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FIG. 4. Parameter-space diagram for multiple-piece strange
attractors. (a) shows 0< B <1, (b) is a magnification of region
shown in (a).

2"-piece strange attractors. As b—1 the strange attractor

should correspond to a chaotic region bounded by KAM

surfaces. However as K—K ., for a Hamiltonian orbit all

" KAM surfaces in the neighborhood are destroyed exclud-
ing the possibility of the emergence of 2”-piece chaos.

We computed the boundaries in parameter space where
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the strange attractors, arising from the bifurcations of the
x =+, y =0 fixed point, exist. This is shown in Fig. 4.
The K o (b) is a smooth curve in the O0< b <1 interval.
The curve that represents the emergence of the one-piece
strange attractor K(b) connects with K _ (1). The region
K <K <K, shrinks to a point on the Hamiltonian side
of the diagram. The curves K, (b) representing the lower
boundary of 2"-piece chaos terminate in K.

To show this better we have plotted the In(K, —K )
versus b curves shown in Fig. 5. (There are two different
n =2 lines for our map, designated by 2 and 2', arising
from a symmetry, just as the period-two stable orbit bifur-
cates into a pair of period-two orbits.) For a given bs£1
typically one finds that the inverse bifurcation sequence of
many-piece strange attractors terminates at some finite n
and becomes a one-piece attractor.

We have studied the destruction mechanism of the
many-piece stange attractors as the dissipation is reduced.
When b =0 there is just one (or in case of degeneracy a
finite number) chaotic orbit at a given value of the param-
eter K. When b is increased more and more stable as well
as unstable trajectories coexist in the x-y plane. Thus for
a given K and bs£1 there are many unstable periodic or-
bits of different periods in the x-y plane, each with its
stable and unstable invariant manifolds. The unstable in-
variant manifolds are potential strange attractors. The
heteroclinic intersections of the stable manifold of the
period-one orbit with a 2"-piece strange attractor create a
crisis leading to the destruction of the attractor.
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FIG. 5. In(K,—K ) is plotted versus B for multiple-piece
strange attractors.
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Finally, a remark shall be made about a phenomenon
that may be termed “sensitive dependence on the parame-
ter.” In the one-dimensional map above K, the bands
are interrupted by periodic orbits. These orbits are dense
in K so that arbitrarily close to a K value exhibiting chaos
there are many parameter values where periodic orbits
rather than chaos exists. If one carried out an experiment,
where the behavior of a physical quantity was described
by the map, a slight drift in the physical parameter corre-
sponding to K would carry the system to a region charac-
terized by. qualitatively different behavior. This lack of
structural stability would render the interpretation of the
experimental results virtually impossible.

The Hamiltonian map does not suffer from this diffi-
culty. As K is varied the behavior of the map varies
smoothly, except for isolated K values like the one where
the golden-mean KAM surface breaks. As we have seen,
as b is reduced, the objects that appeared separated in x-y,
become increasingly separated in parameter space giving
rise to the sensitive dependence on the parameter. It ap-
pears from numerical evidence that the change is gradual.
As b is increased the interruptions of the chaotic bands by
stable periodic orbits gradually disappear. The periodic
orbits causing the interruptions have moved to different
positions in x-y space. One expects therefore that experi-
ments on near-Hamiltonian systems with small dissipa-
tion will be more amenable to theoretical interpretation
than nonintegrable strongly dissipative systems.
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APPENDIX A

Consider the class of period-two orbits where x"'=x
and y”"=y. From x =x"=x"'+y"=x'+y and x'=x +y’
it follows that y'=-—ypy. From —y=y'=by
+(K /27)sin(2wx ), y = —[K /27w(1+b)]sin(27x), so

x'=x+[K/2m(14+b)]Isin(27x) . (A1)
From
x=x"=x"+y"=x"+by'+(K /2m)sin(27x’)

=x"+[Kb /2m(1+b)]sin(27x)
+(K /2m)sin(27x’) , .

x'=x—[Kb /2m(1+b)]sin(27wx)— (K /27)sin(27wx’) .
(A2)

Subtracting (A2) from (A1) gives
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sin(2mx)+sin(2mx’)=0 . (A3)

There are two types of solution: (1) x'=m —x, (2)
xX'=x+m — -;-, where m is an integer.
For type (1) from (A1)

m —2x =[K /27(1+4b)]sin(27x) . (A3)
Since cos(27x)=cos(2mx’), we have
TrJ =14b2+K?%cos*(2mx )+ 2K (1+b)cos(2mx)
=[Kcos(2mx)+1+b]>—2b
with the range of stability
—(1=b)®<[K cos(2mx)+1+bPP<(1+b)%. (A4)

The left inequality is always satisfied, while the one on
the right is satisfied for —4 <x <+. The upper limit is
the relevant one and it gives from (A3’) the critical
K =K.,

K, =2m(14+b)(m — %) . (AS)
For type-(2) orbits cos(2mx’)=cos(27x) and
m —+=x'—x=[K/2r(1+4b)]sin(2mx) , (A6)

where (A1) has been used. When x =+, (A6) becomes
identical with (A5). This mode comes into existence
where the first mode becomes unstable. The trace of the
Jacobian is

TrJ =1+b%—K%cos*(2mx) (A7)
giving the stability range
0<K%cos’(2mx) <2(1+b2) . (A8)

The left inequality is again automatically satisfied,
while the right one gives 2(1+ b%)=K2—KZsin?(2mx).
Using (A6) gives for the stability limit

K. =[2014+b%)+ 27 (m — +)X(1+b)*]'2 . (A9)

The onset of mode 1 can be calculated using (A3’), and
setting the derivatives of the left and right side equal,
—2=[K/(1+b)]cos(2mx). With £=27x this gives the
equations

& —mmr=tané (A10)
and

K/(14b)=—2/cos§ . (A11)
Solving (A 10) numerically and using (A11) gives

q,=Ky/(14+b)=9.20671 for m =2,
q3=Ky/(14+b)=15.58 for m =3,

etc., where K, designates the onset of mode 1.
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APPENDIX B

We have calculated golden-mean convergent orbits on the one-dimensional circle map. The K ranges over which these

orbits are stable become small very fast:

r=+, 49113 <K <4.92425,

r=3%, 5.804346 <K <5.804985,

r=+%, 5.78435458 <K <5.7843558 ,

r=3%, 5.801324906 <K <5.801324915, ‘

r=-, 5.8013128798095156 <K <5.801312879 809 548 ,
r=+r, 5.80132457516983852 <K <5.80132457516983863 .
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