Contents

Preface
Preface xiii

1 **Introduction**
1.1 The big picture: why is the Universe not boring? 2
1.2 Convection: a first example of a nonequilibrium system 3
1.3 Examples of nonequilibrium patterns and dynamics 10
 1.3.1 Natural patterns 10
 1.3.2 Prepared patterns 20
 1.3.3 What are the interesting questions? 35
1.4 New features of pattern-forming systems 38
 1.4.1 Conceptual differences 38
 1.4.2 New properties 43
1.5 A strategy for studying pattern-forming nonequilibrium systems 44
1.6 Nonequilibrium systems not discussed in this book 48
1.7 Conclusion 49
1.8 Further reading 50

2 **Linear instability: basics**
2.1 Conceptual framework for a linear stability analysis 57
2.2 Linear stability analysis of a pattern-forming system 63
 2.2.1 One-dimensional Swift–Hohenberg equation 63
 2.2.2 Linear stability analysis 64
 2.2.3 Growth rates and instability diagram 67
2.3 Key steps of a linear stability analysis 69
2.4 Experimental investigations of linear stability 70
 2.4.1 General remarks 70
 2.4.2 Taylor–Couette instability 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Classification for linear instabilities of a uniform state</td>
<td>75</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Type-I instability</td>
<td>77</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Type-II instability</td>
<td>79</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Type-III instability</td>
<td>80</td>
</tr>
<tr>
<td>2.6</td>
<td>Role of symmetry in a linear stability analysis</td>
<td>81</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Rotationally invariant systems</td>
<td>82</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Uniaxial systems</td>
<td>84</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Anisotropic systems</td>
<td>86</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Formal discussion</td>
<td>86</td>
</tr>
<tr>
<td>2.7</td>
<td>Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>2.8</td>
<td>Further reading</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Linear instability: applications</td>
<td>96</td>
</tr>
<tr>
<td>3.1</td>
<td>Turing instability</td>
<td>96</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Reaction–diffusion equations</td>
<td>97</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Linear stability analysis</td>
<td>99</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Oscillatory instability</td>
<td>108</td>
</tr>
<tr>
<td>3.2</td>
<td>Realistic chemical systems</td>
<td>109</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Experimental apparatus</td>
<td>109</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Evolution equations</td>
<td>110</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Experimental results</td>
<td>116</td>
</tr>
<tr>
<td>3.3</td>
<td>Conclusions</td>
<td>119</td>
</tr>
<tr>
<td>3.4</td>
<td>Further reading</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>Nonlinear states</td>
<td>126</td>
</tr>
<tr>
<td>4.1</td>
<td>Nonlinear saturation</td>
<td>129</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Complex amplitude</td>
<td>130</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Bifurcation theory</td>
<td>134</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Nonlinear stripe state of the Swift–Hohenberg equation</td>
<td>137</td>
</tr>
<tr>
<td>4.2</td>
<td>Stability balloons</td>
<td>139</td>
</tr>
<tr>
<td>4.2.1</td>
<td>General discussion</td>
<td>139</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Busse balloon for Rayleigh–Bénard convection</td>
<td>147</td>
</tr>
<tr>
<td>4.3</td>
<td>Two-dimensional lattice states</td>
<td>152</td>
</tr>
<tr>
<td>4.4</td>
<td>Non-ideal states</td>
<td>158</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Realistic patterns</td>
<td>158</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Topological defects</td>
<td>160</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Dynamics of defects</td>
<td>164</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>165</td>
</tr>
<tr>
<td>4.6</td>
<td>Further reading</td>
<td>166</td>
</tr>
</tbody>
</table>
Contents

5 Models 173
- 5.1 Swift–Hohenberg model 175
 - 5.1.1 Heuristic derivation 176
 - 5.1.2 Properties 179
 - 5.1.3 Numerical simulations 183
 - 5.1.4 Comparison with experimental systems 185
- 5.2 Generalized Swift–Hohenberg models 187
 - 5.2.1 Non-symmetric model 187
 - 5.2.2 Nonpotential models 188
 - 5.2.3 Models with mean flow 188
 - 5.2.4 Model for rotating convection 190
 - 5.2.5 Model for quasicrystalline patterns 192
- 5.3 Order-parameter equations 192
- 5.4 Complex Ginzburg–Landau equation 196
- 5.5 Kuramoto–Sivashinsky equation 197
- 5.6 Reaction–diffusion models 199
- 5.7 Models that are discrete in space, time, or value 201
- 5.8 Conclusions 201
- 5.9 Further reading 202

6 One-dimensional amplitude equation 208
- 6.1 Origin and meaning of the amplitude 211
- 6.2 Derivation of the amplitude equation 214
 - 6.2.1 Phenomenological derivation 214
 - 6.2.2 Deduction of the amplitude-equation parameters 217
 - 6.2.3 Method of multiple scales 218
 - 6.2.4 Boundary conditions for the amplitude equation 219
- 6.3 Properties of the amplitude equation 221
 - 6.3.1 Universality and scales 221
 - 6.3.2 Potential dynamics 224
- 6.4 Applications of the amplitude equation 226
 - 6.4.1 Lateral boundaries 226
 - 6.4.2 Eckhaus instability 230
 - 6.4.3 Phase dynamics 234
- 6.5 Limitations of the amplitude-equation formalism 237
- 6.6 Conclusions 238
- 6.7 Further reading 239

7 Amplitude equations for two-dimensional patterns 244
- 7.1 Stripes in rotationally invariant systems 246
 - 7.1.1 Amplitude equation 246
 - 7.1.2 Boundary conditions 248
10 Oscillatory patterns 358
 10.1 Convective and absolute instability 360
 10.2 States arising from a type-III-o instability 363
 10.2.1 Phenomenology 363
 10.2.2 Amplitude equation 365
 10.2.3 Phase equation 368
 10.2.4 Stability balloon 370
 10.2.5 Defects: sources, sinks, shocks, and spirals 372
 10.3 Unidirectional waves in a type-I-o system 379
 10.3.1 Amplitude equation 380
 10.3.2 Criterion for absolute instability 382
 10.3.3 Absorbing boundaries 383
 10.3.4 Noise-sustained structures 384
 10.3.5 Local modes 386
 10.4 Bidirectional waves in a type-I-o system 388
 10.4.1 Traveling and standing waves 389
 10.4.2 Onset in finite geometries 390
 10.4.3 Nonlinear waves with reflecting boundaries 392
 10.5 Waves in a two-dimensional type-I-o system 393
 10.6 Conclusions 395
 10.7 Further reading 396

11 Excitable media 401
 11.1 Nerve fibers and heart muscle 404
 11.1.1 Hodgkin–Huxley model of action potentials 404
 11.1.2 Models of electrical signaling in the heart 411
 11.1.3 FitzHugh–Nagumo model 413
 11.2 Oscillatory or excitable 416
 11.2.1 Relaxation oscillations 419
 11.2.2 Excitable dynamics 420
 11.3 Front propagation 421
 11.4 Pulses 424
 11.5 Waves 426
 11.6 Spirals 430
 11.6.1 Structure 430
 11.6.2 Formation 436
 11.6.3 Instabilities 437
 11.6.4 Three dimensions 439
 11.6.5 Application to heart arrhythmias 439
 11.7 Further reading 441
12 Numerical methods

12.1 Introduction 445
12.2 Discretization of fields and equations 447
 12.2.1 Finitely many operations on a finite amount of data 447
 12.2.2 The discretization of continuous fields 449
 12.2.3 The discretization of equations 451
12.3 Time integration methods for pattern-forming systems 457
 12.3.1 Overview 457
 12.3.2 Explicit methods 460
 12.3.3 Implicit methods 465
 12.3.4 Operator splitting 470
 12.3.5 How to choose the spatial and temporal resolutions 473
12.4 Stationary states of a pattern-forming system 475
 12.4.1 Iterative methods 476
 12.4.2 Newton’s method 477
12.5 Conclusion 482
12.6 Further reading 485

Appendix 1 Elementary bifurcation theory 496

Appendix 2 Multiple-scales perturbation theory 503

Glossary 520

References 526

Index 531