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Karhunen-Loéve Decomposition of Extensive Chaos
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We show that the number of KLD (Karhunen-Loéve decomposition) mdges needed to capture a
fraction f of the total variance of an extensively chaotic state scales extensively with subsystem volume
V. This allows a correlation lengtéik; p to be defined that is easily calculated from spatially localized
data. We show thafyx;p has a parametric dependence similar to that of the dimension correlation
length and demonstrate that this length can be used to characterize high-dimensional inhomogeneous
spatiotemporal chaos. [S0031-9007(97)02528-3]
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Spatiotemporal states that are nonperiodic both in spaddissipative systems. This quantity has some of the flavor
and time abound in nature and are often important technaf correlation functions and also of dynamical invariants
logically, e.g., for lasers, fibrillating hearts, and convec-and is straightforward to compute with moderate amounts
tive transport of heat [1]. Experiments and simulationsof spatiotemporal data (unlike global dynamical invariants
raise questions that are presently poorly understood: Arkke the fractal dimension) since, as we show below, itis a
there different kinds of spatiotemporal nonperiodic states®cal quantity that can be calculated from spatiotemporal
What kinds of bifurcations lead to such states? How dalata associated with a finite region of space. This last
inhomogeneities and boundary conditions affect the dyfeature suggests thaix;p will be useful for studying
namics? And how does the transport of energy and maspatially inhomogeneous dynamics arising from slowly
ter depend on the details of the spatiotemporal disorderhanging external parameters, from broken symmetries,
An essential first step towards answering these questiorss from the influence of boundaries. We investigate
is to develop methods to quantify spatiotemporal dynamiche properties oféxrp numerically for two idealized
states, so that one state can be distinguished from anotherathematical models—the one-dimensional Kuramoto-
and so that theory can be compared with experiment an8ivashinsky (KS) equation [1] and the two-dimensional
with simulation. Data analysis and theoretical progresiller-Huse model [5]—whose spatiotemporal chaotic
are presently limited by a scarcity of concepts and of comsolutions have been thoroughly studied and for which
putational methods for analyzing spatiotemporal disorderinhomogeneities can be introduced in a controlled manner.

In the absence of a fundamental theory of sustaineth later work, applications to experimental data will be
nonequilibrium systems that could indicate appropriateeported.
quantities to measure, researchers have used primarily two Our motivation for defining and studying the correla-
approaches for quantifying spatiotemporal disorder: twotion lengthégx p comes from three different ideas. First
point correlation functions and dynamical invariants suchis the idea of extensive chaos, that a sufficiently hig
as Lyapunov exponents and fractal dimensions [1]. Temmogeneouspatiotemporal chaotic system has the prop-
poral correlation functions have been effective for distin-erty that its fractal dimensio is extensive, growing
guishing periodic and quasiperiodic dynamical states fronin proportion to the system volumg [1,6,7]. This ex-
each other and from chaotic ones [2] while spatial corretensive scaling suggests that boundetkénsive quanti-
lation functions have played an important role in discov-ties, such as a dimension densdty= limy_... D/V or the
ering and demonstrating the absence of long range spatiafjuivalent dimension correlation lenggh = 6 /¢ [1,8]
order [3]. Both correlation functions have been less usefwhere d is the number of asymptotically large spatial
ful for distinguishing one chaotic state from another or fordimensions, e.g.d = 2 for a large-aspect-ratio convec-
comparing experimental with computational chaotic datation experiment) are more appropriate for characterizing
Dynamical invariants have been somewhat useful for ortarge nonequilibrium systems. It was shown recently that
dering the chaotic states of low-dimensional dynamicathe length¢s varies independently of the two-point and
systems but severe difficulties remain in calculating thesenutual-information correlation lengths [8]. This suggests
quantities for higher-dimensional systems because of théhat certain measures of spatiotemporal dynamics should
demanding computational effort, the slow and often ambe sensitive to structure in phase space, not just to instan-
biguous convergence of time-series-based algorithms, artdneous or time-averaged measures of spatial disorder in

the need for large amounts of noise-free data [4]. configuration space. The quantify; p turns out to have
In this Letter, we propose and analyze a new measurthis property.
of spatiotemporal disorder, a correlation lengihp The second idea is to extend the concept of local thermo-

defined below, that seems promising especially for thelynamic equilibrium [9, p. 13] to slowly varying inhomo-
analysis of large, high-dimensional, nontransient, drivengeneous driven dissipative systems, with the implication
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that intensive dynamical quantities can be defined locall\§-dimensional phase space. The quanthy, p indicates

and will be slowly varying in space. As an illustration, the dimension of a linear subspace that includes most of

assume that a large sustained nonequilibrium system hadfze statistical variation of this embedding, and is generally

parametep (x) that varies slowly with positiom and con-  quite different from the attractor’'s fractal dimensi@n

sider a subsystem of siZecentered at positiomy. Then e.g., a limit cycle with fractal dimensio® =1 in a

over a certain time scale that decreases with decreasing-dimensional phase space could have a valu®gfp

subsystem sizé. (not necessarily diffusively), this sub- between 1 andV depending on how the limit cycle is

system will be approximately nontransient even if the sysfolded in different orthogonal directions.

tem containing the subsystem is not. Further, the values Although Dk p need have no particular relation to the

of intensive parameters associated with this approximatelglata’s fractal dimensioD, we argue that foextensive

nontransient subsystem should correspond closely in valughaos, the rate of increase Dy p with volume V' will

to those of an infinite homogeneous nontransient systemenerally be similar to the rate of increase of fractal

with the parameter valug(xg). Unfortunately, there are dimensionD with V. This follows from extensivity,

no reliable algorithms that can estimate intensive quantitiethat the addition of an independent subsystem (as we

such as the dimension densitiyrom information localized increase the system volume) adds a new linear subspace

to some region of space; calculations of intensive quantiincreasing Dxrp) that contains the new degrees of

ties such as the Lyapunov dimension dendithave so freedom that lead to an increaselin This suggests that

far relied on the expensive calculation of global extensiveDg p is related taD for extensive systems and so we can

quantities followed by taking the limit of some intensive then try to use the more readily calculated quantiy; p

ratio [8]. This is impractical for the analysis of experimen-to estimate intensive correlation lengths like the length

tal data or for the evaluation of local measures. &5 discussed above, and to study the dependence of such
The third idea is to make use of the Karhunen-lengths on system parameters.

Loéve decomposition (KLD), which has been used by We now present some results that illustrate these ob-

researchers in many disciplines to analyze spatiotemporakrvations. When evaluated for spatiotemporal data of

data [10], although not in the context of extensivea large, approximately homogeneous, sustained nonequi-

chaos or of inhomogeneous systems. The KLD is dibrium system of voluméV/, the KLD dimensionDg p

statistical method for compressing spatiotemporal data bgf Eq. (1) grows extensively witly as shown in Fig. 1

finding the largest linear subspace that contains substantialhereV is either the volume of the entire system or the

statistical variations of the data. To illustrate the ideavolume of a sufficiently large subsystem in a fixed vol-

in the discrete case and also to introduce some notatiomme. Here we have usefl X S data matricesA (with

we consider a one-dimensional zero-mean figldx) on  10* = T =2 X 10* and 100 = § = 800) derived from

a spatial intervall0, L] whose values are measured onthe spatiotemporal field:(z,x) of the one-dimensional

a finite space-time mesh & uniformly sampled time

pointst; = iAr and ofS uniformly sampled spatial points

x; = jAx. Then al' X § rectangular data matriA;; = ' ' ' '

u(t;,x;) can be defined from which & X § symmetric 80.0

positive semidefinite scatter matril = ATA can be

calculated, whereA” denotes the matrix transpose of

A. The scatter matrix can be diagonalized to obtain its g5 4

nonnegative eigenvalues’ which can be further ordered

in decreasing size? = o3 --- = o7 = 0. q 81%
Since the ordered eigenvalue$ often decrease rapidly  ~° 20.0 - -

in magnitude with increasing index researchers [11]

have introduced a positive integBi p:

95% |
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which represents the largest number of KLD modes
p nheeded to capture some specified fractjprs 1 of
the total variancer:1 o? of the data. Researchers FIG. 1. KLD dimensionDk.p [Eq. (1)] versus sizel for
have suggested usinBxp like a fractal dimensionD  subsystems (circles) and for full systems (squares) of Eq. (2).
to measure the complexity of spatiotemporal data [111-'”?5 connecting points are to guide the eye. The labels

. . . ndicate the value off. The f = 0.81 system size line
aIthough care Is needed When interpretidg.p. The corresponds to the extensive scaling of the Lyapunov dimension
T S-dimensional vectors defined by the rows of the datap [7].” Spatial and temporal sampling intervals df = 0.25

matrix A constitute an embedding of the dynamics into aand At = 2 were used, respectively.
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Kuramoto-Sivashinsky equation
du + 0%u + 9*u + udu =0,

tude of éx p changing by a factor of 10 over the range
re0L], @) 0.3 = f = 1. Contrary to an earlier claim by Ciliberto
T and Nicolaenko [11], Fig. 2 suggests that the fractal di-
with rigid boundary conditions: = d,.u =0 at x =0  mension of a high-dimensional system cannot generally
and atx = L. Equation (2) was integrated numerically be estimated from a knowledge &k p since the frac-
with a semi-implicit finite-difference method that was tion f corresponding to the dimension correlation length
first- and second-order accurate in time and space, rawill not be known in advance and becausg p can vary
spectively. ForL > 50, most initial conditions yield spa- substantially withf. However, the onset of extensivity
tiotemporal chaotic states that were previously shown tdor Dk p does accurately predict the onset of extensivity
be extensively chaotic [7]. Figure 1 shows tiiat p is  for the Lyapunov dimensio® with increasing volumé/
extensive for system sizels = 50 (plotted in squares), which provides a way to determine if an experimental sys-
growing in proportion to the system volumié with a  tem is extensively chaotic.
slope that depends on the fractin Figure 1 also shows Figure 3 shows how the lengtfk p (for f = 0.95)
that Dx1p is extensive for sufficiently large open sub- compares with the dimension correlation lengdth (de-
systems (plotted in circles) centered on the middle of aived from the extensive Lyapunov fractal dimension
system of fixed siz&l00 over the rangd5 = L = 200.  [8]) for a nonequilibrium Ising-like phase transition of a
The slope ofDkyp for subsystems for a given fraction mathematical model invented by Miller and Huse [5].
f is thesameas the slope oD p for full systems (al- (The functional dependence ¢k p on parameteg de-
though the intercepts differ). This implies the importantpends only weakly on the fractighiwhich therefore is not
point that the intensive density lim.. Dx.p/V can be animportant parameter here.) The model is a 2D coupled-
estimated from information localized to a certain regionmap lattice for which a 1D chaotic map of odd symmetry
of space. is placed at each node of a periodicX L square lat-
The extensivity of the KLD dimension, for both the tice. Each site is coupled diffusively to nearest neighbors
entire system and for subsystems, suggests introducing avith a strengthg that acts as the bifurcation parameter
intensive KLD correlation lengtlk p: for this system. For increasing values gf Miller and
Huse found that a quantity analogous to a lattice mag-
netizationM bifurcated from a zero to nonzero value at
a critical valueg. = 0.205 at which point also a two-

by analogy to the definition of the dimension correlation-point correlation lengthé, diverged to infinity. O’Hern
length £5 (where againd is the spatial dimensionality of

the system). Based on the data in Fig. 1 for the KS equa-
tion, Fig. 2 shows how the lengthx; p varies with the

~1/d
ékLp = <‘|/|ﬂ'1c>o DKLD/V> , )

fraction f. The dependence is nonlinear, with the magni-
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0.0 T T T FIG. 3. Comparison of the KLD and Lyapunov dimension
0.2 04 0.6 0.8 1.0 correlation lengths [8] (squares and circles, respectively) for
Fraction f a nonequilibrium transition [5]. The values f@ixLp were

FIG. 2. KLD correlation lengttfx p versus fractiory for the

of magnitude infx . p.

calculated for the fractiorf = 0.95 using spatiotemporal data
of the Miller-Huse model on a 2D periodic square lattice of size
data of Fig. 1, showing a nonlinear dependence over an orddi = 30. T = 10* time samples of = L? latice sites over the
rangel2? = S = 20% were used to define the data matiix
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FIG. 4. KLD correlation lengthéx p with f = 0.95 (circles)
versus spatial coordinate for a weakly inhomogeneous 2D

Miller-Huse model on a square lattice with periodic boundary

conditions, with rectangular geometr§, = 300 and L, =
30. The scatter matrices were calculated frafh= 10*
time samples and = 92, 112, 132, and 152, respectively. The
inset indicates the periodic spatial variation gfc) = 0.17 +

0.02sin(27x/300), whose range corresponds to the interval

&x1p are given by the circles which can be compared with
the dashed curve representing the corresponding value of
¢éxLp that would be obtained from Fig. 3 for an infinite
homogeneous system with constant vague g(x). The
agreement is good to about 4% throughout, which is suf-
ficient to determine the quantitative spatial dependence of
the inhomogeneity.

In conclusion, the correlation length Eq. (3) obtained by
studying the extensive scaling of the Karhunen-Loeve de-
composition with increasing subsystem volume provides
an easily calculated and novel way to characterize the spa-
tiotemporal disorder of an extensively chaotic system, in-
cluding the case of slowly varying spatial inhomogeneities.
We believe that the ideas on which our analysis is based—
namely, extensivity, local stationarity, and the Karhunen-
Loeve decomposition—will be important ingredients in
the future analysis of large nonequilibrium systems.
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indicated by the horizontal arrow in Fig. 3. The dashed curve

represents the value @fx.p for infinite homogeneous lattices
with constant coupling constagfx).

et al. [8] showed that the dimension correlation length
did not diverge neag. but instead was a quantity of order

one that smoothly reached a local maximum at a value

g = 0.200 distinctly less than the critical valug.. Fig-
ure 3 shows that the leng#x 1 p is somewhat larger than,
but comparable in magnitude witljs and has a qualita-
tively similar dependence op in that it increases to a
local maximum at the samg value. Unlike the di-
mension correlation lengttéx p does not seem to vary

smoothly near its maximum but we lack sufficient numeri-

cal resolution to determine unambiguously whether there
is a finite jump in value, in analogy to the dependence of
specific heat on temperature for a second-order equilib-

rium phase transition.
Finally, in Fig. 4 we demonstrate how the KLD cor-
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