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Karhunen-Loève Decomposition of Extensive Chaos
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We show that the number of KLD (Karhunen-Loève decomposition) modesDKLD needed to capture a
fractionf of the total variance of an extensively chaotic state scales extensively with subsystem volume
V . This allows a correlation lengthjKLD to be defined that is easily calculated from spatially localized
data. We show thatjKLD has a parametric dependence similar to that of the dimension correlation
length and demonstrate that this length can be used to characterize high-dimensional inhomogeneo
spatiotemporal chaos. [S0031-9007(97)02528-3]

PACS numbers: 05.45.+b, 05.70.Ln, 47.27.Cn
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Spatiotemporal states that are nonperiodic both in spa
and time abound in nature and are often important techn
logically, e.g., for lasers, fibrillating hearts, and conve
tive transport of heat [1]. Experiments and simulation
raise questions that are presently poorly understood: A
there different kinds of spatiotemporal nonperiodic state
What kinds of bifurcations lead to such states? How d
inhomogeneities and boundary conditions affect the d
namics? And how does the transport of energy and m
ter depend on the details of the spatiotemporal disord
An essential first step towards answering these questi
is to develop methods to quantify spatiotemporal dynam
states, so that one state can be distinguished from ano
and so that theory can be compared with experiment a
with simulation. Data analysis and theoretical progre
are presently limited by a scarcity of concepts and of com
putational methods for analyzing spatiotemporal disorde

In the absence of a fundamental theory of sustain
nonequilibrium systems that could indicate appropria
quantities to measure, researchers have used primarily
approaches for quantifying spatiotemporal disorder: tw
point correlation functions and dynamical invariants suc
as Lyapunov exponents and fractal dimensions [1]. Te
poral correlation functions have been effective for distin
guishing periodic and quasiperiodic dynamical states fro
each other and from chaotic ones [2] while spatial corr
lation functions have played an important role in disco
ering and demonstrating the absence of long range spa
order [3]. Both correlation functions have been less us
ful for distinguishing one chaotic state from another or fo
comparing experimental with computational chaotic da
Dynamical invariants have been somewhat useful for o
dering the chaotic states of low-dimensional dynamic
systems but severe difficulties remain in calculating the
quantities for higher-dimensional systems because of
demanding computational effort, the slow and often am
biguous convergence of time-series-based algorithms,
the need for large amounts of noise-free data [4].

In this Letter, we propose and analyze a new meas
of spatiotemporal disorder, a correlation lengthjKLD

defined below, that seems promising especially for t
analysis of large, high-dimensional, nontransient, drive
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dissipative systems. This quantity has some of the flav
of correlation functions and also of dynamical invarian
and is straightforward to compute with moderate amou
of spatiotemporal data (unlike global dynamical invarian
like the fractal dimension) since, as we show below, it is
local quantity that can be calculated from spatiotempo
data associated with a finite region of space. This la
feature suggests thatjKLD will be useful for studying
spatially inhomogeneous dynamics arising from slow
changing external parameters, from broken symmetri
or from the influence of boundaries. We investiga
the properties ofjKLD numerically for two idealized
mathematical models—the one-dimensional Kuramo
Sivashinsky (KS) equation [1] and the two-dimension
Miller-Huse model [5]—whose spatiotemporal chaot
solutions have been thoroughly studied and for whi
inhomogeneities can be introduced in a controlled mann
In later work, applications to experimental data will b
reported.

Our motivation for defining and studying the correla
tion lengthjKLD comes from three different ideas. Firs
is the idea of extensive chaos, that a sufficiently bigho-
mogeneousspatiotemporal chaotic system has the pro
erty that its fractal dimensionD is extensive, growing
in proportion to the system volumeV [1,6,7]. This ex-
tensive scaling suggests that boundedintensivequanti-
ties, such as a dimension densityd ­ limV!` DyV or the
equivalent dimension correlation lengthjd ­ d21yd [1,8]
(where d is the number of asymptotically large spatia
dimensions, e.g.,d ­ 2 for a large-aspect-ratio convec
tion experiment) are more appropriate for characterizi
large nonequilibrium systems. It was shown recently th
the lengthjd varies independently of the two-point an
mutual-information correlation lengths [8]. This sugges
that certain measures of spatiotemporal dynamics sho
be sensitive to structure in phase space, not just to inst
taneous or time-averaged measures of spatial disorde
configuration space. The quantityjKLD turns out to have
this property.

The second idea is to extend the concept of local therm
dynamic equilibrium [9, p. 13] to slowly varying inhomo
geneous driven dissipative systems, with the implicati
© 1997 The American Physical Society 1687
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that intensive dynamical quantities can be defined loca
and will be slowly varying in space. As an illustration
assume that a large sustained nonequilibrium system ha
parameterpsxd that varies slowly with positionx and con-
sider a subsystem of sizeL centered at positionx0. Then
over a certain time scale that decreases with decreas
subsystem sizeL (not necessarily diffusively), this sub-
system will be approximately nontransient even if the sy
tem containing the subsystem is not. Further, the valu
of intensive parameters associated with this approximat
nontransient subsystem should correspond closely in va
to those of an infinite homogeneous nontransient syst
with the parameter valuepsx0d. Unfortunately, there are
no reliable algorithms that can estimate intensive quantit
such as the dimension densityd from information localized
to some region of space; calculations of intensive quan
ties such as the Lyapunov dimension densityd have so
far relied on the expensive calculation of global extensi
quantities followed by taking the limit of some intensiv
ratio [8]. This is impractical for the analysis of experimen
tal data or for the evaluation of local measures.

The third idea is to make use of the Karhunen
Loève decomposition (KLD), which has been used b
researchers in many disciplines to analyze spatiotempo
data [10], although not in the context of extensiv
chaos or of inhomogeneous systems. The KLD is
statistical method for compressing spatiotemporal data
finding the largest linear subspace that contains substan
statistical variations of the data. To illustrate the ide
in the discrete case and also to introduce some notati
we consider a one-dimensional zero-mean fieldust, xd on
a spatial intervalf0, Lg whose values are measured o
a finite space-time mesh ofT uniformly sampled time
pointsti ­ iDt and ofS uniformly sampled spatial points
xj ­ jDx. Then aT 3 S rectangular data matrixAij ­
usti , xjd can be defined from which aS 3 S symmetric
positive semidefinite scatter matrixM ­ AT A can be
calculated, whereAT denotes the matrix transpose o
A. The scatter matrix can be diagonalized to obtain
nonnegative eigenvaluess

2
i which can be further ordered

in decreasing sizes2
1 $ s

2
2 · · · $ s

2
S $ 0.

Since the ordered eigenvaluess
2
i often decrease rapidly

in magnitude with increasing indexi, researchers [11]
have introduced a positive integerDKLD :

DKLD ­ max

(
p :

pX
i­1

s2
i

,
SX

i­1

s2
i # f

)
, (1)

which represents the largest number of KLD mode
p needed to capture some specified fractionf # 1 of
the total variance

PS
i­1 s

2
i of the data. Researchers

have suggested usingDKLD like a fractal dimensionD
to measure the complexity of spatiotemporal data [1
although care is needed when interpretingDKLD . The
T S-dimensional vectors defined by the rows of the da
matrix A constitute an embedding of the dynamics into
1688
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S-dimensional phase space. The quantityDKLD indicates
the dimension of a linear subspace that includes most
the statistical variation of this embedding, and is generall
quite different from the attractor’s fractal dimensionD,
e.g., a limit cycle with fractal dimensionD ­ 1 in a
N-dimensional phase space could have a value ofDKLD

between 1 andN depending on how the limit cycle is
folded in different orthogonal directions.

Although DKLD need have no particular relation to the
data’s fractal dimensionD, we argue that forextensive
chaos, the rate of increase ofDKLD with volume V will
generally be similar to the rate of increase of fracta
dimension D with V . This follows from extensivity,
that the addition of an independent subsystem (as w
increase the system volume) adds a new linear subspa
(increasing DKLD) that contains the new degrees of
freedom that lead to an increase inD. This suggests that
DKLD is related toD for extensive systems and so we can
then try to use the more readily calculated quantityDKLD

to estimate intensive correlation lengths like the lengt
jd discussed above, and to study the dependence of su
lengths on system parameters.

We now present some results that illustrate these ob
servations. When evaluated for spatiotemporal data o
a large, approximately homogeneous, sustained noneq
librium system of volumeV , the KLD dimensionDKLD
of Eq. (1) grows extensively withV as shown in Fig. 1
whereV is either the volume of the entire system or the
volume of a sufficiently large subsystem in a fixed vol-
ume. Here we have usedT 3 S data matricesA (with
104 # T # 2 3 104 and 100 # S # 800) derived from
the spatiotemporal fieldust, xd of the one-dimensional

FIG. 1. KLD dimensionDKLD [Eq. (1)] versus sizeL for
subsystems (circles) and for full systems (squares) of Eq. (2
Lines connecting points are to guide the eye. The labe
indicate the value off. The f ­ 0.81 system size line
corresponds to the extensive scaling of the Lyapunov dimensio
D [7]. Spatial and temporal sampling intervals ofDx ­ 0.25
andDt ­ 2 were used, respectively.
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Kuramoto-Sivashinsky equation

≠tu 1 ≠2
xu 1 ≠4

xu 1 u≠xu ­ 0, x [ f0, Lg , (2)

with rigid boundary conditionsu ­ ≠xu ­ 0 at x ­ 0
and atx ­ L. Equation (2) was integrated numerically
with a semi-implicit finite-difference method that was
first- and second-order accurate in time and space,
spectively. ForL . 50, most initial conditions yield spa-
tiotemporal chaotic states that were previously shown
be extensively chaotic [7]. Figure 1 shows thatDKLD is
extensive for system sizesL $ 50 (plotted in squares),
growing in proportion to the system volumeL with a
slope that depends on the fractionf. Figure 1 also shows
that DKLD is extensive for sufficiently large open sub
systems (plotted in circles) centered on the middle of
system of fixed size400 over the range15 # L # 200.
The slope ofDKLD for subsystems for a given fraction
f is thesameas the slope ofDKLD for full systems (al-
though the intercepts differ). This implies the importan
point that the intensive density limV!` DKLDyV can be
estimated from information localized to a certain regio
of space.

The extensivity of the KLD dimension, for both the
entire system and for subsystems, suggests introducing
intensive KLD correlation lengthjKLD:

jKLD ­

µ
lim
V!`

DKLDyV

∂21yd

, (3)

by analogy to the definition of the dimension correlation
lengthjd (where againd is the spatial dimensionality of
the system). Based on the data in Fig. 1 for the KS equ
tion, Fig. 2 shows how the lengthjKLD varies with the
fractionf. The dependence is nonlinear, with the magn

FIG. 2. KLD correlation lengthjKLD versus fractionf for the
data of Fig. 1, showing a nonlinear dependence over an or
of magnitude injKLD .
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tude of jKLD changing by a factor of 10 over the rang
0.3 # f # 1. Contrary to an earlier claim by Ciliberto
and Nicolaenko [11], Fig. 2 suggests that the fractal
mension of a high-dimensional system cannot genera
be estimated from a knowledge ofjKLD since the frac-
tion f corresponding to the dimension correlation leng
will not be known in advance and becausejKLD can vary
substantially withf. However, the onset of extensivity
for DKLD does accurately predict the onset of extensiv
for the Lyapunov dimensionD with increasing volumeV
which provides a way to determine if an experimental sy
tem is extensively chaotic.

Figure 3 shows how the lengthjKLD (for f ­ 0.95)
compares with the dimension correlation lengthjd (de-
rived from the extensive Lyapunov fractal dimensio
[8]) for a nonequilibrium Ising-like phase transition of
mathematical model invented by Miller and Huse [5
(The functional dependence ofjKLD on parameterg de-
pends only weakly on the fractionf which therefore is not
an important parameter here.) The model is a 2D coupl
map lattice for which a 1D chaotic map of odd symmet
is placed at each node of a periodicL 3 L square lat-
tice. Each site is coupled diffusively to nearest neighbo
with a strengthg that acts as the bifurcation paramet
for this system. For increasing values ofg, Miller and
Huse found that a quantity analogous to a lattice ma
netizationM bifurcated from a zero to nonzero value
a critical valuegc ­ 0.205 at which point also a two-
point correlation lengthj2 diverged to infinity. O’Hern

FIG. 3. Comparison of the KLD and Lyapunov dimensio
correlation lengths [8] (squares and circles, respectively)
a nonequilibrium transition [5]. The values forjKLD were
calculated for the fractionf ­ 0.95 using spatiotemporal data
of the Miller-Huse model on a 2D periodic square lattice of si
L ­ 30. T ­ 104 time samples ofS ­ L2 latice sites over the
range122 # S # 202 were used to define the data matrixA.
1689
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FIG. 4. KLD correlation lengthjKLD with f ­ 0.95 (circles)
versus spatial coordinatex for a weakly inhomogeneous 2D
Miller-Huse model on a square lattice with periodic boundar
conditions, with rectangular geometryLx ­ 300 and Ly ­
30. The scatter matrices were calculated fromT ­ 104

time samples andS ­ 92, 112, 132, and152, respectively. The
inset indicates the periodic spatial variation ofgsxd ­ 0.17 1
0.02 sins2pxy300d, whose range corresponds to the interva
indicated by the horizontal arrow in Fig. 3. The dashed curv
represents the value ofjKLD for infinite homogeneous lattices
with constant coupling constantgsxd.

et al. [8] showed that the dimension correlation lengthjd

did not diverge neargc but instead was a quantity of order
one that smoothly reached a local maximum at a valu
g ­ 0.200 distinctly less than the critical valuegc. Fig-
ure 3 shows that the lengthjKLD is somewhat larger than,
but comparable in magnitude with,jd and has a qualita-
tively similar dependence ong in that it increases to a
local maximum at the sameg value. Unlike the di-
mension correlation length,jKLD does not seem to vary
smoothly near its maximum but we lack sufficient numer
cal resolution to determine unambiguously whether the
is a finite jump in value, in analogy to the dependence
specific heat on temperature for a second-order equil
rium phase transition.

Finally, in Fig. 4 we demonstrate how the KLD cor-
relation lengthjKLD can be used to characterize inho
mogeneous spatiotemporal chaos, a result that opens
interesting possibilities for the future analysis of exper
mental data. For Fig. 4, we introduced a spatial inho
mogeneity into a300 3 30 periodic Miller-Huse lattice
by allowing the coupling constantg ­ gsxd to vary pe-
riodically in thex lattice direction as shown in the inset.
At each of severalx coordinates, we calculated the KLD
dimension Eq. (1) for subsystems centered onx and of
increasing widthL with 9 # L # 15. From these data,
local extensive scaling was identified from which a lengt
jKLD was calculated from Eq. (3). In Fig. 4, the length
1690
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jKLD are given by the circles which can be compared wit
the dashed curve representing the corresponding value
jKLD that would be obtained from Fig. 3 for an infinite
homogeneous system with constant valueg ­ gsxd. The
agreement is good to about 4% throughout, which is su
ficient to determine the quantitative spatial dependence
the inhomogeneity.

In conclusion, the correlation length Eq. (3) obtained b
studying the extensive scaling of the Karhunen-Loève de
composition with increasing subsystem volume provide
an easily calculated and novel way to characterize the sp
tiotemporal disorder of an extensively chaotic system, in
cluding the case of slowly varying spatial inhomogeneities
We believe that the ideas on which our analysis is based
namely, extensivity, local stationarity, and the Karhunen
Loève decomposition—will be important ingredients in
the future analysis of large nonequilibrium systems.

This work was supported by a DOE Computationa
Science Fellowship, by NSF Grants No. NSF-DMS-93
07893 and No. NSF-CDA-92123483-04, and by DOE
Grant No. DOE-DE-FG05-94ER25214.

*Also at Center for Nonlinear and Complex Systems
Duke University, Durham, NC.

†Electronic address: zoldi@phy.duke.edu
[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65,

851 (1993).
[2] G. Ahlers and R. P. Behringer, Prog. Theor. Phys. Supp

64, 186 (1978).
[3] J. P. Gollub and R. Ramshankar, inNew Perspectives

in Turbulence,edited by L. Sirovich (Springer-Verlag,
Berlin, 1991), pp. 165–194; M. C. Cross, D. Meiron, and
Y. Tu, Chaos4, 607 (1994).

[4] H. D. Abarbanel, R. Brown, and L. S. Tsimring, Rev. Mod.
Phys.65, 1331 (1993).

[5] J. Miller and D. A. Huse, Phys. Rev. E48, 2528 (1993).
[6] D. Ruelle, Commun. Math. Phys.87, 287 (1982).
[7] P. Manneville, in Macroscopic Modeling of Turbulent

Flows, edited by O. Pironneau,Lecture Notes in Physics
(Springer-Verlag, New York, 1985), pp. 319–326.

[8] C. O’Hern, D. Egolf, and H. Greenside, Phys. Rev. E53,
3374 (1996).

[9] L. Landau and E. Lifshitz,Statistical Physics(Pergamon,
New York, 1980), 3rd ed., Vol.5, Part 1.

[10] R. W. Preisendorfer,Principal Component Analysis in
Meteorology and Oceanography, Developments in At
mospheric ScienceVol. 17 (Elsevier, Amsterdam, 1988);
K. Fukunaga,Introduction to Statistical Pattern Recogni-
tion (Academic Press, Boston, 1990), 2nd ed.; G. Berkooz
P. Holmes, and J. L. Lumley, Annu. Rev. Fluid Mech.25,
539 (1993).

[11] L. Sirovich and A. E. Deane, J. Fluid Mech.222, 251
(1991); S. Ciliberto and B. Nicolaenko, Europhys. Lett.
14, 303 (1991); R. Vautard and M. Ghil, Physica (Ams-
terdam)35D, 395 (1989).


