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Size-Dependent Transition to High-Dimensional Chaotic Dynamics
in a Two-Dimensional Excitable Medium
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The spatiotemporal dynamics of an excitable medium with multiple spiral defects is shown to vary
smoothly with system size from short-lived transients for small systems to extensive chaos for large
systems. A comparison of the Lyapunov dimension density with the average spiral defect density
suggests an average dimension per spiral defect varying between 3 and 7. We discuss some implications
of these results for experimental studies of excitable media. [S0031-9007(98)05536-7]

PACS numbers: 05.45.+b, 47.54.+r, 82.20.Wt, 82.40.Bj

Much research in the nonequilibrium physics of ex-two-dimensional excitable medium of moderate size with
citable media has been motivated by the observation of dyfew defects on average can already sustain extensive, high-
namical states containing defects, i.e., spiral waves in twdimensional chaotic dynamics, a fact with important impli-
space dimensions or spiral filaments in three dimensioneations for control of excitable media by small parameter
[1]. Experimental studies in surface oxidation experi-perturbations [11]. Inthe following, we explain the model,
ments [2] and in fibrillating hearts [3] suggest that manysummarize our calculations, and discuss the implications
such defects may coexist in dynamically complex statesof our results.

Although similar states have been reproduced in computer The Bar model describes the interaction of an activator
simulations [4—6], there has not yet been careful quantifield u(z,x,y) with an inhibitor field v(s,x,y) via the
tative analysis of whether the long-time dynamics of suctpartial differential equations

media can be chaotic and, if so, how the properties of this

chaos may be related to the statistics of defects, to the size du _ V2u + iu(l — ) <u _ v+t b) (1a)
of the medium, and to intrinsic medium parameters. De- at ’

tailed analysis of mathematical models of excitable media Jv

may thus provide new insights in how to analyze spatially Pyl fu) — v, (1b)

extended excitable media, possibly including fibrillating
cardiac tissue.

In this Letter, we study numerically a two-dimensional
mode_:l ofa homoggneous exmtaple medium with an €Meonditions on the fieldi(z, x,y). The functionf(x) has
phasis on determining when spatiotemporal chaos OCCUrRy e form
and on quantitatively analyzing basic time and length
scales of observed chaotic states. We use a model intro- {0 if u=1/3,

which we solve numerically in a square domain of side
L with either biperiodic (BP) or no-flux (NF) boundary

duced by Baet al. [4], as a reduced description of carbon  f(y) = { 1 — 6.75u(u — 1)?, if1/3=u<1,
monoxide oxidation on a surface [7], because of its nu- 1, if u>1,

merical simplicity and because of prior work suggesting )

the existence of chaos [8]. Extending some recent work

by other researchers [4,5,9], we find that the dynamics iso that the production of the inhibitar is “delayed”
strongly dependent on the system sizeFor smallL, all  until u exceedd /3. The nonlinear form Eq. (2) leads to
initial conditions studied rapidly decay to an asymptoticthree fixed points, one stable and two unstable; the larger
constant or periodic state. As the system size increasesnstable fixed pointu*, v*) (which does not appear in the
however, the fraction of initial conditions leading to sus-widely used Fitzhugh-Nagumo model) seems necessary for
tained, nonperiodic dynamics increases smoothly, and wiae occurrence of spatiotemporal chaos. The parameter
discuss the transition from periodic to nonperiodic dynam-< in Eq. (1a) determines the ratio of time scales of the
ics with increasing system size. The nonperiodic dynamic§ast field # and slow fieldv and is the key bifurcation
sustained in sufficiently large systems are statistically staparameter in this paper. The positive parameteand
tionary, and we compute Lyapunov exponents and dimenb were fixed at the values = 0.84 andb = 0.07 to take
sions, defect statistics, and two-point correlation lengthedvantage of substantial earlier work using these values
to characterize these states. These different statistics aj#,8]. Spiral solutions are then known empirically to be
compared, both to test previous conjectures about the remstable where exceeds a critical value. = 0.069 [4].
lationship of these correlation lengths [10] and to evaluat&he mechanism of this instability, meander of the spiral
the complexity of the defects. Our results indicate that aore into a branch of the spiral, is apparently unique to
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models with delayed inhibitor production like that given by namics was short-lived in small systenis £ 15 (for NF
Eq. (2). Inparticular, this is not the mechanism of breakupboundary condition) of. < 8 (for BP)], decaying in less
observed in models of cardiac tissue [5,6]. Breakup leadghan 100 time units to either the stable uniform state or to
to long-lived, complicated dynamics for certain initial a plane-wave state (only in the case of biperiodic bound-
conditions where > ¢.; a snapshot of such a disordered ary conditions). Sufficiently large systems & 35) sus-
nonperiodic state wit1 spiral defects is shown in Fig. 1. tained dynamics for at Ilea3000 time units. The fraction
Our calculations involved integrating Egs. (1), calculat-f of initial conditions which led to nonperiodic dynam-
ing the Lyapunov spectrum of the numerical trajectory,ics sustained for a tim& (either 100 or 1000 time units)
and counting the number of spiral defects at successivis shown in Fig. 2 as a function of system size for both
times. For both kinds of boundary conditions, Eqgs. (1)boundary conditions. For biperiodic boundary conditions
were solved numerically by first introducing second-ordelFig. 2(a)], the curve is independent of the cutoff tiffie
accurate finite difference approximations for the spatiaindicating that transients either die quickly or are sustained
derivatives on a uniform square mesh of spaciagand  indefinitely (more thar50000 time units). For no-flux
then using an algorithm proposed by Barkley [12]. Forboundary conditions, all initial conditions studied eventu-
the calculations reported below, we used a spatial grid sizally decayed to a stationary state; the mean and median
Ax = 0.50 and time stepA\t = 0.05¢. The spectrum of transient times both scale exponentially with system size
Lyapunov exponentg; and the Lyapunov fractal dimen- [14], much like the supertransient behavior observed pre-
sionD were calculated by well-known algorithms based onviously in some one-dimensional systems [15]. These re-
linear variational equations [13] that were integrated by asults suggest that excitable media of intermediate size may
forward-Euler algorithm with the same grid and time step.have an appreciable basin of attraction both for nonperiodic
The time step chose\t = 0.05¢, was much smaller than dynamics and for periodic or constant dynamics. Whether
that required by integration of only Egs. (1), but was found
to be necessary to compute Lyapunov exponents accurately

to within a few percent [14]. For given boundary con- 1.00 F ' ' 8888 1
ditions and initial data, Eqgs. (1) were integrated 2000 a) )

time units to allow a statistically stationary state to be ob- 075 b o -
tained, and then the full system with variational equations a

was integrated for an additionaD00 time units &200

spiral periods), during which statistics were calculated. w 050 9 T
To study the dependence of the dynamics on initial con-

ditions, we integrated Egs. (1) from eachl60 initial con- 025 | e .

ditions generated by distributing the field values uniformly Y.

(at each grid point) in the rangese [0.84",1.2u™], v €

[0.8v%,1.2v"]. This procedure was repeated for both 000t 00, ‘ E— : .
boundary conditions and for square systems of side length 1.00 | ®q0 :
L varying from 5 to 40. For all initial conditions, the dy- b) n®
oy
0.75 f .
[ ]
+— 050 | .
°® ]
0.25 ® -
]
®
25 ool BRumm®™ e
10 20 30 40
L
FIG. 2. Fraction f of 100 random initial conditions still
exhibiting nonperiodic dynamics after a given time. (a) For
. : biperiodic boundary conditions with cutoff timé&,, = 100

(circles), 1000 (squares), or any larger value, the transition
has the same form, with systems of side lendth> 25
FIG. 1. Density plot at timer = 500 of the slow field nearly always exhibiting sustained dynamics. (b) For no-flux
v(t,x,y) for a spatiotemporal chaotic state wilh spiral de-  boundary conditions with cutoff timé&,, = 100 (circles) and
fects present. Dark and light regions correspond, respectivelyl,, = 1000 (squares), the median transient time depends on
to values less and greater than the vakie= 0.484 corre- the cutoff. Comparison of these graphs shows that dynamics
sponding to the unstable fixed point; the field values sparare substantially less likely to be sustained for a given time
the rangev € [0,a — b]. Parameter values weke= 0.074, with no-flux boundary conditions. The parameters used were
a=0284,b =0.07, L =50, Ax = 0.5, andAr = 0.0037. the same as in Fig. 1.
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this accounts for the observation that fibrillatisome- We also explored whether the fractal dimensionof
timesoccurs in hearts of intermediate size remains uncleathe chaotic states was related to the statistics of the number
both because of the differing breakup mechanisms and b&v(r) of spiral defects, e.g., to its time avera@gé). The
cause of the effect of the third dimension in heart tissuespirals were counted at successive times by locating their
[9,16]. cores, which occur at those points, y) in the medium
The fact that a given state was transient was revealedhere the fields(u, v) take on the valuesu®, v*) [4].
only by an eventual abrupt change to the uniform statett has been shown previously that(z) is constant for
the dynamics of the transient itself was found to be statistie < €., in which case the time averag®) is fixed by the
cally stationary. For parameter values> €. and for sys- choice of initial condition [4]. We found that the me@w)
tem sized. > 25, these statistically stationary states werescaled extensively with system arafor both boundary
found to be high dimensionalD( = 20) and extensively conditions considered, so that the average defect density
chaotic [17] as shown in Fig. 3 by a linear dependende of n = (N)/L*> was independent of system size [8]. The
onL?. From the asymptotic slopes of the curve in Fig. 3,ratiod = D/{(N) of the Lyapunov dimension to the mean
an intensive dimension densit§y = lim;-_...aD/3(L*)  number of defects therefore defines an intensive quantity
was obtained and then reexpressed as a dimension correthat measures the number of dynamical degrees of freedom
tion lengthés = 6~/4 for ad = 2 dimensional domain associated with each defect on average. Because the
[17]. To test a speculation of Bayst al. [10] that knowl-  extensive quantitie® and(N) are of the formaL> + B
edge of the experimentally accessible two-point correlarather than simplywL? (wherea and 3 are constants),
tion length&, might provide knowledge of the dynamical the ratiod asymptotes slowly to a constant value close
lengthés for a chaotic state of spiral defects, we computedo §/n. We studied the dependence Bf/{N) on area
&, andé; for several values of the parameter For each  L? for two different values ok, and found that we could
€ value studied, the two-point correlation functidgi(r)  estimate the ratid accurately using a single system of side
had a similar monotonically decreasing but nonexponenlength L = 40 with periodic boundary conditions. For
tial form so we estimated, by the position of the first
zero crossing ofC(r) [14]. As shown in Fig. 4(a), the

two lengths agree within a factor of 1.5 or better but have 6 F ; ' ' m - ; .
opposing trends asincreases (from.07 to 0.12), with &5 < |} 3 - = 1
decreasing and, increasing slightly. It is unclear from g’ 5rm e ° }
these data whether an estimatefgfcan, in this medium, 3 al o o9 ° ]
be obtained by measuringg. In any case, further analysis - o
of more physiologically accurate models will be needed to .g 3 | a) J
relateés and &, for the heart data of Baylgt al. [10]. %
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FIG. 3. Lyapunov dimensioP versus system area= L? of €

Egs. (1) for the parameter values of Fig. 1. Extensive (linear)

scaling is found for two different boundary conditions, no-flux FIG. 4. (a) Dimension correlation lengty (circles) and two-
(squares) and periodic (circles). Data for< 25 did not exist  point correlation lengthé, (squares) for differente values.
since all initial conditions decayed quickly to the uniform state.(b) Degrees of freedom per mean defdef,(N), as a function
The dimension extrapolates to zero for a positive system sizegf €. This ratio increases steadily with above the transition
so the ratioD/L? of the dimension to system area asymptotesto chaos aie = €. (marked by the arrow), and varies little in
slowly to the dimension densit§. the regione > 0.095.
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this system sized increases smoothly witle from less *Also at Center for Nonlinear and Complex Systems,
than 4 for € = €. to nearly7 for e = 0.095 at which Duke University, Durham, NC.

point it becomes approximately constant [see Fig. 4(b)]. _'Electronic address: strain@phy.duke.edu
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