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Size-Dependent Transition to High-Dimensional Chaotic Dynamics
in a Two-Dimensional Excitable Medium
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The spatiotemporal dynamics of an excitable medium with multiple spiral defects is shown to v
smoothly with system size from short-lived transients for small systems to extensive chaos for la
systems. A comparison of the Lyapunov dimension density with the average spiral defect den
suggests an average dimension per spiral defect varying between 3 and 7. We discuss some implic
of these results for experimental studies of excitable media. [S0031-9007(98)05536-7]
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Much research in the nonequilibrium physics of ex
citable media has been motivated by the observation of d
namical states containing defects, i.e., spiral waves in tw
space dimensions or spiral filaments in three dimensio
[1]. Experimental studies in surface oxidation exper
ments [2] and in fibrillating hearts [3] suggest that man
such defects may coexist in dynamically complex state
Although similar states have been reproduced in compu
simulations [4–6], there has not yet been careful quan
tative analysis of whether the long-time dynamics of suc
media can be chaotic and, if so, how the properties of th
chaos may be related to the statistics of defects, to the s
of the medium, and to intrinsic medium parameters. D
tailed analysis of mathematical models of excitable med
may thus provide new insights in how to analyze spatial
extended excitable media, possibly including fibrillating
cardiac tissue.

In this Letter, we study numerically a two-dimensiona
model of a homogeneous excitable medium with an em
phasis on determining when spatiotemporal chaos occu
and on quantitatively analyzing basic time and lengt
scales of observed chaotic states. We use a model int
duced by Bäret al. [4], as a reduced description of carbon
monoxide oxidation on a surface [7], because of its nu
merical simplicity and because of prior work suggestin
the existence of chaos [8]. Extending some recent wo
by other researchers [4,5,9], we find that the dynamics
strongly dependent on the system sizeL. For smallL, all
initial conditions studied rapidly decay to an asymptoti
constant or periodic state. As the system size increas
however, the fraction of initial conditions leading to sus
tained, nonperiodic dynamics increases smoothly, and
discuss the transition from periodic to nonperiodic dynam
ics with increasing system size. The nonperiodic dynami
sustained in sufficiently large systems are statistically st
tionary, and we compute Lyapunov exponents and dime
sions, defect statistics, and two-point correlation length
to characterize these states. These different statistics
compared, both to test previous conjectures about the
lationship of these correlation lengths [10] and to evalua
the complexity of the defects. Our results indicate that
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two-dimensional excitable medium of moderate size wit
few defects on average can already sustain extensive, hi
dimensional chaotic dynamics, a fact with important impli
cations for control of excitable media by small paramete
perturbations [11]. In the following, we explain the model
summarize our calculations, and discuss the implicatio
of our results.

The Bär model describes the interaction of an activat
field ust, x, yd with an inhibitor field yst, x, yd via the
partial differential equations

≠u
≠t

­ =2u 1
1
e

us1 2 ud
µ

u 2
y 1 b

a

∂
, (1a)

≠y

≠t
­ fsud 2 y , (1b)

which we solve numerically in a square domain of sid
L with either biperiodic (BP) or no-flux (NF) boundary
conditions on the fieldust, x, yd. The functionfsud has
the form

fsud ­

8<: 0, if u # 1y3 ,
1 2 6.75usu 2 1d2, if 1y3 # u # 1 ,
1, if u . 1 ,

(2)

so that the production of the inhibitory is “delayed”
until u exceeds1y3. The nonlinear form Eq. (2) leads to
three fixed points, one stable and two unstable; the larg
unstable fixed pointsup, ypd (which does not appear in the
widely used Fitzhugh-Nagumo model) seems necessary
the occurrence of spatiotemporal chaos. The parame
e in Eq. (1a) determines the ratio of time scales of th
fast field u and slow fieldy and is the key bifurcation
parameter in this paper. The positive parametersa and
b were fixed at the valuesa ­ 0.84 andb ­ 0.07 to take
advantage of substantial earlier work using these valu
[4,8]. Spiral solutions are then known empirically to be
unstable whene exceeds a critical valueec ø 0.069 [4].
The mechanism of this instability, meander of the spira
core into a branch of the spiral, is apparently unique
© 1998 The American Physical Society
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models with delayed inhibitor production like that given b
Eq. (2). In particular, this is not the mechanism of breaku
observed in models of cardiac tissue [5,6]. Breakup lea
to long-lived, complicated dynamics for certain initia
conditions whene . ec; a snapshot of such a disordere
nonperiodic state with31 spiral defects is shown in Fig. 1.

Our calculations involved integrating Eqs. (1), calcula
ing the Lyapunov spectrum of the numerical trajector
and counting the number of spiral defects at success
times. For both kinds of boundary conditions, Eqs. (1
were solved numerically by first introducing second-orde
accurate finite difference approximations for the spati
derivatives on a uniform square mesh of spacingDx and
then using an algorithm proposed by Barkley [12]. Fo
the calculations reported below, we used a spatial grid s
Dx ­ 0.50 and time stepDt ­ 0.05e. The spectrum of
Lyapunov exponentsli and the Lyapunov fractal dimen-
sionD were calculated by well-known algorithms based o
linear variational equations [13] that were integrated by
forward-Euler algorithm with the same grid and time ste
The time step chosen,Dt ­ 0.05e, was much smaller than
that required by integration of only Eqs. (1), but was foun
to be necessary to compute Lyapunov exponents accura
to within a few percent [14]. For given boundary con
ditions and initial data, Eqs. (1) were integrated for2000
time units to allow a statistically stationary state to be ob
tained, and then the full system with variational equation
was integrated for an additional1000 time units (ø200
spiral periods), during which statistics were calculated.

To study the dependence of the dynamics on initial co
ditions, we integrated Eqs. (1) from each of100 initial con-
ditions generated by distributing the field values uniforml
(at each grid point) in the rangesu [ f0.8up, 1.2upg, y [
f0.8yp, 1.2ypg. This procedure was repeated for bot
boundary conditions and for square systems of side leng
L varying from 5 to 40. For all initial conditions, the dy-

FIG. 1. Density plot at timet ­ 500 of the slow field
yst, x, yd for a spatiotemporal chaotic state with31 spiral de-
fects present. Dark and light regions correspond, respective
to values less and greater than the valueyp ­ 0.484 corre-
sponding to the unstable fixed point; the field values sp
the rangey [ f0, a 2 bg. Parameter values weree ­ 0.074,
a ­ 0.84, b ­ 0.07, L ­ 50, Dx ­ 0.5, andDt ­ 0.0037.
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namics was short-lived in small systems [L , 15 (for NF
boundary condition) orL , 8 (for BP)], decaying in less
than100 time units to either the stable uniform state or to
a plane-wave state (only in the case of biperiodic boun
ary conditions). Sufficiently large systems (L . 35) sus-
tained dynamics for at least3000 time units. The fraction
f of initial conditions which led to nonperiodic dynam-
ics sustained for a timeT (either 100 or 1000 time units)
is shown in Fig. 2 as a function of system size for bot
boundary conditions. For biperiodic boundary condition
[Fig. 2(a)], the curve is independent of the cutoff timeT ,
indicating that transients either die quickly or are sustaine
indefinitely (more than50 000 time units). For no-flux
boundary conditions, all initial conditions studied eventu
ally decayed to a stationary state; the mean and medi
transient times both scale exponentially with system siz
[14], much like the supertransient behavior observed pr
viously in some one-dimensional systems [15]. These r
sults suggest that excitable media of intermediate size m
have an appreciable basin of attraction both for nonperiod
dynamics and for periodic or constant dynamics. Wheth

FIG. 2. Fraction f of 100 random initial conditions still
exhibiting nonperiodic dynamics after a given time. (a) Fo
biperiodic boundary conditions with cutoff timeTnp ­ 100
(circles), 1000 (squares), or any larger value, the transition
has the same form, with systems of side lengthL . 25
nearly always exhibiting sustained dynamics. (b) For no-flu
boundary conditions with cutoff timeTnp ­ 100 (circles) and
Tnp ­ 1000 (squares), the median transient time depends o
the cutoff. Comparison of these graphs shows that dynami
are substantially less likely to be sustained for a given tim
with no-flux boundary conditions. The parameters used we
the same as in Fig. 1.
2307
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this accounts for the observation that fibrillationsome-
timesoccurs in hearts of intermediate size remains unclea
both because of the differing breakup mechanisms and b
cause of the effect of the third dimension in heart tissu
[9,16].

The fact that a given state was transient was reveal
only by an eventual abrupt change to the uniform stat
the dynamics of the transient itself was found to be statis
cally stationary. For parameter valuese . ec and for sys-
tem sizesL . 25, these statistically stationary states wer
found to be high dimensional (D $ 20) and extensively
chaotic [17] as shown in Fig. 3 by a linear dependence ofD
on L2. From the asymptotic slopes of the curve in Fig. 3
an intensive dimension densityd ­ limL2!` ≠Dy≠sL2d
was obtained and then reexpressed as a dimension corr
tion lengthjd ­ d21yd for a d ­ 2 dimensional domain
[17]. To test a speculation of Baylyet al. [10] that knowl-
edge of the experimentally accessible two-point correl
tion lengthj2 might provide knowledge of the dynamical
lengthjd for a chaotic state of spiral defects, we compute
j2 andjd for several values of the parametere. For each
e value studied, the two-point correlation functionCsrd
had a similar monotonically decreasing but nonexpone
tial form so we estimatedj2 by the position of the first
zero crossing ofCsrd [14]. As shown in Fig. 4(a), the
two lengths agree within a factor of 1.5 or better but hav
opposing trends ase increases (from0.07 to 0.12), with jd

decreasing andj2 increasing slightly. It is unclear from
these data whether an estimate ofjd can, in this medium,
be obtained by measuringj2. In any case, further analysis
of more physiologically accurate models will be needed
relatejd andj2 for the heart data of Baylyet al. [10].

FIG. 3. Lyapunov dimensionD versus system areaA ­ L2 of
Eqs. (1) for the parameter values of Fig. 1. Extensive (linea
scaling is found for two different boundary conditions, no-flux
(squares) and periodic (circles). Data forL # 25 did not exist
since all initial conditions decayed quickly to the uniform state
The dimension extrapolates to zero for a positive system siz
so the ratioDyL2 of the dimension to system area asymptote
slowly to the dimension densityd.
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We also explored whether the fractal dimensionD of
the chaotic states was related to the statistics of the num
Nstd of spiral defects, e.g., to its time averagekNl. The
spirals were counted at successive times by locating th
cores, which occur at those pointssx, yd in the medium
where the fieldssu, yd take on the valuessup, ypd [4].
It has been shown previously thatNstd is constant for
e , ec, in which case the time averagekNl is fixed by the
choice of initial condition [4]. We found that the meankNl
scaled extensively with system areaL2 for both boundary
conditions considered, so that the average defect den
n ­ kNlyL2 was independent of system size [8]. Th
ratio d ­ DykNl of the Lyapunov dimension to the mean
number of defects therefore defines an intensive quan
that measures the number of dynamical degrees of freed
associated with each defect on average. Because
extensive quantitiesD andkNl are of the formaL2 1 b

rather than simplyaL2 (wherea and b are constants),
the ratio d asymptotes slowly to a constant value clos
to dyn. We studied the dependence ofDykNl on area
L2 for two different values ofe, and found that we could
estimate the ratiod accurately using a single system of sid
length L ­ 40 with periodic boundary conditions. For

FIG. 4. (a) Dimension correlation lengthjd (circles) and two-
point correlation lengthj2 (squares) for differente values.
(b) Degrees of freedom per mean defect,DykN l, as a function
of e. This ratio increases steadily withe above the transition
to chaos ate ­ ec (marked by the arrow), and varies little in
the regione . 0.095.
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this system size,d increases smoothly withe from less
than 4 for e ø ec to nearly 7 for e $ 0.095 at which
point it becomes approximately constant [see Fig. 4(b
Thus a fixed number of degrees of freedom cannot,
this manner, be associated with each spiral defect in
excitable medium.

In summary, for a particular model of a two-dimension
excitable medium [4,8], we have demonstrated by num
cal calculations a smooth transition from short-live
transient dynamics to extensive, high-dimensional cha
dynamics with increasing system sizeL for both no-flux
and biperiodic boundary conditions. Small systems ne
exhibited sustained chaotic dynamics, but nonperio
dynamics in sufficiently large systems was found to
statistically stationary on such long time scales and
such a large fraction of random initial conditions that Ly
punov spectra of the dynamics converged well to a va
independent of the initial condition. Although previou
results based on time series allowed computation of
Lyapunov exponent [18,19], we computed enough Ly
punov exponents to determine the Lyapunov dimens
D in an excitable medium with many spiral defects. W
found no clear relation between the dimension cor
lation length jd and the widely used two-point lengt
j2; however, the numerical similarity of these lengt
supports a previous conjecture thatjd ø j2 in data taken
on fibrillating hearts [10]. The mean Lyapunov dimensi
per defect of 3 to 7 suggests that defects are more com
cated than in the defect-turbulent regime of the comp
Ginzburg-Landau equation [20], and that the dynamics
excitable media with even a few defects may be quite h
dimensional. This high dimensionality in turn sugges
that it will be difficult to stabilize such states by sma
variations of parameters [11], and may explain why so
previous attempts to analyze the dynamics of fibrillati
with low-dimensional time series embedding techniqu
have been inconclusive [21]. The unusual nature of
spiral-wave breakup in this medium leaves to future wo
the important question of whether the results obtain
here apply to other excitable media, including fibrillatin
ventricles.
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